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Abstract: Radar echo extrapolation has been widely developed in previous studies for precipitation
and storm nowcasting. However, most studies have focused on two-dimensional radar images,
and extrapolation of multi-altitude radar images, which can provide more informative and visual
forecasts about weather systems in realistic space, has been less explored. Thus, this paper proposes a
3D-convolutional long short-term memory (ConvLSTM)-based model to perform three-dimensional
gridded radar echo extrapolation for severe storm nowcasting. First, a 3D-convolutional neural
network (CNN) is used to extract the 3D spatial features of each input grid radar volume. Then,
3D-ConvLSTM layers are leveraged to model the spatial–temporal relationship between the extracted
3D features and recursively generate the 3D hidden states correlated to the future. Nowcasting results
are obtained after applying another 3D-CNN to up-sample the generated 3D hidden states. Com-
parative experiments were conducted on a public National Center for Atmospheric Research Data
Archive dataset with a 3D optical flow method and other deep-learning-based models. Quantitative
evaluations demonstrate that the proposed 3D-ConvLSTM-based model achieves better overall and
longer-term performance for storms with reflectivity values above 35 and 45 dBZ. In addition, case
studies qualitatively demonstrate that the proposed model predicts more realistic storm evolution
and can facilitate early warning regarding impending severe storms.

Keywords: convective storm nowcasting; 3D radar echo extrapolation; deep learning; 3D spatial
features; 3D-ConvLSTM

1. Introduction

Convective storm nowcasting refers to forecasting the development of convective
storms in the very short term (e.g., 0–2 h), which is important to assist decision-making pro-
cesses and minimize losses caused by meteorological disasters [1,2]. However, numerical
weather prediction models have difficulty handling data assimilation problems and suffer
from a spin-up effect, which leads to delays in real-time prediction and error growth in the
first 1–2 h. In addition, they still have limited forecast skill on convective scales (1–5 km) [3].
Weather radar is used to detect and depict convective systems at high spatial–temporal
resolution, and extrapolation of its products (particularly reflectivity images) is applied in
most convective storm nowcasting methods.

Typically, traditional extrapolation-based nowcasting methods are in the Lagrangian
Persistence framework. Some of these methods, e.g., TITAN [4], SCIT [5], and TRT [6], first
identify and track convective cells, calculate their motion vectors, and then extrapolate
the identified cells using the vectors. Other methods perform pixel-level extrapolation,
which advect the entire reflectivity field with the motion field calculated by an optical
flow [7,8] or cross-correlation method [9,10]. Such traditional methods can forecast mature
convective storms with relatively stable intensity, shape, and movement. However, they
typically exhibit poor nowcasting performance for rapidly developing convective systems
due to difficulties in forecasting reasonable changes in intensity and shape. To solve
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this issue, several studies have been conducted. For example, stochastic perturbations
were introduced in the Short-Term Ensemble Prediction System (STEPS) model [11] to
simulate random growth and decay factors of precipitation fields. Pulkkinen [12] developed
the Autoregressive Nowcasting Vertically Integrated Liquid (ANVIL) model to model
systematic growth and decay patterns of precipitation by a multi-scale autoregressive
process. Generally, the capability of advection-based methods in predicting complex local
evolution of convective echoes is still limited [13].

Recently, deep learning (DL) models, e.g., convolutional recurrent neural networks
(ConvRNN) [14–17] and convolutional neural networks (CNNs) [18–20], have been em-
ployed to extrapolate radar echoes for convection nowcasting. These networks can depict
the complex deformations and movements of convective echoes via layer-by-layer non-
linear mapping. In addition, local weather patterns recorded by historical radar images
can be learned automatically using data-driven solutions. For example, Shi [14,21] used
convolutional long short-term memory (ConvLSTM) and trajectory gated recurrent unit
models to model the temporal dependencies of consecutive radar images. In addition,
Wang [15,22] developed the more sophisticated predictive RNN (PredRNN) and “memory
in memory” RNN to realize efficient updating and transmission of information. Generative
adversarial network architectures have also been used to improve the textures of predicted
radar images [13,23]. In terms of CNNs, some studies have stacked the temporal sequence
of radar images in the channel dimension and employed 2D CNNs [18,24] to perform radar
echo extrapolation as an image-to-image translation task. For example, the UNet [25] 2D
CNN was used to predict radar images [19,26,27], and Veillette [28] leveraged UNet to
extrapolate consecutive radar images for severe storm nowcasting. To improve the extrapo-
lation of 3 km constant altitude plan position indicator (CAPPI) reflectivity images, Pan [29]
incorporated polarimetric radar variables at the same altitude into a UNet-based model
using a late fusion strategy. Other studies have placed consecutive radar images along the
depth dimension and employed 3D-CNNs to model their temporal correlation [20,30,31].
Both UNet-based and 3D-CNN-based methods have achieved comparable or even superior
nowcasting performance to ConvRNN-based methods [19,20,30,31]. Generally, well-trained
DL models outperform traditional extrapolation methods in forecasting the development
of pre-existing storms in radar images.

Significant progress has been made in developing models to extrapolate 2D radar
images (column maximum reflectivity, CAPPI, and plan position indicator image) for
nowcasting. However, the spatial–temporal characteristics of severe convective storms
provided by 2D radar images is insufficient. For example, single-altitude reflectivity
images cannot represent the vertical structure of convective storms, and a time series
of such images cannot reflect the typical vertical dynamics of storms in the evolution
process. Volumetric radar observations in the form of vertically integrated liquid have
been demonstrated to provide advantages in terms of the detection of convective initiation
compared to a low-level rain rate CAPPI [12] and improve the machine-learning-based
storm nowcasting [32]. In addition, the use of multi-altitude CAPPI (3D) reflectivity images,
which possess information about the vertical profile of convective systems, is beneficial
for single-altitude radar echo extrapolation [23,33] and box-based storm nowcasting [34].
However, to the best of our knowledge, the 3D radar echo extrapolation (3D REE), which
can provide more informative and visual nowcasts of convective storms in realistic space,
has not been studied as extensively as 2D radar echo extrapolation (2D REE) techniques.
In related studies, Otsuka [35] extended the Continuity of Tracking Radar Echoes by
Correlation to a 3D version to extrapolate 3D storm echoes and found improvements in
nowcasting accuracy evaluated primarily at 2 km. However, the lead times of nowcasts
are limited to 10 min. Other studies have attempted to leverage DL models to perform 3D
REE. For example, in a previous study [36], 3D radar images observed at each time step
were stacked in the channel dimension and considered as a multi-channel image. Then,
time series multi-channel images were extrapolated using a PredRNN. In addition, a 3D
sequence-to-sequence ConvLSTM model has been designed [37]; however, a detailed report
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about how this model predicts 3D radar images was not provided, and the nowcasting
results of 3D radar images were not compared to those obtained by other extrapolation
models. These previous studies have two common problems. First, the vertical level
number of their 3D radar images is relatively small (four and five vertical levels in [36,37],
respectively), which may be less favorable in terms of depicting the vertical structure of
weather systems. Second, these DL-based models are all trained using mean absolute
error or mean squared error loss functions; however, in a radar image, the number of low
reflectivity grid points is typically much greater than that of high reflectivity grid points.
Using these losses will cause the network to focus on the prediction of echoes with low
reflectivity, which limits storm nowcasting performance. In addition, it is noted that the
existing DL-based 3D REE methods are mainly based on RNN architecture, while the
CNN-based 3D REE methods have rarely been explored.

In this study, a 3D-ConvLSTM-based model is proposed to extrapolate 3D gridded
radar images for convective storm nowcasting. Our primary contributions are summarized
as follows.

(1) The 3D gridded radar data with a greater number of vertical levels, which provide
vertical profiles of storms, are used and extrapolated to realize storm nowcasting. The 3D
nowcasting results are visualized for subsequent utilization.

(2) A 3D radar echo extrapolation network is proposed. In the proposed network, rather
than stacking different altitude images along the channel dimension and fusing them using
the first 2D convolution layer (referred to as the early fusion strategy), we place multi-altitude
images in the depth dimension and employ a 3D-CNN to progressively extract their spatial
features. This technique allows us to maintain vertical information and is similar to a late
fusion strategy, which is more effective in terms of 3D radar image extrapolation.

(3) A 3D-ConvLSTM is employed as the principal component of the 3D radar extrapo-
lation model, and a reflectivity-weighted loss is designed for 3D storm nowcasting.

(4) Quantitative and qualitative experiments were performed to compare the 3D storm
nowcasting performance of different baseline models, e.g., the 3D optical flow method and
RNN-based models. To preliminarily explore the 3D storm nowcasting performance of
the 3D-CNN method, an effective 3D-CNN named 3D-UNet [38], which was originally
designed for volumetric segmentation, was also adopted as a 3D REE baseline model for
comparison. The experiment results demonstrate the effectiveness of the proposed model.
We release the source code for the proposed model at: https://github.com/snl123/3D-
storm-nowcasting (accessed on 25 August 2022).

The remainder of this paper is organized as follows. Section 2 describes the data used
in this study and the formulation of the 3D storm nowcasting task. The proposed model is
described in Section 3. The results of comparative experiments are presented and analyzed
in Section 4. Finally, conclusions are given in Section 5.

2. Data and Task Formulation
2.1. Data

The 3D gridded radar reflectivity data used in this study were collected by the U.S.
NEXRAD WSR-88D radar network and obtained from the ds841.6 dataset product of the
National Center for Atmospheric Research (NCAR) Research Data Archive [39]. Limited by
storage and GPU consumption, radar observations of 155 severe storm events in 2013–2019
with a longitude and latitude grid size ranging from 480 to 576 were selected from different
geographical coverage (Figure 1).

https://github.com/snl123/3D-storm-nowcasting
https://github.com/snl123/3D-storm-nowcasting
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Figure 1. Location of selected storm events.

These storm events were observed every five minutes with a horizontal resolution of
approximately 0.021 degrees. A total of 22,762 3D radar composites were considered in this
study. To preprocess the raw radar observations, they were first quality controlled using
existing techniques [40]. In the first step, low-quality observations and scanning artifacts
were removed according to the weight and echo frequency. In the second step, weak and
low-level echo, ground clutter, and biological scatterers were removed or mitigated based
on correlation coefficient and some recommended filtering thresholds (the quality control
routines can be downloaded from the website http://gridrad.org/software.html (accessed
on 8 April 2022)). Then, a 480 × 480 longitude/latitude grid in the southwest of each event
observation and 16 vertical levels (1–10 km altitudes with 0.5 km spacing from 1–7 km and
1 km spacing from 7–10 km) were selected. Each CAPPI was resized from 480 × 480 to
120 × 120 via bilinear interpolation, causing the reflectivity values approximately in the
range from 0 to 55 dBZ. Then, temporal sequences of the 3D grid radar reflectivity volume
were generated using a 95 min sliding window with a sliding step of 15 min. Each generated
sequence sample contained 20 grid radar volumes. Note that the sequence samples in the
training, validation, and test sets did not overlap in time, as shown in Table 1.

Table 1. Organization of training, validation, and test sets.

Period Number of Sequences

Training 2013.1–2018.5 4905
Validation 2018.6–2018.12 716

Test 2019.1–2019.12 967

2.2. Task Formulation

In this study, 3D extrapolation-based convective storm nowcasting is defined as
using 35 min reflectivity images with 16 vertical levels at altitudes of 1–10 km to predict
subsequent 3D convective echoes within 1 h based on an extrapolation model. Here,
the observation interval is five minutes; thus, the grid radar volumes at the first eight
timestamps are used as the model input to predict the grid radar volumes at the next
12 timestamps in each sequence sample.

3. Proposed Method
3.1. The 3D-ConvLSTM Model

As shown in Figure 2, the proposed 3D-ConvLSTM model follows the encoder–
forecaster architecture [21].

http://gridrad.org/software.html
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Figure 2. Architecture of proposed 3D-convolutional long short-term memory (ConvLSTM) model.

The encoder is used to extract three-dimensional representations of the input at each
timestamp, model their temporal relationship, and pass the spatiotemporal features of
the previous radar observation data to the forecaster. For 3D spatial feature extraction,
existing methods [23,34,36] concatenate multi-altitude reflectivity images at the channel
dimension and simply employ a 2D convolutional layer to facilitate early fusion. However,
this technique has some limitations. First, the approximate linear fusion is not conducive
to extraction of complex features of 3D data. In addition, it is difficult for 2D features to
preserve 3D spatial information after the subsequent layer by layer processing. Thus, a
3D-CNN-based feature extraction approach is applied in the proposed method to address
these issues.

Here, let Vt be the input grid radar volume at time step t. Multi-altitude radar images
are organized at the depth dimension of the 3D convolutions before being input to the
3D-CNN: Vt ∈ RD×H×W×C (∈ R16×120×120×1), where D, H ×W, and C are vertical level
number, the horizontal size, and the channel number, respectively. In contrast to the early
fusion strategy, the feature extraction and fusion of radar images at different altitudes are
performed in a progressive manner (thereby resembling a late fusion strategy), where multi-
level 3D spatial features are extracted through four 3D convolutional layers, each of which
is followed by a rectified linear unit (ReLU) activation function. In addition, the depth of
the 3D features’ output by the final convolutional layer (3D-Conv 4) keeps a certain size of
4, which realizes better preservation of 3D spatial information in subsequent processing.
The architecture of the 3D-CNN employed in the encoder is described in Table 2.

Table 2. Architecture of 3D-convolutional neural network (CNN) in encoder.

Layer Kernel/Stride Output Size (D × H ×W × C)

3D-Conv 1 3 × 3 × 3/(1,1,1) 16 × 120 × 120 × 32
3D-Conv 2 3 × 3 × 3/(2,2,2) 8 × 60 × 60 × 64
3D-Conv 3 3 × 3 × 3/(1,1,1) 8 × 60 × 60 × 64
3D-Conv 4 3 × 3 × 3/(2,1,1) 4 × 60 × 60 × 64

Then, two 3D-ConvLSTM layers are leveraged to perform time series modeling of the
extracted 3D spatial features at different timestamps, where the hidden state and cell state
of each timestamp are generated by recursively applying a 3D-ConvLSTM unit with shared
weight. The mechanism of the ConvLSTM layer is expressed as follows:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + bi) (1)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + b f ) (2)
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Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (3)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + bo) (4)

Ht = ot ◦ tanh(Ct) (5)

where Xt is the input at time step t, and Ht−1 and Ct−1 are the output 3D hidden state and
generated 3D cell state at the previous time step t− 1, respectively. W and b denote the
trainable 3D convolution kernels and bias, respectively. Here, σ is the sigmoid function,
∗ represents the 3D convolution operation, ◦ is the Hadamard product, and it, ft, and ot are
input, forget, and output gates, respectively, which are used to control the information flow
to generate the new cell state Ct and output Ht. Additional details about the architecture of
the 3D-ConvLSTM layer are presented in Table 3.

Table 3. Architecture of 3D-convolutional long short-term memory (ConvLSTM) layer.

Layer Kernel/Stride Output Size (D × H ×W × C)

3D-ConvLSTM 1/2/3/4 2 × 3 × 3/(1,1,1) 4 × 60 × 60 × 64

In the proposed model, the forecaster is designed to produce the future 3D hidden
states at the next 12 time steps and restore them to 3D nowcasting results. Here, two
additional 3D-ConvLSTM layers are employed to generate the future hidden states based
on the hidden and cell states at time step t, which are passed from the encoder. Then,
another 3D-CNN is employed to restore the future hidden states to the original 3D spatial
size and obtain the predicted radar grid volume V̂ ∈ RD×H×W×C. This 3D-CNN contains
two transposed 3D convolutional layers and two 3D convolutional layers, each of which is
followed by the ReLU activation function. The architecture of this 3D-CNN is described in
detail in Table 4.

Table 4. Architecture of 3D-CNN in forecaster.

Layer Kernel/Stride Output Size (D × H ×W × C)

Transposed 3D-Conv 1 3 × 3 × 3/(2,2,2) 8 × 120 × 120 × 64
3D-Conv 1 1 × 3 × 3/(1,1,1) 8 × 120 × 120 × 64

Transposed 3D-Conv 2 3 × 3 × 3/(2,1,1) 16 × 120 × 120 × 64
3D-Conv 2 1 × 1 × 1/(1,1,1) 16 × 120 × 120 × 1

3.2. Loss

Since the proportions of reflectivity intensities in radar images are typically imbal-
anced, some balanced loss functions have been adopted when training DL models to
extrapolate 2D radar images [19,21,30,31]. The central idea is that the prediction errors
of high reflectivity values are given larger weights compared to those of low reflectivity
values to avoid them being over averaged by the latter. We follow this idea and apply
a balanced reconstruction loss to DL-based 3D REE for the first time. For the grid radar
volumes, this loss function gives larger weights on the prediction error in areas where high
reflectivity values are observed:

L =
1

12× DHW

12

∑
n=1

D

∑
d=1

H

∑
i=1

W

∑
j=1

wt+n,d,i,j

[∣∣∣V̂t+n,d,i,j −Vt+n,d,i,j

∣∣∣+ (V̂t+n,d,i,j −Vt+n,d,i,j)
2
]

(6)

wt+n,d,i,j =


1,
3,
8,

15,

Vt+n,d,i,j < 15 dBZ
15 dBZ ≤ Vt+n,d,i,j < 35 dBZ
35 dBZ ≤ Vt+n,d,i,j < 45 dBZ

Vt+n,d,i,j ≥ 45 dBZ

(7)
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where V̂t+n,d,i,j is the reflectivity value of the (i, j)th pixel of the predicted radar image at the
dth vertical level for time step t + n, and Vt+n,d,i,j is the corresponding observation value;
wt+n,d,i,j is the weight assigned to the error between them according to the value of Vt+n,d,i,j.

3.3. Metrics

The critical success index (CSI), which describes the overall skill of binary-event
forecasts (e.g., forecasting convective storm events at the points of a grid radar volume),
is used to evaluate the 3D storm nowcasting results. To calculate the CSI, the points of a
predicted grid radar volume V̂t+n and its corresponding observation are binary classified
based on a threshold τ. Here, reflectivity values greater than τ are set to 1 (meaning a
storm event will occur); otherwise, the reflectivity values are set to 0. As shown in Table 5,
a contingency table is obtained after counting the number of points of different categories.

Table 5. Contingency table of indicators.

Will a Storm Occur?
Observation

Yes No

W
ill

a
st

or
m

oc
cu

r?
Pr

ed
ic

ti
on

Ye
s

Hits (H) False alarms (F)

N
o

Misses (M) Correct negatives

The CSI is defined as follows.

CSIτ
t+n =

H
H + F + M

(8)

Then, the average CSI score aCSIτ and temporally weighted average CSI score
twaCSIτ are considered to evaluate the temporal sequence of the predicted grid radar
volumes. Here, aCSIτ is calculated as follows to reflect the overall nowcasting performance
for all prediction timestamps.

aCSIτ =
∑12

n=1 CSIτ
t+n

12
(9)

In addition, acquiring nowcasts for the later lead times is much more difficult than
for the earlier lead times; thus, the temporally weighted average CSI is defined, which
emphasizes the evaluation of nowcasts at the later lead times.

twaCSIτ =
∑12

n=1 n · CSIτ
t+n

∑12
n=1 n

(10)

The CSI metric can also be used to verify the nowcasting skill for each altitude level.
In this case, all points in the CAPPI image rather than in the grid radar volume should
be categorized based on Table 5, then the CSI score of a predicted CAPPI image can be
calculated according to the Equation (8).

Specifically, 35 dBZ [4] and 45 dBZ are selected as thresholds to evaluate nowcasting
performance of storm cells with different intensities. Note that higher values indicate better
performance for all metrics.

4. Experiment
4.1. Experimental Settings

To evaluate the 3D REE performance, the proposed 3D-ConvLSTM model was com-
pared to five 3D REE methods, including Persistence, 3D optical flow (3D-OF), 3D-UNet,
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PredRNN, and ConvLSTM. The Persistence model assumes that future grid radar volumes
do not differ from the most recent observed volume. Th 3D-OF method was implemented
as follows: we first used the 3D Lucas–Kanade optical flow technique implemented in
MATLAB [41] to estimate vector fields over the whole grid radar volume; then, we simply
extended the backward semi-Lagrangian advection scheme described in [7] to a 3D version
and performed the extrapolation. The 3D-UNet method was implemented as follows. The
first step was the rearrangement of input data: multi-altitude radar images observed at
each time step were concatenated at the channel dimension as a multi-channel image; then,
consecutive multi-channel images were placed along the depth dimension. After finishing
the data organization, we employed the 3D-UNet [38] to map the input into the future
multi-channel radar images. The PredRNN and ConvLSTM methods followed the idea
in [36], which considered multi-altitude radar images observed at each time step as an
image with multiple channels and used a convolutional RNN model to extrapolate the time
series multi-channel images.

In addition, we adopted some advanced 2D REE methods to predict 1 km CAPPI
reflectivity images and then compare the verification metrics of their nowcasts to those of the
1 km CAPPI reflectivity images in the 3D nowcasts obtained by the proposed 3D-ConvLSTM
model. These 2D REE methods were based on Persistence, optical flow (OF) [7], 3D-CNN
(still using 3D-UNet) [20], PredRNN [15] and ConvLSTM [14] models, respectively.

In order to accelerate the convergence of the DL models during training, the reflectivity
data were normalized by dividing by 80 before being input into neural networks. All DL-
based models were trained using the balanced reconstruction loss defined in Section 3.2 for
fair comparison with an Adam optimizer [42] and learning rate of 0.0001. Here, the batch
size was set to 4. In addition, early stopping was applied when the twaCSI35 score on the
validation set did not improve for 20 epochs. All experiments were implemented based on
TensorFlow [43] and executed on a TITAN RTX GPU (24 GB).

4.2. Evaluation of Nowcasts of Grid Radar Volumes on Test Set

The nowcasts of grid radar volumes obtained by the compared 3D REE models were
evaluated quantitatively on the test set. Table 6 shows the corresponding aCSI and twaCSI
scores for two reflectivity thresholds.

Table 6. a-Critical success index (aCSI) and twaCSI scores of nowcasts obtained from different models
for 35 dBZ and 45 dBZ. Best and second-best scores for different metrics are marked in bold and
underlined, respectively.

Model aCSI35 aCSI45 twaCSI35 twaCSI45

Persistence 0.1701 0.0410 0.1172 0.0161
3D-OF 0.2466 0.0875 0.1868 0.0524

3D-UNet 0.3505 0.1474 0.3079 0.1029
PredRNN 0.3882 0.1537 0.3335 0.1030

ConvLSTM 0.3963 0.1594 0.3463 0.1081
3D-ConvLSTM 0.4171 0.1834 0.3657 0.1272

It was expected that Persistence, which performs nowcasting by simply using the most
recent radar observation, would obtain the worst scores for all metrics. Benefiting from
advection by 3D motions, the 3D optical flow method achieved improvements in nowcasting
performance compared to the Persistence method. As can be seen, the four DL-based 3D
nowcasting models significantly outperformed the above traditional models. Compared
to 3D-UNet, the ConvRNN models achieved better scores, especially in terms of aCSI35

and twaCSI35, which indicates the effectiveness of explicit time modeling in the 3D REE
task. Among the three ConvRNN models, ConvLSTM slightly outperformed PredRNN. The
proposed 3D-ConvLSTM model obtained the best nowcasting scores for all metrics, showing
relative improvements of 5.2%, 15.1%, 5.6%, and 17.7% over the ConvLSTM technique in terms
of aCSI35, aCSI45, twaCSI35, and twaCSI45, respectively. Since the proposed 3D-ConvLSTM
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model adopts the same encoder–forecaster architecture as ConvLSTM, these improvements
in the overall and longer-term nowcasting performance are primarily due to the extraction,
information reservation, and explicit temporal modeling of 3D spatial features, which are
conducted by the two 3D-CNNs and the 3D-ConvLSTM layers.

Figure 3a,b show the CSI35 and CSI45 curves against different lead times in 0–1 h
for the grid radar volumes obtained by the six models, respectively. As can be seen, the
nowcasts obtained by the Persistence and 3D optical flow methods obtained the lowest and
second-lowest CSI scores for both thresholds and nearly all lead times, respectively, because
these methods use relatively constant 3D motion vectors (zero vectors for Persistence) to
advect storm echoes, which leads to difficulty when forecasting convective storms with
changing morphology, intensity, and motion. Among the four DL-based nowcasting
models, the performance of 3D-UNet in terms of CSI35 lagged behind that of the other three
methods, which may be due to its limited ability to model time. The PredRNN method
achieved better CSI35 scores for early nowcasting compared to the ConvLSTM technique;
however, its performance deteriorated more than the latter for lead times after 10 min. In
contrast, the proposed 3D-ConvLSTM achieved the best CSI35 scores for all lead times. For
a more challenging task, i.e., nowcasts of storm echoes above 45 dBZ, we found that the
performance of all models decreased significantly with increasing lead times. Over time, the
nowcasting performance of the 3D-UNet, PredRNN, and ConvLSTM methods gradually
became comparable. In contrast, the proposed 3D-ConvLSTM maintained competitive
performance for all lead times.
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In addition, the CSI35 and CSI45 scores computed for the nowcasts obtained by the
six models for lead times of 30 and 60 min are shown in Figure 4a,b, respectively. As can
be seen, the proposed 3D-ConvLSTM exhibits clear superiority. It achieved higher CSI35

scores with relative improvements of 4.9% and 6.8% over those of ConvLSTM for lead
times of 30 and 60 min, respectively. In addition, the CSI35 score of the proposed method
was greater than 0.29 for a lead time of 60 min. In terms of the prediction of storm echoes
over 45 dBZ in both 30 and 60 min nowcasts, the proposed method improved the CSI scores
of ConvLSTM by 20.3% and 23.1%, respectively.
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4.3. Evaluation of Nowcasts for Selected Altitude Levels on Test Set

To quantitatively evaluate the nowcasting performance of the compared 3D REE mod-
els for different altitude levels, the nowcasts of CAPPI reflectivity images at 1, 2, 3, 5, 7,
and 9 km altitude levels were verified separately using the CSI metric. Figures 5 and 6
show the CSI curves of the compared 3D REE models against different lead times at 35 and
45 dBZ thresholds for the selected altitude levels. It can be seen that all methods obtained
higher scores when verified for low altitude levels. This is because more radar echoes with
medium and high intensity were observed at low altitude levels compared to at high altitude
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levels (see Table 7 for details), making them relatively easier to forecast. The Persistence
and 3D optical flow methods achieved the same performance for 1 km and 9 km altitude
levels at both thresholds, while at the middle vertical levels the 3D optical flow method
obviously outperformed the former. This indicates that the 3D Lucas–Kanade optical flow
technique is able to capture the motion of the convective echoes at medium altitudes but
fails to generate reasonable motion vectors of the echoes at the lowest and highest vertical
levels. One reason is that the Lucas–Kanade method is not able to track the motion of storm
features near the domain boundaries (i.e., features moving out or coming from outside the
domain). As expected, the four DL-based methods achieved significant improvements over
the above traditional methods. The prediction performance of each DL model varied greatly
for different altitude levels. In terms of the verification at the 35 dBZ threshold, 3D-UNet
obtained the lowest CSI scores for most altitude levels. PredRNN achieved similar nowcasting
performance to ConvLSTM, except at the 2 km altitude where it yielded much less skillful
nowcasts. The proposed 3D-ConvLSTM model achieved the best nowcasting performance for
all selected altitudes at almost all lead times. Its CSI scores of 60 min nowcasts at the 35 dBZ
threshold were at the range of 0.29 to 0.33 for 1, 2, and 3 km altitude levels and dropped to
0.05–0.14 for high altitudes of 5, 7, and 9 km. As for the verification at the 45 dBZ threshold,
although the nowcasting performance of all models deteriorated quickly with increasing lead
times, higher CSI scores were still obtained by the proposed 3D-ConvLSTM model for all
altitudes and almost all lead times compared to other DL models.
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Table 7. Reflectivity statistics in the test set.

Altitude Levels (km)
Proportion (%)

≥35 dBZ ≥45 dBZ

1 0.998 0.063
2 1.681 0.099
3 1.718 0.089
5 0.326 0.030
7 0.109 0.012
9 0.049 0.005
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In general, the proposed 3D-ConvLSTM model is capable of modeling the 3D spatial–
temporal evolution of convective storm systems in a more effective way. This model achieved
more skillful nowcasting performance for all selected altitude levels at both thresholds and
obtained competitive CSI scores for longer-term nowcasting at low altitude levels.
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4.4. Comparative Verification of 2D and 3D REE Models for 1 km Altitude Level

The 1 km CAPPI reflectivity data usually correlate highly with ground-level rainfall.
Here, we go a further step to compare the nowcasting performance of some 2D REE models
described in Section 4.1 and the proposed 3D REE model for 1 km altitude level using the
CSI metric at 35 and 45 dBZ thresholds. The results are shown in Figure 7a,b. It can be seen
that the optical flow method was superior to the Persistence with the help of advection
field. Consistent with the results of the above 3D REE experiments, when used for the 2D
REE task, the ConvLSTM and PredRNN models still outperformed the 3D-UNet model
due to their explicit temporal modeling ability. Most importantly, the proposed 3D REE
model showed significant improvements over the above 2D REE models for the convective
storm nowcasting at a 1 km altitude level for both thresholds. The reasons are as follows.
First, the proposed 3D-ConvLSTM model exploits multi-altitude reflectivity images, which
can provide additional information of vertical profile and dynamics of convective storms
compared to 1 km CAPPI reflectivity images. Second, the design of the proposed model
makes it capable of effectively modeling the 3D spatial–temporal evolution of convective
storm systems. Benefiting from these two advantages, the proposed 3D-ConvLSTM model
can bring the convective echoes at higher altitudes to the 1 km altitude level and predict
the radar echo evolution at this vertical level more reasonably.
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4.5. Case Studies

Here, to evaluate the 3D nowcasting skill of each model qualitatively, representative
case studies of two severe storm events in the test set are discussed. The corresponding ob-
servations and nowcasts are shown in Figures 8 and 9 (at a 15 min interval for conciseness),
respectively. In these two Figures, we draw the isosurfaces to visualize the 35 and 45 dBZ
threshold values to facilitate the observation of convective storms, while the reflectivity
values below 35 dBZ are not shown.
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Figure 8. Severe storm event observed at longitudes 106.99–97.01 W and latitudes 29.01–38.99 N in
U.S. on 7 May 2019, and its 3D storm nowcasts beginning at time T = 7 May 2019, 21:20 UTC. Storms
with reflectivity values greater than 35 and 45 dBZ are shown in yellow and red, respectively. Letters
A–E represent different regions where storm evolution occurred.
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Figure 8 shows the first representative case at a forecasting time of T = 7 May 2019,
21:20 UTC. From the input and ground truth of observations, we found that a storm cell
located in Region A gradually split into two cells in the next hour from T, and the storm
cells in Region B became dense. In Region C, storm initiation (radar echo intensified from
<35 dBZ to reflectivities of ≥35 dBZ) occurred after T + 30 min, and three storm cells were
finally developed at T + 60 min. As can be seen, a storm cell was generated in Region
D before T and moved south in the next hour, and the storm cells in Region E moved
east and out of the observed area. By comparing the nowcasting results obtained by the
compared models, we found that the 3D optical flow method successfully captured the
movements of the storm cells in Regions and E; however, it failed to predict the development
of the other storms in Regions A, B, and C. Note that the motion vector in the vertical
direction caused uneven displacement for some echoes, which resulted in a breakage
phenomenon (especially for longer lead times). In contrast, the DL-based models achieved
more informative and skillful nowcasts. In addition to forecasting correct movements,
all DL-based models predicted the storm initiation and development in Regions B and C
effectively. However, some false signals were produced. For example, the 3D-UNet method
overestimated the storm intensity in Region B and underestimated the storm intensity in
Region E for the 60 min nowcast. In addition, all models completely failed to predict the
splitting process of the storm cell in Region A. Nevertheless, we found that the proposed
3D-ConvLSTM produced more realistic nowcasts. Note that the 60 min nowcast obtained
by the proposed method exhibited more reasonable distribution of the storms in Region B
and provided the correct number and shape of the storms initiated in Region C.

Figure 9 shows another storm cast at a forecasting time of T = 21 October 2019, 03:20
UTC. In the radar observations, most pre-existing storm cells were moving east, with
varying changes occurring in Regions A, B, C, and D. There was a storm cell with rapidly
changing shapes in Region A, and another isolated storm cell to the east from T + 45 to
T + 60 min. Two storms initiated in Region B at T + 30 min, and their size subsequently
increased. In addition, there were storms in Region C and D whose shape and intensity
changed rapidly, and these events included substorms with reflectivity values greater than
45 dBZ. Consistent with the above evaluation, the 3D optical flow method reasonably
captured the general movement trends of most storms; however, it performed poorly in
forecasting the intensity and shape changes of the storms. For the nowcasts obtained by
the DL-based models, all models successfully forecast the shape changes of the storm
in Region A and the subsequent individual storm generation; however, these methods
incorrectly predicted the merger process between these storms. The storm initiation process
in Region B was forecasted well by all DL-based models; however, the ConvLSTM method
produced a false prediction that only a single storm would form. In contrast, the other
methods correctly predicted both storms. In addition, false nowcasts were produced by the
ConvLSTM method in Region D, thereby yielding a misleading signal that there would be
three storm cells in this region after one hour. We found that the proposed 3D-ConvLSTM
provided more skillful nowcasts regarding substorms with reflectivity values greater than
45 dBZ in Regions C and D, thereby providing a realistic distribution (especially for the
60 min lead time).
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Storms with reflectivity values greater than 35 and 45 dBZ are shown in yellow and red, respectively.
Letters A–D represent different regions where storm evolution occurred.
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5. Conclusions

This paper proposed a 3D-ConvLSTM-based model trained to perform 3D gridded
REE for one-hour severe storm nowcasting. In the proposed method, a 3D-CNN is first
employed to extensively explore the 3D spatial features of each grid radar volume and
preserve the 3D spatial information in the additional depth dimension compared to a 2D-
CNN. Then, 3D-ConvLSTM layers are employed to model the spatial–temporal correlation
between the 3D spatial features extracted from the grid radar volumes at different previous
timestamps and generate and extrapolate the 3D hidden states correlated to the future,
which are up-sampled by an additional 3D-CNN to obtain the final nowcasting results.

A quantitative evaluation of different 3D-REE-model-based nowcasts were conducted
on the ds841.6 dataset product of NCAR. The results demonstrate that the proposed 3D-
ConvLSTM-based model achieves more skillful overall and longer-term performance for
storms with reflectivity values greater than 35 and 45 dBZ, showing significant improve-
ments over the 2D-ConvLSTM-based model. Verification of nowcasts obtained by these 3D
REE models for selected altitude levels was performed, which indicated that the proposed
3D-ConvLSTM-based model can yield more skillful nowcasts for all selected altitude levels
compared to other models. Another verification experiment was conducted to compare
the nowcasting performance of 2D and 3D REE models for the 1 km altitude level. Bene-
fiting from the use of multi-altitude reflectivity images and the effective network design
in modeling spatial–temporal evolution of 3D storm echoes, the proposed model showed
significant improvements over all compared 2D REE models. In addition, we discussed
representative case studies in which the 3D storm nowcasting results of two severe storm
events were visualized and compared qualitatively. These studies demonstrated that the
proposed 3D-ConvLSTM-based model predicted more realistic evolution of pre-existing
storms in past radar observations and had the potential to forecast the convective initiation
process, which can facilitate early warning regarding impending severe storms.

Generally, we consider that 3D convective storm nowcasting has broad research po-
tential and various application prospects. Considering the trade-off between GPU memory
cost and efficiency of 3D feature extraction, for nowcasting of high-resolution grid radar
volumes, it is necessary to employ a 3D-CNN to perform 3D-down-sampling or 3D-up-
sampling while maintaining sufficient vertical information. Thus, more advanced 2D-LSTM
units can be extended into 3D versions to perform 3D spatial–temporal extrapolation. It
is noted that in the absence of polarimetric parameters, the proposed method is not able
to identify the melting layer, the phase of precipitation, or leverage the information about
the dynamic structure of storms, which is a clear limitation. We have noticed that some
polarimetric radar variables, e.g., differential reflectivity ZDR, can provide additional infor-
mation about convective evolution. A preliminary attempt has been made to implement
multi-altitude ZDR into a 3D-UNet-based model to realize precise 3D storm nowcasting.
In the future, we plan to focus on more efficient three-dimensional extrapolation mod-
els and continue to explore the feasibility of multivariable fusion to further improve the
performance of 3D nowcasting.

Author Contributions: Conceptualization, N.S. and Q.L.; methodology, N.S.; software, N.S. and
J.J.; validation, N.S., Q.L. and Z.Z.; formal analysis, N.S.; investigation, N.S.; resources, Q.L.; data
curation, N.S.; writing—original draft preparation, N.S.; writing—review and editing, Q.L. and Z.Z.;
visualization, N.S.; supervision, Q.L. and J.J.; project administration, Q.L.; funding acquisition, Q.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant num-
bers 42075139 and 41305138), the China Postdoctoral Science Foundation (grant number 2017M621700),
and the Hunan Province Natural Science Foundation (grant number 2021JJ30773).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Remote Sens. 2022, 14, 4256 18 of 19

Data Availability Statement: The ds841.6 dataset product of the NCAR Research Data Archive can
be downloaded from https://rda.ucar.edu/datasets/ds841.6/ (accessed on 9 April 2022).

Acknowledgments: The authors would like to thank the anonymous reviewers for providing pro-
fessional and insightful comments on the previous article. Finally, we thank the contributors of the
GridRad V4.2 data and RDA ds841.6 dataset for collecting, processing, and sharing their data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, P.W.; Lai, E.S.T. Short-range quantitative precipitation forecasting in Hong Kong. J. Hydrol. 2004, 288, 189–209. [CrossRef]
2. Wilson, J.W.; Feng, Y.; Chen, M.; Roberts, R.D. Nowcasting challenges during the Beijing Olympics: Successes, failures, and

implications for future nowcasting systems. Weather Forecast. 2010, 25, 1691–1714. [CrossRef]
3. Sun, J.; Xue, M.; Wilson, J.W.; Zawadzki, I.; Ballard, S.P.; Onvlee-Hooimeyer, J.; Joe, P.; Barker, D.M.; Li, P.W.; Golding, B.; et al.

Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Am. Meteorol. Soc. 2014, 95, 409–426.
[CrossRef]

4. Dixon, M.; Wiener, G. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology. J.
Atmos. Ocean. Technol. 1993, 10, 785–797. [CrossRef]

5. Johnson, J.T.; MacKeen, P.L.; Witt, A.; Mitchell, E.D.W.; Stumpf, G.J.; Eilts, M.D.; Thomas, K.W. The storm cell identification and
tracking algorithm: An enhanced WSR-88D algorithm. Weather Forecast. 1998, 13, 263–276. [CrossRef]

6. Hering, A.; Morel, C.; Galli, G.; Sénési, S.; Ambrosetti, P.; Boscacci, M. Nowcasting thunderstorms in the Alpine region using a
radar based adaptive thresholding scheme. In Proceedings of the Eradication, Visby, Sweden, 6–10 September 2004.

7. Ayzel, G.; Heistermann, M.; Winterrath, T. Optical flow models as an open benchmark for radar-based precipitation nowcasting
(rainymotion v0.1). Geosci. Model Dev. 2019, 12, 1387–1402. [CrossRef]

8. Pulkkinen, S.; Nerini, D.; Pérez Hortal, A.A.; Velasco-Forero, C.; Seed, A.; Germann, U.; Foresti, L. Pysteps: An open-source
python library for probabilistic precipitation nowcasting (v1.0). Geosci. Model Dev. 2019, 12, 4185–4219. [CrossRef]

9. Rinehart, R.E.; Garvey, E.T. Three-dimensional storm motion detection by conventional weather radar. Nature 1978, 273, 287–289.
[CrossRef]

10. Li, L.; Schmid, W.; Joss, J. Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl.
Meteorol. Climatol. 1995, 34, 1286–1300. [CrossRef]

11. Bowler, N.E.; Pierce, C.E.; Seed, A.W. STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation
nowcast with downscaled NWP. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2006, 132, 2127–2155.
[CrossRef]

12. Pulkkinen, S.; Chandrasekar, V.; von Lerber, A.; Harri, A.M. Nowcasting of convective rainfall using volumetric radar observations.
IEEE Trans. Geosci. Remote Sens. 2020, 58, 7845–7859. [CrossRef]

13. Ravuri, S.; Lenc, K.; Willson, M.; Kangin, D.; Lam, R.; Mirowski, P.; Fitzsimons, M.; Athanassiadou, M.; Kashem, S.; Madge, S.;
et al. Skilful precipitation nowcasting using deep generative models of radar. Nature 2021, 597, 672–677. [CrossRef]

14. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.-C. Convolutional LSTM network: A machine learning approach
for precipitation nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015; pp. 802–810.

15. Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. Predrnn: Recurrent neural networks for predictive learning using spatiotemporal
lstms. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 879–888.

16. Jing, J.; Li, Q.; Peng, X.; Ma, Q.; Tang, S. HPRNN: A hierarchical sequence prediction model for long-term weather radar echo
extrapolation. In Proceedings of the ICASSP 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 4142–4146.

17. Luo, C.; Li, X.; Wen, Y.; Ye, Y.; Zhang, X. A novel LSTM model with interaction dual attention for radar echo extrapolation. Remote
Sens. 2021, 13, 164. [CrossRef]

18. Agrawal, S.; Barrington, L.; Bromberg, C.; Burge, J.; Gazen, C.; Hickey, J. Machine learning for precipitation nowcasting from
radar images. arXiv 2019, arXiv:1912.12132.

19. Han, L.; Liang, H.; Chen, H.; Zhang, W.; Ge, Y. Convective precipitation nowcasting using U-Net Model. IEEE Trans. Geosci.
Remote Sens. 2021, 60, 4103508. [CrossRef]

20. Che, H.; Niu, D.; Zang, Z.; Cao, Y.; Chen, X. ED-DRAP: Encoder–decoder deep residual attention prediction network for radar
echoes. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1004705. [CrossRef]

21. Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Deep learning for precipitation nowcasting: A
benchmark and a new model. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA,
4–9 December 2017; pp. 5618–5628.

22. Wang, Y.; Zhang, J.; Zhu, H.; Long, M.; Wang, J.; Yu, P.S. Memory in memory: A predictive neural network for learning
higher-order non-stationarity from spatiotemporal dynamics. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9154–9162.

https://rda.ucar.edu/datasets/ds841.6/
http://doi.org/10.1016/j.jhydrol.2003.11.034
http://doi.org/10.1175/2010WAF2222417.1
http://doi.org/10.1175/BAMS-D-11-00263.1
http://doi.org/10.1175/1520-0426(1993)010&lt;0785:TTITAA&gt;2.0.CO;2
http://doi.org/10.1175/1520-0434(1998)013&lt;0263:TSCIAT&gt;2.0.CO;2
http://doi.org/10.5194/gmd-12-1387-2019
http://doi.org/10.5194/gmd-12-4185-2019
http://doi.org/10.1038/273287a0
http://doi.org/10.1175/1520-0450(1995)034&lt;1286:NOMAGO&gt;2.0.CO;2
http://doi.org/10.1256/qj.04.100
http://doi.org/10.1109/TGRS.2020.2984594
http://doi.org/10.1038/s41586-021-03854-z
http://doi.org/10.3390/rs13020164
http://doi.org/10.1109/TGRS.2021.3100847
http://doi.org/10.1109/LGRS.2022.3141498


Remote Sens. 2022, 14, 4256 19 of 19

23. Jing, J.; Li, Q.; Peng, X. MLC-LSTM: Exploiting the spatiotemporal correlation between multi-level weather radar echoes for echo
sequence extrapolation. Sensors 2019, 19, 3988. [CrossRef]

24. Klein, B.; Wolf, L.; Afek, Y. A dynamic convolutional layer for short range weather prediction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4840–4848.

25. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.
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