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Abstract: Rapid urbanization is an important factor leading to the rise in surface temperature. How
to effectively reduce the land surface temperature (LST) has become a significant proposition of
city planning. For the exploration of LST and the urban heat island (UHI) effect in Zhengzhou,
China, the LST was divided into seven grades, and the main driving factors of LST change and their
internal relations were discussed by correlation analysis and gray correlation analysis. The results
indicated that LST showed an upward trend from 2005 to 2020, and a mutation occurred in 2013.
Compared with 2005, the mean value of LST in 2020 increased by 0.92 °C, while the percentage of
LST-enhanced areas was 22.77. Furthermore, the spatial pattern of UHI was irregularly distributed,
gradually spreading from north to south from 2005 to 2020; it showed a large block distribution in
the main city and southeast in 2020, while, in the areas where woodlands were concentrated and in
the Yellow River Basin, there was an obvious “cold island” effect. In addition, trend analysis and
gray correlation analysis revealed that human factors were positively correlated with LST, which
intensified the formation of the UHI effect, and the influence of Albedo on LST showed obvious
spatial heterogeneity, while the cooling effect of vegetation water was better than that of topography.
The research results can deepen the understanding of the driving mechanism of the UHI effect, as well
as provide scientific support for improving the quality of the urban human settlement environment.

Keywords: temporal and spatial variation; land surface temperature; Zhengzhou city; urban heat island

1. Introduction

The continuous growth of the urban area and population has brought a series of urban
environmental problems, such as the urban heat island effect, heat waves, and extreme
climate. The thermal environment of cities directly affects people’s quality of life, and
it is closely related to the urban climate, which has always been a research hotspot [1,2].
Because the increase in land surface temperature (LST) can affect people’s life and the
environment in multiple ways, the urban heat island (UHI) phenomenon not only affects
the local climate, vegetation growth, and air quality, but also affects people’s health [3-5].
Therefore, it is a common challenge for climatologists and urban planners to formulate
effective mitigation strategies for the UHI effect [6]. Determining the potential driving
factors of LST is very important to reduce the urban heat island effect, promote regional
sustainable development, and improve the quality of life of city dwellers [7].

According to the method of measuring temperature, the heat island can be divided
into canopy layer heat island (UCL), boundary layer heat island (UBL), and surface UHI
(SUHI) [8]. Among them, UCL is composed of air between rough elements (such as build-
ings and tree crowns), and its upper boundary is just below the roof level. UBL is located
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above UCL, and its lower boundary is affected by the urban surface [9]. Traditionally,
the study of heat island usually depends on the on-site measurements of independent
stations [10]. For example, LST is usually collected by measuring the air temperature in the
urban canopy [11]. This can produce accurate and time-continuous observation results [12];
however, the spatial representation of meteorological stations limits its application, hin-
dering the effective identification of the spatial pattern of LST. The development of remote
sensing (RS) technology has provided an effective means to estimate LST from local to
global scales [13,14]. Remote sensing inversion using Landsat (30 m-20 m) allows obtain-
ing the fine LST; however, its temporal resolution is approximately every 16 days [15,16].
Moreover, the Moderate Resolution Imaging Spectroradiometer (MODIS) can provide
high-resolution global LST data products, which can be directly used for mesoscale surface
temperature research [17,18]. Thus, RS data can help researchers study the temporal and
spatial changes of LST, and the development of RS technology has greatly promoted the
progress of UHI research [19].

The interaction between influencing factors and LST leads to its spatial heterogene-
ity [7]; hence, exploring this internal driving relationship can provide effective strategies
for alleviating the UHI phenomenon [20]. The factors that cause urban temperature change
mainly include two types [21]: natural factors, such as topography, vegetation cover, and
water body [22], and human factors, including urban construction intensity and socioe-
conomic activity index [23,24]. Furthermore, researchers have used various models and
mathematical analyses to study the relationship between the spatial and temporal changes
of the urban thermal environment and various index variables [25]. The main analysis
models include Pearson correlation analysis, ordinary least squares regression analysis,
principal component analysis, gray correlation analysis, spatial regression model (spatial
lag model and spatial error model), and geographic weighted regression model [26-28].
However, existing studies typically focused on one or a few influencing factors, such as
building layout, land-use change, and landscape pattern, whereas comprehensive analyses
are scarce [29].

According to consensus, an increase in impermeable surfaces in cities reduces vegeta-
tion coverage and transpiration, increases the absorption of solar radiation, and leads to
changes in the thermal climate and the warming of cities [30,31]. For example, Knight Teri
et al. conducted a systematic review on the influence of vegetation on LST. The research
showed that the surface temperature of city green space tends to be cooler than city non-
green space, and the cooling effect of green space or parks can expand to 1.25 km outside its
boundaries [32,33]. Furthermore, taking Shanghai as an example, Yang et al. analyzed the
influence of impervious surface (IS) and vegetation cover (VC) on the intensity of the UHL
The results showed that there were obvious differences between urban and rural areas in
the gradient distribution of regional land cover and surface temperature, and the heating
effect of IS was more obvious than that of VC [34], whereas vegetation and water bodies
had obvious cooling effects [35,36]. Liu et al. compared the influence of topography and
urban form factors on the urban heat island in Chengdu and Chongqing, indicating that
natural factors such as vegetation and water had a similar influence on and contribution to
the UHI effect. Nevertheless, the unique topography and urban form played a key role in
the difference in UHI between the two cities [37].

Owing to the many factors that can influence the formation of the UHI, a method to
qualify the contributions and identify the key factors would help to alleviate the UHI effect
and slow down the rising trend, especially for fast-developing cities with high construction
intensity and continued growth of non-green spaces [38]. In order to explore the internal
relationship between the driving factors of the UHI effect from two aspects of natural and
human factors, we chose Zhengzhou as the research area. Zhengzhou is the main economic
development center of Henan Province in China; thus, the large number of human activities
can easily cause the phenomenon of UHI in this area [39]. However, there has been little
research on SUHI in Zhengzhou, while mostly single driving factors were investigated,
long timeseries of remote sensing data were not evaluated [40]. Through the analysis of
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the temporal and spatial variation of land surface temperature and the driving factors of
the UHI effect in Zhengzhou, the results of this research can make up for the deficiency
of this field, providing a theoretical basis and decision support for the improvement of
urban construction and environmental quality of human settlements, as well as providing
a reference for future urban planning and design in Zhengzhou.

2. Materials and Methods
2.1. Study Area

The study area was Zhengzhou (112°42'E-114°14'E, 34°16/'N-34°58'N), the capital of
Henan Province in China, located in the hinterland of China, with the Yellow River in the
north, Huanghuai Plain in the southeast, and Songshan Mountain in the west. As shown in
Figure 1, the terrain is high in the west and low in the east. D1-D12 are districts, which are
Huiji, Zhongyuan, Jinshui, Guancheng Hui, Erqi, Xingyang, Shangjie, Gongyi, Zhongmu,
Xinmi, Dengfeng and Xinzheng respectively. Zhengzhou’s total population in 2020 reached
1.2601 x 107, representing a densely populated mega city (Statistics Bureau of Zhengzhou,
http:/ /tjj.zhengzhou.gov.cn/, accessed on 20 May 2022). In addition, Zhengzhou is located
at the intersection of the Beijing—Guangzhou urban development belt and the Longhai
urban development belt. It is the central city of the Central Plains urban agglomeration,
an important node city in the Zheng-Bian-Luo Industrial Corridor, and one of the most
representative cities in urban development in China.
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Figure 1. The location map of Zhengzhou.

2.2. Data Resources

The DEM (digital elevation model) data and land-use data in 2020 were obtained from
the Resource and Environmental Science Data Center of China, with a spatial resolution
of 205 m and 30 m, respectively (http://www.resdc.cn, accessed on 5 March 2022 and
14 March 2022). The Landsat8 OLI_TIRS remote sensing image of 22 May 2020 came from
the geospatial data cloud with a cloud content of 6.12% and a spatial resolution of 30 m. The
NDISI (normalized difference impervious surface index), NDBBI (normalized difference
bareness and built-up index), and MNDWI (modified normalized difference water index)
were calculated using the Landsat8 OLI_TIRS remote sensing image (downloaded from
http:/ /www.gscloud.cn/#pagel /1, accessed on 8 March 2022). The LST, NDVI (normal-
ized difference vegetation index), and Albedo MODIS data products were downloaded
from https:/ /modis.gsfc.nasa.gov (accessed on 1 March 2022 and 14 March 2022). The
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MODIS data characteristics are shown in Table 1. Zhengzhou POI data in 2020 came from
Gaode map (https://ditu.amap.com, accessed on 15 March 2022), including 11 points
of interest: catering, living and entertainment, shopping centers, public service facilities,
scenic spots, companies and enterprises, government agencies, medical care, commer-
cial housing, accommodation, and sports and leisure, which could be used to represent
socioeconomic activities.

Table 1. MODIS data items and descriptions.

Data Items Spatial Resolution Time Resolution Data Resource
LST 1km 8 days MYD11A2
NDVI 250 m 16 days MYD13Q1
Albedo 500 m Daily MCD43A3

In this study, the timeseries data mainly included MDOSI LST data from 2005 to
2020, which were used to analyze the trend of surface temperature in Zhengzhou. The
cross-sectional data included the Landsat 8 OLI_TIRS remote sensing image, which was
used to calculate the NDISI, NDBBI, and MNDWI. In addition, the NDVI, DEM, Albedo,
and POI were used to analyze the driving relationship between LST and the influencing
factors. In order to study the relationship between LST and the raster data of influencing
factors in Zhengzhou, the raster-to-point tool in ArcGIS was used to convert LST raster
data into point data, and then the influencing factor data of corresponding points were
extracted using a multivalue extraction to point tool.

2.3. Research Methodology
2.3.1. Nonparametric Mann-Kendall Trend Test

The nonparametric Mann-Kendall trend test (M-K test) [41,42] was used to test
changes in LST over time from 2005 to 2020. The principle is described below [43].

(1) According to the timeseries Xj, Xy, . .., X;;, construct an ordered sequence as follows:

K 1, X; > X;
SKZZilei/ Ri:{O, X;SX;' (K=1,2,3,...,n). (1)

(2) Calculate the mean and variance of Sk as follows:

E(Sx) =n(n+1)/4. ()
Var(Sg) =n(n—1)(2n+5)/72. ©)]
(3) Standardize Sk as follows:
Sk — E(Sk)
UFk = ——=(K=1,2,...,n). 4
K Var(Sk) ") @)

Here, UF; is the standard normal distribution, given a significance level x (gener-
ally « = 0.05, UF, = £1.96); |UF;|> U« indicates a significant trend change. UF, > 0
indicates an upward trend, and vice versa. The X-series is inverted to obtain a new time-
series X, X;;_1,..., X1, and the above process is repeated to obtain UBgx = —UFk, where
UB;=0,K=nn-1,...,1

2.3.2. Calculation of Surface Information Index

NDISI can be used to represent the impervious surface. Impervious surface refers
to artificial ground objects that are impervious to water, and its changing trend can di-
rectly or indirectly evaluate the development of a city. The area of impervious surface
in a city increases greatly, which can lead to serious urban waterlogging, the UHI effect,
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and environmental resource pollution [44]. The calculation equation of NDISI is shown

below [26,45].
TIRS1 — (MNDWI + N + SWIR1)/3

DISI = .
NDISI = R 61 T (MNDWI + N + SWIR1)/3

Q)

MNDWI is an improved normalized difference water body index, which is used to
represent water body information.
G — SWIR1

MNDWI = &——oWiRt ©)

NDBBI can be used to obtain the information of urban bare land and built land.

1.5SWIR2 — (N + G)/2

NDBBI =
1.5SWIR2 + (N + G) /2’

@)

where G, N, SWIR1, SWIR2, and TIRS1 correspond to bands 3, 5, 6, 7, and 10, respectively,
in Landsat8 OIL-TIR.

Land surface albedo represents the reflective ability of the Earth’s surface to solar
radiation, and its magnitude is influenced by many factors such as solar altitude angle, land-
use type and coverage, and surface roughness. It is an important dynamic dimensionless
surface parameter to study the balance of land energy and global climate change [46].

Slope refers to the angle between the actual ground and the horizontal plane, which
was calculated using the slope analysis tool in ArcGIS10.5 software.

The socioeconomic activity index can directly reflect the development level of urban
areas and indirectly represent the impact of human activities on UHL In this study, it was
expressed using the POI kernel density.

2.3.3. Correlation Analysis and Linear Trend Analysis

In statistics, the Pearson correlation coefficient, also known as the Pearson product-
moment correlation coefficient (PPMCC), is used to measure the relationship between two
variables X and Y, with values ranging from —1 to +1, and it is widely used in academic
research to measure the strength of linear correlation between two variables [47]. The
Pearson correlation coefficient between two variables is defined as the quotient of the
covariance of these two variables and the product of their standard deviations.

_cov(X,Y)  E[(X—puX)(Y —uY)]
oxXy = ooy X0y . 8)

Equation (8) defines the overall correlation coefficient. The Pearson correlation coeffi-
cient can be obtained by estimating the covariance and standard deviation of the sample,
which is commonly represented by r.

. (X -X)(Yi-Y) .
\/ Y (Xi - X)z\/ Y (Y- Y)?

Furthermore, r can be estimated using the standard score mean of (X;, Y;) sample
points, and the equivalent expression of Equation (9) can be obtained as follows:

1 a /X —X\[(Yi-Y
r:n—12< oX )( oY ) (10)

i=1

©)

where X(’;(X, X, and X are the standardized variable, sample mean, and sample standard

deviation, respectively.
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In this study, Pearson correlation analysis was used to explore the correlation and
interaction between LST and influencing factors, and SPSS software was used to analyze
the results.

2.3.4. Gray Relational Analysis Model

Gray correlation analysis [48,49] is a gray process based on the gray system, which
compares the timeseries between factors to determine the most influential leading factors.
The magnitude of the correlation degree is an external expression of the mutual influence
and interaction among factors, and the order of the correlation degree reflects the relative
influence of each factor on the reference factor. The principle of gray relational degree
analysis is described below [27].

(1) Suppose the original timeseries X; = {X;(K)|[K=1,2...,n,i=0,1,2,..., m—1}
is composed of n evaluation samples of m evaluation indicators. First, the original
timeseries is averaged to obtain the sequence X;.

Xik)="L2 K=1,2...,mi=01,2,...,m—1, (11)

where X is the reference sequence, and the others are comparison sequences; i # 0
unless otherwise specified.
(2) Calculate the absolute difference between X and X; at time K.

Ai(K) = |Xo(K) = X;(K)|,i=1,2,...,m—1. (12)
(3) Calculate the correlation coefficient ¢;(K).

mjnml{inAi (K) + pmaxm}ngi (K)
1 1

Gi(K) = A(K) + pmaxmﬁxAi(K) ' v

where minmin is the minimum difference between two poles, and maxmax is the
i K i K

maximum difference between two poles. Furthermore, as the resolution coefficient,
p € (0,1), asmaller p indicates a greater resolution, which is generally 0.5.
(4) Calculate the gray correlation degree ;.

m= Y GK) (19
k=1

By sorting the gray correlation degree v; in order of magnitude, the relative influence
degree of various factors on the reference factor can be obtained. The framework of this
study is shown in Figure 2.
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Figure 2. Framework of this study.

3. Results
3.1. Characteristics of Urban Thermal Environment Evolution
3.1.1. Interannual Variation Characteristics of LST

As can be seen from Figure 3A, the interannual variation trend of surface temperature
in Zhengzhou from 2005 to 2020 was small, and the variation trends of the mean and
maximum values were similar, but they all showed an overall upward trend. From 2005
to 2020, the mean value of LST increased by 0.92 °C, and the maximum value increased
by 0.85 °C. Moreover, the mean value and maximum value both reached the maximum in
2019 (26.59 °C and 31.58 °C, respectively).
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Figure 3. Variation of LST in Zhengzhou from 2005 to 2020 and MK test values: (A) interannual
variation; (B) M-K mean; (C) M-K maximum; (D) M-K minimum (yellow: mean, red: maximum,

green: minimum).

Figure 3B-D show the M—K test values of the interannual variation of the land surface
temperature in Zhengzhou. As can be seen from Figure 3B-D, the UF curve was in a
downward trend before 2013, and the trend change was not obvious. In the second half of
2013, it began to show an upward trend, while there was a significant upward trend in the
second half of 2019. The UF curve of LST maximum and minimum values began to show
an upward trend in 2013, while, after 2019, the upward trend was significant.

3.1.2. Surface Temperature Classification

To identify the reason for the difference in LST in the study area, the mean-variance
method was used to classify the LST into seven categories, as shown in Table 2: extremely
high temperature, high temperature, relatively high temperature, medium temperature,
relatively low temperature, low temperature, and extremely low temperature [26]. The first
three categories were considered UHI zones in this study:.

Table 2. Classification of LST.

Extremely High- . Relatively High Medium- Relatively Low- Extremely Low-
Temperature High-Temperature Low-Temperature
L Temperature -Temperature Temperature Temperature Temperature
Rating Zone Zone
Zone Zone Zone Zone Zone
Temperature u+1l5std <t< u+05std <t< u—05std <t< u—15std <t< u-—25std<t<u
range t2u+25std u+2.5std u+1.5std u+0.5std u—0.5std —15std t<u—25std

Note: u represents the mean value of LST; std represents the standard deviation of LST.

3.1.3. Spatial Evolution Characteristics of Urban Thermal Environment

Figure 4 shows the spatial evolution of the urban heat island in Zhengzhou in 2005,
2013, and 2020. As shown in Figure 4, the UHI area was irregular and gradually spread
from north to south, and it was distributed in the main city and southeast in 2020. High
temperature mainly occurred in the main city areas and densely built areas, while low tem-
perature was most concentrated in the areas covered by rivers, grasslands, and woodlands.
The spatial distribution characteristics of UHI were similar in the three periods, showing
an obvious “cold island” effect in the Yellow River basin and the concentrated distribution
area of woodland. The extremely high-temperature zone, relatively high-temperature zone,
and high-temperature zone continued to expand along densely populated areas from 2005
to 2020.
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Figure 4. Spatial evolution of UHI in Zhengzhou in 2005, 2013, and 2020: (A) 2005, (B) 2013, (C) 2020.

3.1.4. Temporal Evolution Characteristics of Urban Thermal Environment

As shown in Table 3, the changes in LST grades in 2005, 2013, and 2020 were calculated.
Table 3 indicates that the percentage area with weakened LST grades in Zhengzhou from
2005 to 2020 was 23.51%, while unchanged areas accounted for 53.72%, and the enhanced
areas accounted for 22.77%. From 2005 to 2013, 20.83% of the area was represented by
weakened LST grades, in contrast to 57.48% for unchanged areas and 21.69% for enhanced
areas. From 2013 to 2020, the percentage area with weakened LST grades was 21.20%, an
increase of 0.37% over the previous period. The percentage area with a constant LST level
was 58.43%, which was 0.95% higher compared to the previous period. The percentage area
with an enhanced LST level was 20.37%, which was 1.32% lower than that of the previous
period. Through the above analysis, it was found that, in the last 15 years, the LST grade
in Zhengzhou changed to different degrees. Compared with 2013-2020, the proportion of
areas with weakened and unchanged LST grades in 2005-2013 showed an upward trend,
while the enhanced areas showed a downward trend.

Table 3. LST grade change detection statistics in 2005-2013, 2013-2020, and 2005-2020.

2005-2013 2013-2020 2005-2020
Category Range Grade Class Grade Class Grade Class
Percentage Percentage Percentage Percentage Percentage Percentage
—6 0.00% 0.00% 0.00%
-5 0.00% 0.00% 0.00%
—4 0.00% o 0.00% o 0.00% o
Weaken _3 0.00% 20.83% 0.01% 21.20% 0.00% 23.51%
-2 1.24% 0.57% 1.07%
-1 19.59% 20.62% 22.44%
Constant 0 57.48% 57.48% 58.43% 58.43% 53.72% 53.72%
1 20.46% 19.73% 20.95%
2 1.17% 0.63% 1.70%
3 0.06% o 0.01% o 0.12% o
Enhance 4 0.00% 21.69% 0.00% 20.37% 0.00% 22.77%
5 0.00% 0.00% 0.00%
6 0.00% 0.00% 0.00%
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In order to better research the temporal and spatial evolution of the urban heat is-
land in Zhengzhou, the proportions of different temperature grades in 2005, 2013, and
2020 were calculated. As shown in Table 4, in 2005, 2013, and 2020, the proportions of
extremely low-temperature area, low-temperature area, and relatively high-temperature
area in Zhengzhou showed an upward trend, with the proportion of relatively high-
temperature area increasing by 4.03%. On the other hand, extremely high-temperature,
high-temperature, and low-temperature areas showed a downward trend, with the high-
temperature and relatively low-temperature areas decreasing by 1.72% and 3.22%, respec-
tively, whereby the high-temperature area, extremely high-temperature area, and relatively
low-temperature area transformed into relatively high-temperature areas. By 2020, the
proportion of the relatively high-temperature zone reached 30.47%, and it was concentrated
in the southeast, with a small distribution in the west and southwest. In addition, in 2005,
2013, and 2020, the heat island area accounted for 30.88%, 32.93%, and 32.96%, respectively,
showing a 2.08% increase from 2005 to 2020.

Table 4. Proportion of different temperature grades (%) in 2005, 2013, and 2020.

Year Extremely High High Relatively High  Medium  Relatively Low Low Extremely Low
2005 0.27 4.17 26.44 43.44 18.02 5.63 2.03
2013 0.12 3.01 29.80 43.98 13.8 6.61 2.67
2020 0.04 2.45 30.47 43.48 14.80 6.00 2.78

3.2. Analysis of Driving Factors of Urban Thermal Environment
3.2.1. Correlation Analysis

According to the analysis of the thermal environment effect in Zhengzhou in 2005,
2013, and 2020, the heat island effect was the most obvious in 2020. Therefore, the in-
fluencing factors were analyzed on the basis of the LST data in 2020. In this research,
according to the city location and terrain characteristics of Zhengzhou, the relevant human
and natural factors were selected for analysis, as shown in Table 5. Among them, the
human factors included urban construction intensity (NDISI, NDBBI, and Albedo) and the
socioeconomic activity index (POI kernel density), while the natural factors included water
body, vegetation, and topographic landforms.

Table 5. Influencing factors of urban thermal environment.

First Level Indicators Second Level Indicators Third Level Indicators
Water body MNDWI
Natural Vegetation and NDVI
factors Topographic Slope
features DEM
I ity of NDISI
Human ntensity of NDBBI
factors urban construction Albedo
Socioeconomic activities POI

The LST data and impact factor data of the study area were extracted in GIS using
the grid turning point tool before conducting correlation analysis. The Pearson correlation
coefficients among indices (Table 6) and the Pearson correlation coefficients between LST
and each index (Table 7) were obtained. It can be seen from Tables 6 and 7 that the
factors influencing LST in Zhengzhou showed weak and moderate correlation at the
0.01 significance level, and the absolute value range of the correlation coefficient R was
between 0.045 and 0.761. Moreover, the eight influencing factors were correlated with LST at
the 0.01 significance level, with correlation coefficients | R| € [0.027,0.574]. Among them, as
shown in Table 7, LST had a significant negative correlation with DEM, MNDWI, NDVI, and
Slope, indicating that vegetation, water, and high terrain had a cooling effect, which could
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alleviate the UHI effect. LST had a significant positive correlation with POI, NDBBI, NDISI,
and Albedo. The results show that human activities and the intensity of urban construction
affected the urban thermal environment, and the heat generated by high-intensity human
activities did not dissipate well, causing the urban heat island phenomenon.

Table 6. Pearson correlation among influencing factors.

Factor NDVI MNDWI DEM Slope NDISI NDBBI Albedo POI
NDVI 1 —0.379 ** 0.368 ** 0.330 ** —0.301 ** —0.385 ** —0.659 ** —0.338 **
MNDWI —0.379 ** 1 —0.241 ** —0.197 ** 0.687 ** —0.293 ** 0.249 ** 0.182 **
DEM 0.368 ** —0.241 ** 1 0.761 ** —0.208 ** —0.330 ** —0.701 ** —0.136 **
Slope 0.330 ** —0.197 ** 0.761 ** 1 —0.185 ** —0.349 ** —0.641 ** —0.110 **
NDISI —0.301 ** 0.687 ** —0.208 ** —0.185 ** 1 —0.045 ** 0.136 ** 0.187 **
NDBBI —0.385 ** —0.293 ** —0.330 ** —0.349 ** —0.045 ** 1 0.430 ** 0.057 **
Albedo —0.659 ** 0.249 ** —0.701 ** —0.641 ** 0.136 ** 0.430 ** 1 0.180 **
POI —0.338 ** 0.182 ** —0.136 ** —0.110 ** 0.187 ** 0.057 ** 0.180 ** 1
Note: ** indicates that the correlation was significant at the level of 0.01 (detection < 0.01).
Table 7. Correlation coefficients between factors and LST.
— NDVI MNDWI DEM Slope NDISI NDBBI Albedo POI
LST —0.301 ** —0.027 ** —0.574 ** —0.568 ** 0.141 ** 0.457 ** 0.527 ** 0.195 **

Note: ** indicates that the correlation was significant at the level of 0.01 (detection < 0.01).

Figure 5 reflect the linear relationship between LST and various influencing factors.
As shown in Figure 5, LST showed a downward trend under the action of NDVI, MNDWI,
DEM, and Slope, with the downward trends of DEM and Slope being more obvious
(R? =0.3297 and 0.3222, respectively). Furthermore, LST was increased under the action
of NDISI, NDBBI, Albedo, and POI. The trend analysis was consistent with the corre-
lation analysis. Furthermore, the interaction between LST and Albedo showed spatial
heterogeneity due to the complex effects of surface cover, elevation, and other factors [50].
Generally speaking, LST and Albedo were on the rise, which was related to the rise in
surface temperature, the increase in vegetation and soil water stress, and the decrease in
water content, which led to the increase in surface albedo. Moreover, the rise in surface
temperature, vegetation growth, and increase in reflectivity in the near-infrared band also
led to a significant increase in surface albedo. However, LST and Albedo showed a down-
ward trend in the interval of 0.2-0.3, and these points were mainly distributed in rivers and
grasslands. With the increase in Albedo, the light radiation energy absorbed by the surface
decreased, resulting in a decrease in LST (Figure 5G).

Figure 6 shows the spatial distribution of each index in Zhengzhou. NDVI was
basically consistent with the vegetation distribution in the study area. The improved
MNDWI distribution was basically consistent with the water distribution in Zhengzhou.
The southwest elevation of Zhengzhou is large, and the slope had a positive correlation
with the elevation. The spatial distribution of NDBBI, Albedo, and NDISI was related to
the type of urban underlying surface, with high values concentrated in the built-up areas.
High POI values were concentrated in the main city area.
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Figure 6. Spatial distribution of indicators in Zhengzhou: (A) NDVI; (B) MNDWI; (C) DEM; (D) Slope;
(E) NDISL (F) NDBBI; (G) Albedo; (H) POL

3.2.2. Gray Correlation Analysis

The correlation between the above eight indices and LST was analyzed, but the
correlation coefficient does not represent the contribution of each index to the change in
LST. Because the correlation coefficient between variables indicates how close they are
to each other, when there are many factors, this correlation only reflects their compound
relationship, while it does not represent the relative influence degree or effect of each factor
on the change in heat island intensity [27,51]. Thus, in order to reveal the contribution of
the eight indices to LST, this study took LST as the reference series and the other eight
influencing factors as the comparison series, before calculating their gray correlation degree.
The results are shown in Table 8.
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Table 8. The correlation of LST with each index.

Impact Factor Correlation Sort

NDISI 0.99978 1
Albedo 0.99965 2
NDVI 0.99943 3
MNDWI 0.99919 4
DEM 0.99834 5
NDBBI 0.99831 6
Slope 0.99718 7
POIL 0.98030 8

As can be seen from Table 8, there were some differences in the order of correlation co-
efficient between these eight indices and LST. Because the correlation degree in gray theory
reflects the correlation degree of independent variables compared with dependent vari-
ables, it can explain the dependent variable through the transmission of other independent
variables without considering one independent variable [27,52]. In addition, the correlation
degrees between the eight indices and LST were all above 0.98, and the difference between
the maximum value and minimum value was only 0.01948. This shows that, although the
indices were ranked sequentially, they were highly correlated with LST. According to the
order of correlation degree, the contribution degree of the urban construction intensity
and vegetation water body to LST change was the largest, and the correlation degree was
above 0.999. This indicted that these four factors had a high degree of synchronous change
with LST in the process of development and change; therefore, they were the most direct
factors leading to the change in heat island intensity. However, the correlation of DEM,
NDBB], and Slope with LST was between 0.996 and 0.999, indicating that these three factors
contributed extensively to the change in urban LST. In fact, NDBBI was also indirectly
reflected in NDISI. Moreover, the correlation degree of social economic activity index POI
was the lowest, but its value was 0.98030, indicating that it also had a high impact on the
change in LST.

4. Discussion

Urbanization leads to changes in urban atmospheric dynamic characteristics and land
use/land cover types, thereby affecting the formation of the urban heat island effect [26].
Furthermore, the spatial heterogeneity of LST may be affected by topography in different
areas [36]. The terrain of Zhengzhou is high in the west and low in the east. The results
showed that the UHI effect in Zhengzhou had obvious spatial differentiation characteristics.
Cold islands mainly occurred in the west, densely forested areas, and Yellow River Basin,
whereas heat islands were mainly distributed in southeast plains and built-up areas, where
the population was dense, and the proportion impervious water surfaces rapidly increased,
thus hindering the dissipation of heat and forming a large area of high temperature.
Therefore, LST had the characteristics of “low on the periphery and high in the middle”.

A city is a complex dynamic system composed of social connections, human activities,
and infrastructure. The UHI is the result of multiple factors of local climate and human
activities [26]. The interaction between surface temperature and vegetation dynamics under
different land-cover types leads to changes in the spectral radiance and texture of surface
temperature, resulting in the spatial pattern of urban heat island [8]. Moreover, impervious
surfaces (such as concrete, cement, and asphalt) usually show lower emissivity and higher
heat capacity than natural surfaces [53]. In the analysis of LST driving factors in Zhengzhou,
the urban construction intensity contributed the most to the formation of the UHI effect,
and the expansion of the urban impermeable water surface increased the absorption of
solar radiation, resulting in a rapid increase in the land surface temperature [54]. On the
other hand, vegetation and water bodies are effective tools to restrain the UHI effect and
reduce the LST [55], while controlling the impervious surface percentage of construction
land at a low level (e.g., below ~49%) can effectively alleviate the impact of the SUHI [54].
Therefore, this represents a strategic measure to effectively alleviate the UHI effect and
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build an ecologically livable city by controlling the proportion of impermeable water
surface, increasing the urban vegetation coverage area, and rationally utilizing the water
distribution, topography, and other features.

This research used multiple sources of data to study the temporal and spatial dis-
tribution characteristics and driving factors of Zhengzhou’s thermal environment, while
correlation analysis, trend analysis, and gray correlation analysis were applied to reveal
the correlation between natural and human influencing factors. This study can be help-
ful for planners to understand the causes and mitigation measures of the UHI effect in
Zhengzhou, through reasonably controlling the layout of buildings, effectively utilizing
the distribution of vegetation and water, and actively guiding urban ventilation, so as to
achieve the purpose of reducing LST and building a livable city. From this perspective,
follow-up research can enable planners to more comprehensively understand the driving
factors of the UHI effect.

5. Conclusions

Exploring the mitigation strategies of land surface temperature in Zhengzhou is of
great significance for sustainable development and environmental quality. In this study,
the main conclusions were as follows:

(1) The annual changes in LST in Zhengzhou from 2005 to 2020 were small, with a
mutation point in 2013. Furthermore, compared with 2005, in 2020, the mean value of
LST increased by 0.92 °C, the percentage of LST-enhanced areas was 22.77%, and the
area of the heat island increased by 2.08%.

(2) The spatial pattern of the urban heat island showed an irregular block distribution,
gradually spreading from north to south from 2005 to 2020; in 2020, there was a large
block distribution in the main city and southeast. In addition, high temperatures
mainly occurred in the main urban areas and densely built areas, whereas there was
an obvious “cold island” effect in the concentrated distribution areas of forest land
and the Yellow River basin.

(3) The results of correlation analysis, trend analysis, and gray correlation analysis
showed that human factors (NDISI, NDBBI, Albedo, and POI) were positively corre-
lated with LST, which intensified the formation of the UHI effect, with the influence
of Albedo on LST showing obvious spatial heterogeneity. Natural factors (NDVI,
MNDWI, DEM, and Slope) were negatively correlated with LST. Among them, the
intensity of urban construction had the highest contribution to the formation of
the UHI effect, and the cooling effect of vegetation and water was better than that
of topography.

Generally, the UHI strength of Zhengzhou City revealed a significant increasing trend
from 2005 to 2020. Zhengzhou's altitude is high in the west and low in the east, and
there was a negative correlation of DEM and Slope with LST. Therefore, it is possible to
reasonably control the layout of urban buildings as a function of the topography, such
that mountain wind and cold air can smoothly enter the city and accelerate the air flow.
In addition, the cooling effect of vegetation and water was obviously better than that of
topography. In urban planning, connecting vegetation, water, and road networks in the
urban ventilation corridor represents an effective measure to alleviate the urban heat island
effect. As the economic center of Henan Province, Zhengzhou’s comprehensive influence
of human activities and urban construction intensity on the urban underlying surface is
an important factor mediating the UHI. These results can help decision makers and urban
planners to make rational and scientific decisions and promote the sustainable development
of cities such as Zhengzhou in the future.
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