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Abstract: Ecosystem water use efficiency (WUE) plays an important role in maintaining the carbon
assimilation–water transpiration balance in ecosystems. However, spatiotemporal changes in WUE
in the subtropical region of China (STC) and the impact of driving forces remain unclear. In this study,
we analyzed the spatiotemporal variation in WUE in the STC and used ridge regression combined
with path analysis to identify direct and indirect effects of climate change, vegetation growth, and
elevated atmospheric CO2 concentration (Ca) on the interannual trend in WUE. We then quantified
the actual and relative contributions of these drivers to WUE change based on the sensitivity of
these variables on WUE and the trends of the variables themselves. Results reveal a mean WUE of
1.57 g C/m2/mm in the STC. The annual WUE series showed a descending trend with a decline
rate of 0.0006 g C/m2/mm/year. The annual average temperature (MAT) and leaf area index (LAI)
had strong positive direct effects on the WUE, while the vapor pressure deficit (VPD) had a strong
negative direct effect. Opposite direct and indirect effects offset each other, but overall there was a
total positive effect of Ca and VPD on WUE. In terms of actual contribution, LAI, Ca, and VPD were
the main driving factors; LAI caused WUE to increase by 0.0026 g C/m2/mm/year, while Ca and VPD
caused WUE to decrease by 0.0021 and 0.0012 g C/m2/mm/year, respectively. In terms of relative
contribution, LAI dominated the WUE trend, although Ca and VPD were also important factors.
Other drivers contributed less to the WUE trend. The results of this study have implications for
ecological management and restoration under environmental climate change conditions in subtropical
regions worldwide.

Keywords: WUE; climate change; ridge regression; path analysis; attribution analysis

1. Introduction

The conflict between the gain in carbon (through photosynthesis) and loss of wa-
ter (through transpiration) in plants or terrestrial ecosystems is referred to as water use
efficiency (WUE), which is an important component of ecosystem function [1–3]. By quan-
tifying spatiotemporal changes in WUE and identifying its drivers, ecosystem responses to
changing environments can be revealed, which has important implications for management
of ecosystems [4,5].

WUE is defined as the ratio of Gross Primary Productivity (GPP) and evapotranspi-
ration (ET), and there are several ways to estimate GPP and ET. For example, the eddy
covariance technique is used for field measurements, evaluation based on a data mining
model or process model, and estimation through remote sensing products [6]. Given that
observed data are very sparse and limit the data mining model’s function, remote sensing
data are currently one of the most commonly used methods for estimating GPP and ET
at the regional scale [7]. Many studies have confirmed the applicability of remote sensing
data in GPP and ET estimation [5,8–11].

Changes in WUE are the combined result of changes in GPP and ET and the drivers
that affect them. The photosynthetic utilization rate of vegetation can be improved by
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increasing the photosynthetic rate of vegetation. When the CO2 absorption rate of leaf
stomata reaches saturation, transpiration may be reduced by the reduction in leaf stom-
ata [12]. Sunlight, rainfall, and temperature are important climatic factors that affect the
photosynthetic rate of vegetation [8,13]; CO2 is an important participant in vegetation pho-
tosynthesis, and elevated atmospheric CO2 concentration (Ca) will have a fertilizing effect
on plant growth [4]. An increase in vapor pressure deficit may cause reductions in stomatal
conductance and photosynthetic rates in vegetation [14,15]. The leaf area index (LAI) can
be used as an important indicator of vegetation growth. Increasing LAI leads to increasing
ET by affecting canopy transpiration and interception, decreasing the proportion of solar
radiation reaching the surface of the soil and decreasing evaporation of bare soil, thereby
reducing ET [16]. In addition, plants extract water from the soil, and vegetation growth
can be affected by the availability of soil moisture [17,18]. The mechanisms regulating
changes in WUE are driven by the highly complex interplay between climatic environmen-
tal changes and vegetation growth. In theory, environmental variables impacting GPP or
ET can also impact WUE. Potential controlling factors for WUE include air temperature,
precipitation, LAI, shortwave radiation, vapor pressure deficit, soil content of water, and
atmospheric CO2 content [7,19–22].

Scholars have investigated the driving factors underlying WUE. Sun et al. (2016)
explored the spatial relationship between global WUE and climate variables through
regression analysis [23]. Yang et al. (2021) further analyzed the global annual WUE response
to the drought index using Spearman correlation analysis [24]. Subrata et al. (2022) used a
random forest algorithm to analyze the control of various biometeorological drivers in WUE
for various forest type groups in India [25]. Sun et al. (2021) and Zhao et al. (2022) identified
the driving factors of various WUE changes in China through a sensitivity analysis, and
argued that vegetation growth and elevated atmospheric CO2 emissions are the main factors
underlying WUE changes in China [26–28]. Most studies employing partial correlation
analysis or simple correlation have found that the spatial distributions of climate variables
show strong correlations with those of WUE [26]. However, the actual contribution of
each driver to WUE dynamics remains unknown. The variation trend of WUE cannot be
determined solely by the correlation strength between the driving factor and WUE; rather,
the trends in drivers, including trends in quantity and direction, must be considered. Each
driver’s contribution to the trend in WUE change includes not only the influence of the
relationship but also the direction and degree of the change trend of the driver. Based on the
sensitivity of WUE to these variables, using the changing trends of the variables themselves
to assess contributions can prevent underestimating the contributions of weakly sensitive
factors. The dominant factors that influence WUE dynamics can be identified by comparing
the contribution of each driver to WUE dynamics. At the same time, the multiple driving
factors are interlinked and often jointly regulate the WUE of an ecosystem; therefore,
analyzing the control mechanisms of WUE is often difficult. The multiple regression
method is commonly utilized to enumerate the contributions of environmental drivers.
Although multiple regression is often impacted by the challenge of multicollinearity, ridge
regression can effectively eliminate factor collinearity [7,8]. Moreover, apart from its direct
effects, environmental variables may also exert indirect effects on WUE through mediating
variables. For example, vapor pressure deficit (VPD) directly impacts the characteristics
of plant physiology (such as stomatal conductance) as a transient change in GPP and ET,
but can also show a delayed impact on WUE by modulating plant phenology and canopy
structure; in this process, LAI is the mediating variable [19]. Path analysis has proven to be
very effective in assessing both the indirect and direct impacts of assumed causality [1,28].

Approximately 25% of China’s land area contains subtropical forests typified by ele-
vated biodiversity, special types of vegetation, and unique ecological functions; this forest
area plays a key function in maintaining the region’s ecological balance [29]. Understand-
ing the water–carbon coupling relationship of vegetation and its driving mechanisms is
crucial. However, previous studies have mainly focused on the temporal and spatial varia-
tion characteristics of WUE and its relationship with precipitation and temperature [30].
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The response of WUE to climate change, vegetation growth, and elevated atmospheric
CO2 concentration remains unclear, especially in the subtropical region of China (STC).
Therefore, the goals of this study were as follows: (1) to assess interannual variations in
the WUE of the subtropical region of China from 1982 to 2018; (2) to analyze the direct
and indirect effects of climate change, vegetation growth, and elevated atmospheric CO2
concentration on WUE trends; and (3) to estimate relative and actual contributions of
drivers to WUE change. It was hypothesized that the interannual variation in WUE was
mostly controlled by vegetation growth (as represented by LAI). By studying changes in
WUE within different landscape types and the underlying mechanisms, the interaction
between ecosystems and climate change will be better understood. As such, the results of
this study offer a scientific reference for ecological management and restoration of the STC
under climate change.

2. Materials and Methods
2.1. Data and Preprocessing

The present study used GPP, ET, and LAI data with a 0.05◦ spatial resolution for
1982–2018 obtained from Global Land Surface Satellite (GLASS) products [31,32]. To
ensure the reliability of the data, FLUXNET tower data were used to verify the GPP and
ET values in the STC (Figure S1). Meteorological data were obtained from the National
Tibetan Plateau Data Center (2019). This dataset, with a temporal and spatial resolution
of 3 h and 0.1◦, respectively, was compiled through a combination of remote sensing
data, field station data, and data reanalysis. Included in the dataset are data for seven
near-surface climate variables, namely surface pressure, air temperature, specific humidity,
downward shortwave radiation, wind speed, downward long-wave radiation, and rate of
precipitation [33,34]. In this study, we used average annual temperature (MAT), annual
accumulated precipitation (MAP), and annual solar radiation (Rg) data to analyze the
impact of climate change on WUE dynamics. VPD data were derived from the Google Earth
Engine (GEE) Terra Climate, which provides a climate water balance for terrestrial surfaces
at a global scale and monthly resolution [25]. Soil water content (SWC) was obtained
from the GLDAS Noah Land Surface Model L4 monthly 0.25 × 0.25◦ V2.0. Atmospheric
CO2 concentration data were sourced from the Center for Global Environmental Research.
Climate zone and landscape data were sourced from the Resource Environmental Science
and Data Center. Climate zoning data were used to determine the extent of the STC. For
convenience of research, the landscape was divided into evergreen coniferous forest (ECF),
evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), shrub, grassland, and
cropland (Figure S1). All datasets were resampled to 0.05 × 0.05◦. To facilitate comparisons
between the variables of different units and magnitudes, we normalized all variables based
on the time series.

2.2. Methods
2.2.1. WUE

The WUE (g C/m2/mm) of an ecosystem can be defined as the GPP (g C/m2/year)-
to-ET (mm/year) ratio [26,35]:

WUE =
GPP
ET

(1)

2.2.2. Trend Analysis

Determination of annual trends in WUE and drivers over the period 1982−2018 was
based on a least-square linear regression model. The trend function is:

Slope =
n ∑n

i=1(i× Xi)−∑n
i=1 i×∑n

i=1 Xi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (2)

In Equation (2), i represents a single year, and varies between 1 and 37; Xi represents
WUE and drivers in year i; and n is the total number of years (37). For slope values > 0,
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X increases; and for slope values < 0, X decreases. An F-test was used to detect the
significance of the trends, and p-values < 0.05 were considered significant [36,37].

2.2.3. Ridge Regression

Collinearity among the independent variables during multiple linear regression can
result in least-squares estimation errors [38]. The present study overcame this challenge
by using ridge regression, which effectively considers collinearity to identify more reliable
coefficients compared to those by estimates of least-squares through the introduction of a
ridge parameter [7]. The present study used five-fold cross validation to select the ridge
parameter. The explanatory variables included the annual-scale potential drivers of WUE,
including the MAT, MAP, Rg, SWC, VPD, Ca, and LAI. The dependent variable was the
annual WUE.

2.2.4. Path Analysis

Path analysis can be categorized as a multivariate statistical method that can be applied
to investigate relationships among multiple variables. Path analysis can be used to quantify
the direct and indirect impacts of driving variables on dependent variables [7,28]. The
present study applied path analysis to identify the relative indirect and direct impacts of
climate change, vegetation growth, and elevated Ca on ecosystem-scale WUE.

A system demonstrating a relationship containing a single response variable, y, and
driving variables xi (i = 1, 2, . . . , n) can be represented as:

y = α0 + α1x1 + α2x2 + · · ·+ αnxn (3)

The equation for the regular matrix according to Equation (3) can be written as:
1 rx1x2 · · · rx1xn

rx2x1 1 · · · rx2xn
...

...
. . .

...
rxnx1 rxnx2 · · · 1

·


α1
α2
...

αn

 =


β1
β2
...

βn

 (4)

where rxixj represents the simple coefficient of correlation of xi and xj, αi is the direct path
coefficient of xi to y, and rxixj ·αi is the coefficient of the indirect path, reflecting the indirect
impact of variable xi through variable xj to y [39].

2.2.5. Contribution Analysis

The partial first-order derivative of each regression predictor can be termed a “sen-
sitivity parameter”. Therefore, the sensitivity parameter equated to the ridge regression
coefficient, and this parameter indicated changes to the response variable resulting from
variations in the corresponding driver [38]. Simultaneously, the linear trend evident in
the driving variable is representative of the average variation per unit of time. Therefore,
changes to the dependent variable due to the unit time driving variable are enumerated as
the product of the linear trend and sensitivity parameter, referred to as contribution of the
driver to the dependent variable [7].

The impacts of drivers on WUE were enumerated using the ridge regression coefficient
and the trends in the drivers:

ηc1 = α1 ∗ X1s_trend (5)

where ηc1 is the contribution of the normalized WUE variation, α1 is the ridge regression
coefficient, and X1s trend is the trend evident in the independent normalized factor.

The present study confirmed the actual and relative contributions of different drivers
to WUE:

ηrc1 =
ηc1

|ηc1|+ |ηc1|+ |ηc1|+ · · ·
(6)

ηac1 =
ηc1

WUEs_trend
∗WUEtrend =

α1 ∗ X1s_trend
WUEs_trend

∗WUEtrend (7)
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where ηrc1 represents the proportional contribution of X1 to the WUE trend, ηac1 represents
the contribution to variation in WUE, WUEs_trend is the normalized WUE trend, and
WUEtrend is the trend of WUE [8].

To facilitate the comparative analysis, during the identification of dominant factors,
this study considered the combined effects of the MAT, MAP, Rg, SWC, and VPD as the
climate change (Cli) effects and that of LAI variations and elevated Ca as separate factors
to characterize vegetation growth and environmental change, including Cli, LAI variations,
and elevated Ca. In addition, if a factor (e.g., Cli, LAI, or Ca) had a relative contribution
rate of more than 50% to the change in WUE in the corresponding pixel, this factor could
be used as the dominant factor; moreover, if the sum of the relative contribution rates
of the two factors exceeded 80%, then the combination of these factors was considered a
dominant factor. The others were balanced by three factors.

3. Results
3.1. Distribution of WUE, GPP, ET, and Their Trends

The distributions of the average annual WUE, GPP, and ET in the STC from 1982 to
2018 are illustrated in Figure 1. In the entire vegetation coverage area, the annual average
value of WUE ranged from 0 to 7.72 g C/m2/mm, and approximately 90% of the vegetation
area had a WUE higher than 1 g C/m2/mm, with 14% of the vegetation area presenting
a WUE above 2 g C/m2/mm. In the vegetated area, the annual mean GPP value ranged
from 0 to 2944 g C/m2/year. The spatial distribution pattern was consistent with the
annual mean WUE (Figure 1a,b). In the same area, the annual mean ET value ranged from
0 to 1703 mm/year; 51.40% of the vegetation area had an annual mean ET value higher
than 1000 mm/year, and only 1% of the vegetation area had an annual mean ET value
lower than 500 mm/year.

Among the six major landscapes (Figure 1), EBF had the highest annual average WUE
at 1.89 g C/m2/mm, followed by DBF at 1.74 g C/m2/mm, and ECF at 1.70 g C/m2/mm.
Croplands had the lowest annual average WUE of 1.33 g C/m2/mm. The annual mean GPP
was similar to that of the WUE in different landscape types, with EBF having the highest
annual mean GPP (1954 g C/m2/year) and cropland having the lowest (1303 g C/m2/year).
The annual mean ET values in different landscapes were almost consistent between 910 and
1050 mm/year.

The spatial distributions of the variations in annual WUE, GPP, and ET from 1982 to
2018 are illustrated in Figure 2. Trends for WUE ranged between −0.23 and
0.14 g C/m2/mm/year. The changing trends in GPP and WUE showed similar spatial
distribution patterns, but were quite different from those of ET (Figure 2c). For the six land-
scapes, WUE decreased over the study period, with the strongest downward trend in EBF
(−0.0037 g C/m2/mm/year) and a weaker trend in grassland (−0.0001 g C/m2/mm/year).
In addition, cropland showed an increasing trend (0.0007 g C/m2/mm/year). The trend of
GPP was between−110 and 95 g C/m2/year2 (Figure 2b), with the GPP of DBF, ECF, shrub,
grassland, and cropland increasing to varying degrees, and the GPP of EBF decreasing
slightly. The trend of ET was between −10 and 11 mm/year2 (Figure 2c). At the same time,
the change in ET showed an increasing trend for all landscapes.
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of all grid cell values. Other abbreviations: ECF, evergreen coniferous forest; EBF, evergreen broadleaf
forest; DBF, deciduous broadleaf forest.
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Figure 2. Spatial patterns of interannual trends in (a) WUE, (b) GPP, and (c) ET in subtropical China.
The top insets indicate the frequencies of significances; spatial pattern of significances is shown
in Figure S2. The right insets indicate the interannual trends of WUE, GPP, and ET of different
landscapes, with whiskers indicating the standard deviation of all grid cell values.

3.2. Relationships of WUE Trend with Driving Factor Trends

The ridge regression coefficient was used to represent the effects of GPP and ET on
WUE trends. Among the six major landscape types in the STC, GPP had a positive effect
on WUE while ET had a negative effect. The effect of GPP on the trend of WUE was higher
than that of ET, and the gap between GPP and ET was largest in cropland (Table 1).

Table 1. Ridge regression coefficients of GPP and ET for the annual WUE trends for different
landscapes in subtropical China.

Whole ECF EBF DBF Shrub Grassland Cropland

GPP 0.17 0.15 0.14 0.12 0.15 0.16 0.19
ET −0.06 −0.06 −0.07 −0.07 −0.06 −0.06 −0.05

The effects of climate change, vegetation growth, and elevated atmospheric CO2
concentration (i.e., MAT, MAP, Rg, SWC, VPD, Ca, and LAI) on interannual variations in
WUE from 1982 to 2018 are shown in Figure 3. In the STC, MAT, LAI, Rg, and MAP had
positive direct effects on the WUE trend; among them, the direct effects of MAT (α = 0.49)
and LAI (α = 0.42) were the strongest, while those of Rg (α = 0.10) and MAP (α = 0.02) were
the weakest. In contrast, VPD (α = −0.20) and Ca (α = −0.03) had negative direct effects on
WUE. The direct effect of SWC on WUE was also relatively weak (Figure 3a). The spatial
distribution of the direct effects of the drivers is shown in Figure S4.
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Figure 3. Path diagrams between climate variables (average annual temperature (MAT), annual
accumulated precipitation (MAP), and annual solar radiation (Rg), soil water content (SWC), vapor
pressure deficit (VPD)), leaf area index (LAI), and elevated atmospheric CO2 (Ca), and WUE in
the study area. Numbers on arrows between each factor and WUE represent direct effects, and
numbers in parentheses represent total effects. Numbers on arrows between every two factors
represent correlation coefficients. (a) Whole of the study area, (b) ECF, (c) EBF, (d) DBF, (e) shrub,
(f) grassland, (g) cropland. R2 values beside the response variables represent the variance explained
by the environmental factors and the constructed relationships. (α indicates direct effect and β

indicates total effect.)

The total effect of the driver on the WUE trend is the sum of the direct effect and
the cumulative indirect effects. The total effect of LAI on the WUE trend was very strong
because the cumulative indirect and direct effects were both positive. LAI, MAT, and Ca
had a strong positive correlation, and both LAI and MAT had a strong positive direct
effect on the WUE trend; therefore, Ca had a strong positive indirect effect on the WUE
trend through LAI and MAT. The opposite direct and indirect effects offset each other and
resulted in a total positive effect of Ca. There was a positive correlation between VPD and
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MAT, Rg, and LAI; the cumulative positive indirect effect resulted in a positive total effect
of VPD on the WUE trend. The direct effect of SWC on the WUE trend was weak, and the
total effect of SWC on the WUE trend was mainly due to the cumulative indirect effect.
There was a positive correlation between MAT and LAI, VPD; however, LAI and VPD had
opposite direct effects on the WUE trend. The opposite indirect effects by LAI and VPD
offset each other and resulted in a weaker total effect of MAT. The characteristics of MAP
were consistent with those of Rg, and the total effect was mainly driven by the direct effect.
Among different landscape types, the magnitudes and directions of the direct and indirect
effects of drivers on WUE trends were similar to those of the area (i.e., whole; Figure 3a).

3.3. Attribution of Variation in WUE
3.3.1. Actual Contribution of Driving Factors

The spatial patterns of the actual contributions of GPP and ET to the variation in WUE
(Figure 4a,b, respectively) were as follows: for the whole region, GPP change contributed
to a WUE change of 0.0014 g C/m2/mm/year, while ET contributed to a WUE change
of −0.0020 g C/m2/mm/year. These findings suggest that the increase and decrease in
WUE are mainly affected by changes in GPP and ET, respectively. Among the six major
landscapes, ET changes negatively contributed to the WUE of all landscapes while GPP
changes positively contributed to the WUE of DBF, grassland, and cropland but negatively
contributed to the WUE of ECF, EBF, and shrubland (Table 2).

Table 2. Actual contributions of GPP, ET, climate change, LAI, and Ca to annual WUE trends for
different landscapes in subtropical China (×10−4 g C/m2/mm/year).

Whole ECF EBF DBF Shrub Grassland Cropland

GPP 14 −9 −10 5 −1 105 18
ET −20 −12 −26 −22 −6 −105 −6

LAI 26 −8 −45 36 −15 70 78
Ca −21 −5 15 −24 −21 −43 −32

SWC 0 0 −1 0 0 0 0
VPD −12 −7 5 −29 29 −20 −41
MAT 2 0 2 2 0 1 4
MAP −1 −2 −13 −4 −1 −2 2

Rg 0 1 1 2 1 −7 0

The actual contribution maps of the climate change, vegetation growth, and ele-
vated atmospheric CO2 concentration (i.e., MAT, MAP, Rg, SWC, VPD, Ca, and LAI) for
the WUE trend from 1982 to 2018 are shown in Figure 4. Overall, the changes in LAI
and MAT contributed to increases in WUE (Table 2) of 0.0026 g C/m2/mm/year and
0.0002 g C/m2/mm/year in WUE, respectively. Moreover, changes in Ca, VPD, and MAP
caused decreases in WUE of 0.0021 g C/m2/mm/year, 0.0012 g C/m2/mm/year, and
0.0001 g C/m2/mm/year, respectively, while changes in SWC and Rg contributed weakly
to the WUE trend (Table 2).

The actual contributions of climate change, LAI changes, and Ca to the WUE trends
of different landscape types in the STC show that LAI changes made the largest con-
tribution to the EBF, DBF, and cropland WUE trends at −0.0045 g C/m2/mm/year,
0.0036 g C/m2/mm/year, and 0.0078 g C/m2/mm/year, respectively. For grasslands,
Ca had the largest contribution to the WUE trend at −0.0043 g C/m2/mm/year, while
for shrubland, VPD contributed the most to the WUE trend at 0.0029 g C/m2/mm/year.
In ECF, LAI changes, Ca, and VPD contributed equally to the WUE trends. The actual
contributions of the drivers in different landscape types to WUE trends are listed in Table 2.
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3.3.2. Relative Contributions of Driving Factors

The dominant factor underlying the WUE trends for each pixel was determined by
the relative contribution of the driver to the WUE trend. Figure 5a,b show the WUE trend
for the GPP-dominated area, which accounted for 79.98% of the total area. In different
landscape types, the proportion of the area dominated by GPP exceeded 60%, indicating
that the trend of WUE in most areas of the STC was dominated by changes in GPP.
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Figure 5. Relative contributions of different driving factors to annual WUE trends based on pixel
statistics. (a) Spatial patterns of the relative contributions of GPP and ET to WUE trends. (b) Control-
ling area ratios of GPP and ET for WUE trends. (c) Spatial patterns of the relative contributions of
climate change (Cli), LAI, and Ca to WUE trends. (d) Controlling area ratios of the dominant drivers
for WUE trends. The combinations of Cli, LAI, and Ca indicate that the coupled impacts of different
drivers dominate WUE trends; “other” indicates the equilibrium impact of Cli, LAI, and Ca.

The relative contribution maps of the three drivers (i.e., climate change, vegetation
growth, and elevated atmospheric CO2 concentration) for the WUE trend during 1982– 2018
are shown in Figure 5c. Figure 5d shows the proportions of areas dominated by different
driving factors. In the STC, LAI variation alone dominated the WUE trend in 58.46% of the
area. Among the six major landscapes, dominant areas were also all over 50%, indicating
that LAI variation is the primary factor in WUE trends across all landscapes. Ca and
climate change dominated the WUE trends of 13.79% and 13.43% of the area, respectively.
In cropland, the area where elevated Ca was dominant exceeded that of climate variables,
indicating that Ca is a more important driver of WUE trends in cropland, while in natural
landscapes (i.e., those other than cropland), the area where climate variables were dominant
exceeded that of elevated Ca, indicating that climate variables are more important drivers
of WUE trends in natural landscapes. Meanwhile, the single-factor categories (Cli, LAI
change, or Ca) had a limited ability to control the spatiotemporal dynamics of WUE
(controlling the area ratio according to the quantified dominant factor). Excluding the
single dominant factors, the coupled effect of LAI change and Ca (Figure 5d) was an
important driver of WUE change that dominated 3.61% of the area, while the coupled
effect of Cli and LAI change was an important driver that dominated 2.92% of the area. In
addition, the proportion of the balanced influence of the three factors accounted for 7.12%
of the WUE trend, and the influence of the combined factors was evenly distributed among
the various landscapes.
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4. Discussion
4.1. WUE Changes in Different Vegetation Types

Using the GPP and ET of GLASS, this study identified an annual average WUE of
1.57 g C/m2/mm for ecosystems in the STC. This value is close to WUE values reported by
Wang and Zhao et al. for ecosystems in Southwest China, which belongs to the STC [40,41],
which were slightly lower than the those of ecosystems in the mixed subtropical and
tropical regions of South Asia [25,42], and higher than those of ecosystems in temperate
regions, such as the Loess Plateau of China [43]. From the perspective of different landscape
types, EBF had the highest WUE, followed by DBF and ECF; shrubland and grassland
had consistent WUE, while cropland had the lowest WUE. Differences in WUE among
landscape types may be due to differences in carbon uptake and water consumption [44].
In the STC, the GPP of EBF was much higher than that of other landscapes, and the gap in
ET between different landscapes was smaller; therefore, the WUE of EBF was the largest.
The GPP of DBF had obvious seasonal variation; therefore, the WUE of this landscape on
an annual scale was not high. Previous studies have generally shown that the WUE of
forest ecosystems is higher than that of grassland ecosystems [35], which is consistent with
our findings. Woodlands have denser canopies and more developed root systems and thus
can intercept and utilize a greater quantity of solar radiation and soil moisture, thereby
contributing to greater ecosystem WUE and plant growth [35,45].

From 1982 to 2018, global ecosystems generally experienced climate warming. Based
on increases in regional precipitation combined with the influence of human activities, such
as returning farmland to forests, the ET and GPP in most regions of China have shown
upward trends to varying degrees [46,47]. A comparison of the trends of the normalized
GPP and ET is shown in Figure S6. The upward trend of ET, which was slightly higher
than that of GPP, was the direct cause of the decline in the overall WUE of the STC. Among
the different landscape types, the ET of ECF, DBF, and shrubland showed an upward trend
that slightly exceeded that of GPP, leading to a decline in WUE; moreover, the ET and
GPP of EBF showed upward and downward trends, respectively, resulting in the most
significant decline in WUE. Second, the ET and GPP of grassland had similar upward
trends, which led to a relatively stable WUE, and the GPP of cropland had a higher upward
trend than ET. Therefore, cropland WUE had an upward trend. Huang et al. (2016) and
Ji et al. (2021) conducted global WUE studies from 1982 to the present, and showed a
decreasing trend of WUE in the STC [48,49], which is consistent with the findings of this
study. While afforestation can slow climate warming by sequestering carbon, the decline
in WUE means that on top of that, a higher proportion of water needs to be consumed to
maintain the same level of vegetation carbon sequestration. Therefore, the planning and
management of ecological protection and restoration requires more thinking and trade-offs
between water resources and hydrology [50].

4.2. Response of WUE to the Driving Factors

Previous studies have demonstrated that ecosystem WUE is affected by both biotic
factors, including vegetation growth, and abiotic factors, including the climatic environ-
ment [19,20,51]. The impact of climatic variables on WUE changes has been extensively
demonstrated. Warming affects vegetation productivity by extending the growing sea-
son in favor of greenery. The ET rate remains constant or increases gradually owing to
greenery [8,52]. Therefore, the warming of the STC has a positive effect on the WUE.
An increase in solar radiation will lead to an increase in GPP, and radiation is positively
correlated with canopy conductance and transpiration [52,53]. In the STC, changes in solar
radiation stimulated GPP more significantly than ET, which ultimately led to changes in
WUE. Precipitation is the dominant factor in surface ecohydrological processes. Increased
precipitation promotes vegetation growth and surface evapotranspiration (both vegetation
transpiration and surface evaporation). The response of vegetation to changes in precipi-
tation may exhibit a threshold effect; when precipitation exceeds a certain threshold, the
GPP’s response to increased rainfall is weakened [54], Thus, in the humid STC, fluctuating
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increases in rainfall have a negative impact on WUE. In humid areas, moisture is usually
not a limiting factor for vegetation growth. Other studies have shown that SWC is not
a major driver of humid ecosystem GPP and ET [35,55]. The effect of VPD on WUE is
well-known, with elevated VPD leading to decreased WUE, which is also consistent with
previous studies [27]. Elevated VPD can lead to a decrease in the stomatal conductance
of vegetation, resulting in a decrease in the photosynthetic rate and GPP. Simultaneously,
reduced stomatal conductance reduces ET. Studies have shown that under high humidity
conditions, GPP is more sensitive to VPD changes than ET, resulting in a negative impact
of VPD increases on WUE [56] (Figure 6).
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LAI, as an indicator reflecting the biological characteristics of vegetation affected by
climate change and human activities, varies in different landscapes. LAI changes affect
the rate of absorption of photosynthetically active radiation and the allocation of radiation
among latent and sensible heat fluxes. Many previous analyses have demonstrated that
LAI shows a strong positive influence on GPP, whereas LAI shows a greater positive impact
on seasonal ET but a weaker effect on long-term ET [56,57]. Thus, on an interannual scale,
the impact on GPP by LAI exceeds that on ET [58]. Several studies have also reported a
positive relationship between LAI and ecosystem WUE trends [59,60]. In the STC, strong
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spatial heterogeneity was observed in the contribution of LAI variations to the WUE trend
due to the LAI trend and the spatial heterogeneity of WUE sensitivity to LAI.

Elevated atmospheric CO2 concentration directly affects photosynthesis (i.e., the
fertilization effect of increased CO2) by raising the CO2 concentration gradient between
cells and leaf surfaces [27,60]; moreover, an increase in the concentration of CO2 will impact
the stomatal conductance of the surface by altering the number, shape, and density of
stomata [19]. In addition, when leaf stomatal CO2 uptake rate reaches a level of saturation,
there may be a reduction in transpiration due to decreases in the diameter of leaf stomata.
These twin processes can result in a reduction in transpiration while vegetation productivity
is maintained or improved, thereby increasing WUE. However, a higher CO2 concentration
over a long time is also expected to increase the effective evaporation area of the leaf and
surface, which can increase the total evaporation at the ecosystem level [61]. In areas with
high CO2 concentrations and abundant water resources, the effect of an elevated CO2
concentration on water transpiration may be greater than that of CO2 assimilation [47]. In
terms of direct effects, elevated CO2 concentrations negatively impact WUE in the STC.

The contributions of drivers to the WUE trends depend on WUE sensitivity to these
drivers and to changing trends of the variables themselves. WUE showed the highest
sensitivity to LAI, and the change was significant; thus, LAI is the main driver of changes
in WUE. The elevated atmospheric CO2 concentration represents an important driver of
changes in WUE of the STC owing to its significant change trend.

4.3. Limitations and Future Improvements

The data used in this study were obtained from satellite remote-sensed products,
which typically suffer from a relatively low spatial resolution. Although we used eddy
covariance data from flux towers to validate the GPP and ET results, owing to the limita-
tions of field monitoring data, unavoidable uncertainties were observed in our validation
process. In the future, further comparison and optimization should be carried out in combi-
nation with analyses of more monitoring data. Although the WUE trend in the study area
contained some insignificant pixels, to fully analyze the contribution of the driving factors
of vegetation coverage to the WUE trend in the STC, performing statistical analyses on all
pixels may introduce certain errors. In future research, we will strive to pursue both the
stability of the trend and integrity of the study area. In this study, both vegetation growth
and elevated Ca were affected by human activity. However, the impacts of human activities
differ and vary in different landscapes, and identifying a surrogate index that represents
various human activities is difficult; therefore, regression analysis alone cannot determine
the contribution of anthropogenic activities to changes in WUE. Accurately assessing the
impact of human activities on ecosystems remains a focus of future research. Although
this study identified the indirect effects of driving factors on WUE trends, an effective
method of quantifying the indirect contribution has not been developed. Therefore, the
contribution rate is still estimated based on the trends and direct effects of the variables,
which may lead to an underestimation of the contribution of climate change. It is expected
that the estimation method for indirect contributions will be improved in future research.

5. Conclusions

This study investigated the spatiotemporal characteristics of WUE and driving factors
in the STC from 1982 to 2018. The main results are as follows. (1) The annual average
WUE of the STC was 1.57 g C/m2/mm, and the annual average WUE of woodland was
slightly higher than that of grassland and cropland. Meanwhile, from 1982 to 2018, the
annual cropland WUE showed an upward trend while the annual grassland WUE trend
was relatively stable. The annual WUE of all other landscape types showed a downward
trend. (2). MAT and LAI had strong positive direct effects on WUE, while VPD showed a
strong negative direct effect on WUE. In addition, the total effect of LAI on the WUE trend
was very strong because both the indirect and direct effects were positive. The opposing
indirect and direct effects cancelled each other out, resulting in the total effect of Ca and
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VPD on WUE trends being positive. The influence of SWC on WUE trends is mainly
through indirect effects. The influence of MAT, MAP, and Rg on the WUE trend is mainly
through direct effects, because the opposite indirect effects of their different paths are offset.
(3). LAI had a major contribution to the increasing trend of WUE, whereas Ca and VPD
had a major contribution to the decreasing trend of WUE. LAI was the primary driving
factor of WUE change in the STC and dominated WUE changes in more than 50% of the
total area. Ca and VPD were also important driving factors, while other drivers contributed
less to the WUE trend. This study deepens our understanding of the impact of changes
in the climatic environment and biological factors of vegetation on the annual variation
in WUE. These findings can be used to guide ecological rehabilitation and management
under a future changing climate in subtropical regions.
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