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Abstract: High-resolution (HR) multispectral (MS) images contain sharper detail and structure
compared to the ground truth high-resolution hyperspectral (HS) images. In this paper, we propose a
novel supervised learning method, which considers pansharpening as the spectral super-resolution
of high-resolution multispectral images and generates high-resolution hyperspectral images. The
proposed method learns the spectral mapping between high-resolution multispectral images and
the ground truth high-resolution hyperspectral images. To consider the spectral correlation between
bands, we build a three-dimensional (3D) convolution neural network (CNN). The network consists
of three parts using an encoder–decoder framework: spatial/spectral feature extraction from high-
resolution multispectral images/low-resolution (LR) hyperspectral images, feature transform, and
image reconstruction to generate the results. In the image reconstruction network, we design
the spatial–spectral fusion (SSF) blocks to reuse the extracted spatial and spectral features in the
reconstructed feature layer. Then, we develop the discrepancy-based deep hybrid gradient (DDHG)
losses with the spatial–spectral gradient (SSG) loss and deep gradient transfer (DGT) loss. The spatial–
spectral gradient loss and deep gradient transfer loss are developed to preserve the spatial and
spectral gradients from the ground truth high-resolution hyperspectral images and high-resolution
multispectral images. To overcome the spectral and spatial discrepancy between two images, we
design a spectral downsampling (SD) network and a gradient consistency estimation (GCE) network
for hybrid gradient losses. In the experiments, it is seen that the proposed method outperforms the
state-of-the-art methods in the subjective and objective experiments in terms of the structure and
spectral preservation of high-resolution hyperspectral images.

Keywords: spectral super-resolution; pansharpening; discrepancy; 3D convolutional neural network;
hyperspectral images (HS); multispectral images (MS); gradient transfer

1. Introduction

A hyperspectral (HS) image is a spatial–spectral data cube, which consists of spatial
and spectral information. The large amount of spectral information in HS images im-
proves the performance of target detection [1], denoising [2], and image classification [3,4]
compared to multispectral (MS) images (such as RGB images). Thus, high-resolution
(HR) HS images are required in a vast amount of remote sensing applications. However,
capturing the HR HS images is still a challenging task because of technical limitations.
One of the methods is the single-image super-resolution method, which generates the HR
HS images from low-resolution (LR) HS images. Because of the technical developments,
multi-sensor fusion has attracted more attention in recent years. MS images mainly focus
on spatial resolution with a few bands, while HS images provide a large number of bands
with low resolution. Thus, pansharpening (i.e., the fusion of HR MS images and LR HS
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images) emerges in the remote sensing area. Compared to single-image super-resolution,
pansharpening provides more accurate HR HS images with auxiliary HR MS images.

2. Related Work

So far, traditional pansharpening methods can be mainly divided into four parts:
component substitution (CS), multiresolution analysis (MRA), Bayesian methods, and
variational methods. CS-based methods split the HS and MS images into spatial and spectral
domains. The spatial information of MS images was utilized to enhance the spatial resolution
of HS images [5]. Yang et al. proposed HS computational imaging using collaborative
Tucker3 tensor decomposition [6]. The Tucker3 tensor decomposition was developed to
model the low rankness and similarities of nonlocal patches. The spatial factor matrices
and the core tensor of panchromatic images by Tucker3 tensor decomposition are utilized to
constrain the spatial structure of HS images. MRA methods first employed multiscale filters
to decompose the MS and HS images. They transferred the structures of MS images to HS
images in each sub-band. Several decomposition methods were utilized such as high-pass
filters, generalized Laplacian pyramids, and undecimated discrete wavelet transform [7–9].
Bayesian methods model a posterior probability of HR HS images and utilize Bayesian
theory to predict the estimated HR images [10]. The variational approach was derived from
Bayesian methods. Researchers introduced some suitable prior knowledge to probability
terms and then transformed the Bayesian problem into an optimization problem, e.g., a
dynamic sparsity regularizer [11] and multi-order gradient regularization [12].

In recent years, with the rise of the machine learning methods, some learning-based
methods have been introduced to the pansharpening problem. Among them, more and
more researchers employ deep learning to improve the performance of pansharpening.
Masi et al. borrowed the idea from image super-resolution and built a three-layer convo-
lutional network for pansharpening [13]. Shao et al. [14] considered the pansharpening
problem as image fusion. They proposed two branch network architectures, which were
used to extract the features from LR HS images and HR MS images, respectively. Then, two
features were fused to generate the high-resolution HS results. Some researchers employed
deep learning to learn the prior of HR HS images and then imported the learned prior
into the optimization problem. Li et al. [15] proposed the detail-based deep Laplacian
pansharpening method to improve the spatial resolution of HS images. The spatial and
spectral details were learned by deep learning. Dian et al. utilized the residual learning
to learn the image prior [16], and Xie et al. built the elaborated neural network to learn
the high frequency of HR HS images [17]. Wang et al. integrated learned deep priors
into the objective function derived from the degradation model [18]. The deep priors
were learned using a two-stream fusion network. The regularization parameter was au-
tomatically selected using a golden section search strategy. Other researchers focused on
the design of the loss function. Luo et al. [19] proposed an unsupervised convolutional
neural network architecture with a set of specific design losses for spectral and spatial
constraints between MS and HS images. Zhou et al. proposed the perceptual loss for an
unsupervised pansharpening method [20]. The perceptual loss consisted of the pixel level
loss, feature level loss, and GAN loss. Finally, some researchers considered pansharpening
as the spectral super-resolution. Ozcelik et al. employed the colorization concept for HS
pansharpening and proposed the panchromatic image colorization based on a generative
adversarial network (GAN) [21]. However, they only considered one to three spectral
channels’ mapping and utilized a 2D CNN without considering spectral correlations.

In this paper, we propose a deep HS pansharpening method based on the spectral
super-resolution. The network is based on a 3D encoder–decoder framework, which con-
sists of spatial/spectral feature extraction, feature transform, and image reconstruction. A
3D CNN is employed to consider the spectral correlation with thespectral super-resolution.
Moreover, we propose the discrepancy-based deep hybrid gradient (DDHG) losses, which
transfer the HR HS and HR MS image gradients considering the discrepancy. Finally,
it is shown by experiments that the proposed method achieves the best performance in
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structure and spectral preservation from the HR HS images compared to the state-of-the-art
methods. The main contributions of this paper are summarized as follows:

1. We propose a supervised 3D-CNN-based spectral super-resolution network of HR
MS images for pansharpening. The 3D CNN is employed to consider the spatial and
spectral correlation simultaneously with thespectral super-resolution. Compared to
the state-of-the-art methods, extensive experiments show that the proposed method
achieves the best performance in spectral and spatial preservation from HR HS images.

2. The 3D spectral super-resolution network constructs the encoder–decoder framework.
In the decoder part, we design the image reconstruction network with a set of skip
connections and spatial–spectral fusion (SSF) blocks, which fuse the spatial and
spectral features efficiently.

3. We define the discrepancy-based deep hybrid gradient (DDHG) losses, which contain
the spatial–spectral gradient (SSG) loss and deep gradient transfer (DGT) losses.
The losses are developed to constrain the spatial and spectral consistency from the
ground truth HS images and HR MS images. To overcome the spatial and spectral
discrepancy between two images, we design the spectral downsampling (SD) network
and gradient consistency estimation (GCE) network in the DDHG losses.

The remaining part of this paper is organized as follows. Section 2 presents the
proposed method in detail. Section 3 introduces the experimental results and discusses the
performance of the proposed method. Finally, Section 4 provides the conclusion.

3. Proposed Method

Given LR HS images I ∈ Rw×h×L and HR MS images IM ∈ RW×H×l , the objective of
pansharpening problem is to generate the HR HS images I′ ∈ RH×W×L. (w, h) and (W, H)
are the width and height of LR HS images and HR MS images. The relationship of the
width and height between HS and MS images is W = s× w and H = s× h, where s is the
scale factor. L and l are the channels of the HS and MS images. Thus, the main target is to
generate the resulting images with high spatial and spectral resolution. In this paper, we
considered the pansharpening problem as the spectral super-resolution, which enhances
the spectral channels of HR MS images. We built the 3D-CNN-based encoder–decoder
neural network, which extracts the spatial and spectral features from the input HR MS
and LR HS images and then reuses them in image reconstruction. The proposed method
considers a more general case with arbitrary spectral channels’ enhancement and employs
3D CNN to take the spectral correlation into account. Moreover, we define the DDHG
loss function to minimize the spatial and spectral distortion considering the spectral and
spatial discrepancy.

3.1. Motivation

Figure 1 shows HR MS images and HR HS images at bands 3 and 27 for test image
paints and chart and stuffed toy in the CAVE dataset [22]. It is shown that HR MS images
provide a sharper structure and detail compared to the ground truth HS images (see the
red blocks in the first row of Figure 1). Moreover, we provide the discrete entropy (DE)
measurement of the CAVE and Chikusei datasets [23]. DE measures the detail and structure
sharpness of a one-channel image [24], and thus, we developed average DE (ADE) scores
on all channels of MS and HS images as follows:

H(p) = −1
c

n−1

∑
i=1

c−1

∑
j=0

p(i, j) log2 p(i, j) (1)

where p(i, j) is the probability density function of the histogram at the pixel intensity i and
the channel j. i is the pixel intensity from 0 to n. j is the image channel from 1 to c. n is the
maximum pixel value, and c is the channel number of HS/MS images. Table 1 evaluates
the average detail and structure sharpness of HS and MS images on two datasets. It is seen
that HR MS images contain sharper detail and structure than HR HS images.
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However, HS and MS images also contain a large spatial (gradient) discrepancy (see
the red blocks in the second row of Figure 1). A large spatial discrepancy leads to the
gradient distortion in the generated HS images. HS and MS images contain different
numbers of spectral channels, which cannot transfer the gradient of the MS images to the
generated HS images. Therefore, we propose a novel pansharpening via the spectral super-
resolution of HR MS images considering the spectral and spatial discrepancy between
two images.

(a) (b) (c)

Figure 1. Test image paints and chart and stuffed toy in the CAVE dataset. (a) MS image; (b) HS image
at band 3; (c) HS image at band 27.

Table 1. DE evaluation of the CAVE and Chikusei datasets.

Dataset CAVE Chikusei

HR MS images 6.41 7.07
HR HS images 5.21 4.58

3.2. Spectral Super-Resolution Network

The architecture of the proposed network is shown in Figure 2, which depends on
a modified and expanded version of U-Net [25]. With the input of LR HS images I and
HR MS images IM, the proposed spectral super-resolution network (SSRN) G generates
the resulting HR HS images I′ (I′ = SSRN(I, IM; θG), where θG is the weight and bias
parameters in the network G. These parameters are utilized while training and testing the
network G. The LR HS images are upsampled using bicubic interpolation to have the same
spatial size as the HR MS images. The HR MS images are expanded using the duplication
operation, and the expanded HR HS images contain the same spectral channels as the
HR HS images. The proposed neural network employs a 3D CNN considering spatial
and spectral correlation simultaneously with thespectral super-resolution of the HR MS
images. We constructed the 3D encoder–decoder framework, which encodes the spatial
and spectral feature and decodes the fused spatial–spectral feature to reconstruct the result
HS images. The SSR network consists of three parts: spatial/spectral feature extraction,
feature transform, and image reconstruction. The spatial/spectral feature extraction (SFE)
network introduces the 3D-Conv blocks to extract the spatial and spectral features from the
HR MS and LR HS images. The feature transform (FT) network employs 3D-residual blocks
in the middle network and transforms the features to prepare for pansharpened image
reconstruction. The image reconstruction (IR) network mainly generates the spectrally
enhanced images from the extracted spatial, spectral, and reconstruction features. It consists
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of two architectures: spatial and spectral fusion (SSF) blocks and 3D upsampling blocks.
The former one is developed to fuse the extracted spatial feature Sai and spectral features Sei
with the reconstruction features ci in each layer. The latter one is employed to reconstruct
the resulting images with enhanced spatial and spectral resolutions. We summarize the
sub-neural network block of the proposed network as follows (see the Figure 3):

• The 3D-Conv blocks: In the SFE network, we employed the 3D-Conv blocks with the
kernel size of (3, 3, 3) and stride of (2, 2, 2). Then, the leaky rectified linear unit (LReLU)
activation is used. The 3D-Conv block is introduced to extract the spatial–spectral
feature Sai and Sei from HR MS image IM and LR HS image I.

• The 3D residual blocks: In the FT network, 3D residual blocks are used to learn the
extracted feature more efficiently in deep layers via residual learning [26]. In each
block, we applied the 3D-Conv blocks with a kernel size of (3, 3, 3) and stride of (1, 1, 1).
The ReLU layers are utilized as the output layer. The addition layer is employed to
concatenate the input feature and the learned residual feature.

• The spatial–spectral fusion (SSF) blocks: In the image reconstruction network, the
SSF blocks with a set of skip connections are utilized to fuse the reconstructed feature
ci with the extracted spatial feature Sai and the spectral feature Sej efficiently. It can
overcome the extracted feature distortion in the feature transform network. We utilized
the concatenate operation and addition operation to fuse the spatial feature and the
spectral feature respectively. We employed the 3D-Conv layer (kernel size: (3, 3, 3)
and stride: (1, 1, 1)) with the ReLU activation to transform the fused feature.

• The 3D upsample blocks: After the SSF blocks, we introduced the 3D upsample blocks
to increase the spatial and spectral resolution. In each block, the 3D upsample layer
with the nearest neighbor interpolation is first applied to generate the upsampled
feature with enhanced spatial and spectral resolution. Then, the 3D-Conv layer (kernel
size: (3, 3, 3) and stride: (1, 1, 1)) with the ReLU activation is employed to generate the
reconstructed feature ci. The 3D upsample blocks are applied to provide the spatial
and spectral super-resolution of the reconstructed feature ci and obtain the resulting
images I′.

Figure 2. Entire framework of the proposed method. The proposed spectral super-resolution
network consists of three parts: spatial/spectral feature extraction, feature transformation, and
image reconstruction. Sai, Sei, and ci are the spatial, spectral, and reconstructed feature from the
input HR MS, LR HS, and reconstructed HR HS images. fi is the fusion feature after the spatial–
spectral fusion blocks, and ri is the feature from the 3D residual blocks.
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Figure 3. The architecture of the sub-neural network blocks.

3.3. Loss Function

Designing a suitable loss function is most important to improve the performance of
the proposed neural network. The proposed loss function was developed to preserve the
spatial and spectral content from the ground truth HS images. The sharp structure of HR
MS images can be transferred to the generated HS images considering the spatial and
spectral discrepancy between two images. We define the loss function, which consists of
three parts, as follows:

Lloss = α1lp + α2lSSG + α3lDGT (2)

(1) Pixel loss: The pixel loss function lp enforces the pixel intensity consistency (content
loss), which is defined as the l1-norm between the reconstructed image I′ and the
ground truth Igt:

lp =
1

WHL

W

∑
i=1

H

∑
j=1

L

∑
k=1
|I′i,j,k − Igt

i,j,k|1 (3)

where i, j, and k are the pixel location in the image. The l1-norm has been widely used
in super-resolution with less blurring results compared to the l2-norm [27].

(2) Spatial–spectral gradient (SSG) loss: To enforce the gradient consistency in terms of
the spatial and spectral domains from the ground truth, we designed the 3D spatial–
spectral gradient loss using the l1-norm as follows:

lSSG =
1

(W − 1)(H − 1)(L− 1)
(4)

·
W−1

∑
i=1

H−1

∑
j=1

L−1

∑
k=1

(1−Wx
i,j,k)× |Gx(I′)i,j,k − Gx(Igt)i,j,k|1

+ (1−Wy
i,j,k)× |Gy(I′)i,j,k − Gy(Igt)i,j,k|1

+ |Gz(I′)i,j,k − Gz(Igt)i,j,k|1)

where Gx, Gy, and Gz are the gradient operators (i.e., forward difference operator)
to obtain the x-, y-, and z-direction gradients of images. Igt is the ground truth HS
image. This loss can preserve the spatial and spectral gradients from the ground
truth HS images. Wx

i,j,k and Wy
i,j,k measure the spatial gradient consistency estimation

between the reconstructed HS images and HR MS images (we mention them in the
next section).

(3) Deep gradient transfer (DGT) loss: deep gradient transfer loss is designed to transfer
the structure of HR MS images to the reconstructed HS images. However, HS and
MS images have a large discrepancy in the spatial gradient and spectral channels. To
overcome the spatial and spectral discrepancy, the GCE net and SD net are utilized
while transferring the structure of the HR MS images. The DGT loss is designed
as follows:
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lDGT =
1

(W − 1)(H − 1)
(5)

·
W−1

∑
i=1

H−1

∑
j=1

(Wx
i,j,k × |Gx(I′d)i,j,k − Gx(IM)i,j,k|1

+ Wy
i,j,k × |Gy(I′d)i,j,k − Gy(IM)i,j,k|1)

where I′d is the spectral downsampled version of the reconstructed HS images. It is
generated by SDN(·), which is the spectral downsample network (SD network) (see
Figure 4) with several 3D-Conv blocks (see the left subfigure in Figure 3) (kernel size:
(3, 3, 3) and stride: (1, 1, 2)). The output images have the same spectral channels
as the HR MS images. To tackle the spatial discrepancy, the deep spatial gradient
consistency (i.e., Wx

i,j,k and Wy
i,j,k) between the spectral downsampled HS images and

HR MS images is estimated as follows:

Wx
i,j,k = α× GCEN(Gx(I′d)i,j,k, Gx(IM)i,j,k) (6)

Wy
i,j,k = α× GCEN(Gy(I′d)i,j,k, Gy(IM)i,j,k) (7)

where GCEN(·) is the gradient consistency estimation (GCE) network with one
multiplication operation, one l1 absolute norm operation, and several 3D-Conv blocks
(see the right subfigure in Figure 4) (kernel size: (3, 3, 3) and the stride: (1, 1, 1)).
The multiplication operation is utilized to obtain the consistency gradient of the
downsampled HS images and the HR MS images. Then, the l1 absolute norm of the
consistency gradient is obtained. Finally, the convolution symbol is included in the
GCE network, which learns the consistency structure from the multiplication of the
two image gradients. α is the weight of the output of GCE network and is set to 10 in
the proposed method.

The GCE network was developed to learn the gradient consistency between two
images, and then, the HR MS image gradient is selectively transferred based on the gradient
consistency. A large gradient consistency value (i.e., Wx

i,j,k and Wy
i,j,k) means two images

have the consistency gradient, and thus, the proposed method provides the strong HR MS
image gradient transfer to the reconstructed HS images. On the contrary, a small spatial
gradient consistency value enforces the spatial gradient preservation from the ground truth
HS images. Thus, we assign Wx,y

i,j,k and 1−Wx,y
i,j,k as the DGT loss and SSG loss. Finally, the

2D spatial gradient losses (Gx and Gy are the same as those in Equation (4)) are applied to
constrain the spatial gradient consistency between the HR MS images and the reconstructed
HS images.

(a) (b)

Figure 4. The proposed spectral downsample network (a) and gradient consistency estimation
network (b).
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4. Experiments

In this section, we conduct the experiments on the public hyperspectral datasets
to evaluate the superior performance of the proposed method. The compared methods
are coupled nonnegative matrix factorization unmixing (CNMF) for pansharpening [28],
RFuse [29], detail injection-based deep convolutional neural networks for pansharpening
(DI-DCNN) [30], and MS/HS fusion net (MHF net) [31]. The former two methods are tradi-
tional methods, and the latter two methods are deep learning methods. We implemented
the proposed method in tensorflow 2.0 and trained it on the Geforce RTX 2080Ti. In our
experiments, we trained the network by using the Adam optimizer with the initial learning
rate of 0.0001. The iteration number was 200,000, and the batch size was 10. The slope of
the leakyReLU activation was 0.2 in all activation layers. To obtain the best performance of
the proposed method, we set α1 = 1.0, α2 = 2.0, α3 = 1.0 for the CAVE dataset, set α1 = 1.0,
α2 = 3.0, α3 = 1.0 for the Chikusei dataset, and set α1 = 1.0, α2 = 2.0, α3 = 1.0 for the WV2
dataset. The three datasets are mentioned in the Section 4.1.

4.1. Dataset and Evaluation Metrics

In the experiments, we used three hyperspectral datasets. These are the CAVE Multi-
spectral Image dataset [22], Chikusei dataset [23], and World View-2 dataset (https://www.
harrisgeospatial.com/DataImagery/SatelliteImagery/HighResolution/WorldView-2.aspx,
accessed on 13 August 2021):

(1) CAVE dataset: The CAVE dataset consists of 32 images with a spatial size of 512× 512
and the total spectral channels of 31 bands. The band range is from 400 nm to 700 nm.
The size of the HR MS image is 512× 512× 3. The first 20 images were set as the
training data, and we randomly cropped the 64 × 64 × 24 patches from each HS
image as the ground truth, i.e., HR HS images. The LR HS images were generated by
downsampling the ground truth HS images by a factor of 4. The average operation
over 4× 4 was used in the downsampling operation, which refers to [31]. Thus, the
training HR HS, HR MS, and LR MS images had a size of 64× 64× 24, 64× 64× 3,
and 16× 16× 24. We utilized the remaining 12 images as the test data. The LR HS
images and the HR HS images were utilized as the input and the ground truth.

(2) Chikusei dataset: The Chikusei dataset (http://naotoyokoya.com/Download.html,
accessed on 20 August 2020) is airborne HS images captured over Chikusei on
29 July 2014 [23]. The size of the HR HS image is 2517× 2335× 128 and the size
of the HR MS image is 2517× 2335× 3. The band range is from 363 nm to 1018 nm.
We selected the top-left portion with a size of 500× 2000 as the training data, and
the remaining parts were treated as the test data. The training and test datasets were
generated like the CAVE dataset. The training HR HS, HR MS, and LR HS images
had a size of 64× 64× 96, 64× 64× 3, and 16× 16× 96. During the test procedure,
we extracted 16,320 ×320-spatial-size patches from the test data of HR HS and HR
MS images. The HR HS patches were employed as the ground truth, and the LR HS
patches were generated as the input.

(3) World View-2 (WV-2) dataset: The World View-2 dataset is a real dataset consisting
of LR multispectral images with a size of 1336 × 1121 × 4 and HR panchromatic
images with a size of 5344× 4484× 1. We employed the Wald protocol [32] to prepare
the training samples for the real data. We treated the LR multispectral images as the
HR HS images and downsampled the HR panchromatic images by a factor of 4. The
downsampled HR panchromatic images were considered as the HR MS images. We
utilized the top portion (size: 338× 1121) of the HR HS and HR MS images as the
training data and the remaining part as the test data. As with the CAVE dataset, the
extracted training HR HS, HR MS, and LR HS patches are 64× 64× 4, 64× 64× 1,
and 16× 16× 4. In the test data, we extracted 96× 160-spatial-size patches from the
test data of the HR HS and HR MS images. The HR HS patches were employed as the
ground truth, and the LR HS patches were generated as the input.

https://www.harrisgeospatial.com/DataImagery/SatelliteImagery/ HighResolution/WorldView-2.aspx
https://www.harrisgeospatial.com/DataImagery/SatelliteImagery/ HighResolution/WorldView-2.aspx
http://naotoyokoya.com/Download.html
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The network structure of the three datasets is illustrated in Table 2. Because the
three datasets had different spectral numbers in the images, we utilized the same network
structure with different layer numbers. To better extract the spatial and spectral features,
we provided the deeper layers to the images with more spectral channels. In Figure 3, the
kernel size and stride of the 3D-Conv layers are (3, 3, 3) and (2, 2, 2) in 3D-Conv blocks.
The kernel size and stride of the 3D-Conv layers are (3, 3, 3) and (1, 1, 1) in the 3D residual
blocks, 3D upsample blocks, and SSF blocks.

Table 2. Network architecture of the proposed spectral super-resolution on the three datasets.

Datasets CAVE Chikusei WV2

SFE Net 3 × 3D-Conv 5 × 3D-Conv 2 × 3D-Conv
FT Net 8 × 3D-Residual 8 × 3D-Residual 8 × 3D-Residual
IR Net 3 × SSF + 3 × 3D Upsample 5 × SSF + 5 × 3D Upsample 2 × SSF + 2 × 3D Upsample
SD Net 3 × 3D-Conv 5 × 3D-Conv 2 × 3D-Conv

GCE Net 2 × 3D-Conv 2 × 3D-Conv 2 × 3D-Conv

To evaluate the performance of the compared methods, in addition to the subjective
evaluation, five evaluation indexes were employed. These are the peak-signal-to-noise ratio
(PSNR), structural similarity (SSIM) [33], spectral angle mapper (SAM) [34], Erreur Relative
Globale Adimensionnelle de Synthése (ERGAS) [35], and Q2N [36]. The PSNR metric is the
traditional image quality index, which estimates the spatial quality of the reconstructed
image using the mean-squared error. The SSIM metric evaluates the structural similarity
between the ground truth and the reconstructed image. The SAM assesses the spectral
distortion by calculating the average angle between the spectral vectors of the generated
HS images and the ground truth. The SAM is formulated as follows:

SAM(I′, Igt) =
1

WH

W

∑
i=1

H

∑
j=1

arccos
I′Ti,j Igt

i,j

‖I′i,j‖2‖Igt
i,j‖2

(8)

where arccos is the arc-cosine function. The ERGAS measures the overall fused image
quality based on the downsampling ratio, which is calculated as

ERGAS(I′, Igt) =
100

d

√√√√ 1
L

L

∑
k=1

MSE(I′k, Igt
k )

µ2(Igt
k )

(9)

where d is the spatial downsampling factor. µ2(Igt
k ) is the mean value of Igt in the band k.

MSE(I′k, Igt
k ) is the mean-squared difference between the result I′k and the ground truth Igt

k .
The Q2N metric [36] reflects the image quality with the computation of the hypercomplex
correlation coefficient between the result and the ground truth in the spectral and spatial
domains. Smaller SAM and ERGAS values mean better spectral preservation of the HS
images. Larger PSNR values report better image fidelity in the spatial domain. Larger
SSIM values mean more structure similarity between the result and the ground truth. Q2N
values reflect better spectral and spatial correlation between the ground truth and the
reconstruction results.

4.2. Comparison to State-of-the-Art

Figures 5 and 6 show the results of five compared methods on the CAVE dataset. In
terms of subjective results, the proposed, MHF, and DI-DCNN methods generated visually
similar results to the ground truth (see the first row in Figures 5 and 6c,e,f). From the
absolute difference map (see the second row of the figures), the proposed method produced
results with the least difference compared to MHF and DI-DCNN. Figures 7 and 8 show
the results on the Chikusei and WV2 datasets. As for the CAVE datasets, the proposed
method generated results with the least difference among the five compared methods (see
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the second row in the figures). Thus, the proposed method achieves the best performance
in subjective results.

(a) (b)

(c) (d) (e) (f) (g)

Figure 5. Experimental results for test image beads at 1–3th band. (a) Ground truth; (b) RFuse [29];
(c) MHF [31]; (d) CNMF [28]; (e) DI-DCNN [30]; (f) proposed method; (g) error illustration of the
absolute difference map. The first row shows the results of the compared methods; the second row
shows the absolute difference map between the results and the ground truth.

Tables 3–5 show the objective evaluation of the five compared methods on the CAVE,
Chikusei, and WV2 datasets. The proposed method achieved the best performance in the
SSIM, SAM, ERGAS, and PSNR among the three datasets. In the Q2N metric, the proposed
method obtained the best performance on the Chikusei and WV2 datasets, but obtained
slightly worse performance compared to DI-DCNN on the CAVE dataset. It is shown that
the proposed method generates the results with good performance in structure and spectral
preservation from the ground truth.

Table 3. Quantitative measurement of the experimental results on the CAVE dataset. The best scores
are highlighted in bold font.

Methods SSIM SAM ERGAS PSNR Q2N

RFuse 0.840 17.233 10.528 30.947 0.853
MHF 0.973 8.741 3.485 40.590 0.939

CNMF 0.903 16.106 9.606 31.703 0.844
DI-DCNN 0.975 8.585 3.906 42.648 0.946
Proposed 0.989 4.416 2.158 43.034 0.940
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(a) (b)

(c) (d) (e) (f) (g)

Figure 6. Experimental results for test image pompoms at the 1–3th band. (a) Ground truth;
(b) RFuse [29]; (c) MHF [31]; (d) CNMF [28]; (e) DI-DCNN [30]; (f) proposed method; (g) error
illustration of the absolute difference map. The first row shows the results of the compared methods;
the second row shows the absolute difference map between the results and the ground truth.

Table 4. Quantitative measurement of the experimental results on the Chikusei dataset. The best
scores are highlighted in bold font.

Methods SSIM SAM ERGAS PSNR Q2N

RFuse 0.794 7.568 7.300 29.015 0.770
MHF 0.834 3.006 4.087 35.629 0.932

CNMF 0.677 4.882 7.238 29.417 0.772
DI-DCNN 0.778 4.144 5.704 31.450 0.872
Proposed 0.884 2.416 3.319 37.152 0.951
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Table 5. Quantitative measurement of the experimental results on the WV-2 dataset. The best scores
are highlighted in bold font.

Methods SSIM SAM ERGAS PSNR Q2N

RFuse 0.949 1.082 0.949 32.933 0.870
MHF 0.955 0.958 1.021 32.195 0.777

CNMF 0.951 1.015 0.869 33.714 0.883
DI-DCNN 0.871 1.850 1.853 30.660 0.718
Proposed 0.968 0.780 0.684 35.847 0.920

(a) (b)

(c) (d) (e) (f) (g)

Figure 7. Experimental results for test image Chikusei at the 45th band. (a) Ground truth; (b) RFuse [29];
(c) MHF [31]; (d) CNMF [28]; (e) DI-DCNN [30]; (f) proposed method; (g) error illustration of the
absolute difference map. The first row shows the results of the compared methods; the second row
shows the absolute difference map between the results and the ground truth.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 8. Experimental results for test image WV-2 at the 4th band. (a) Ground truth; (b) RFuse [29];
(c) MHF [31]; (d) CNMF [28]; (e) DI-DCNN [30]; (f) proposed method; (g) error illustration of the
absolute difference map. The first row shows the results of the compared methods; the second row
shows the absolute difference map between the results and the ground truth.

4.3. Model Analysis
4.3.1. Loss Function

Table 6 reports the objective evaluation of the proposed method with different loss
functions. lp + lSSG and lp + lSSG + lDGT do not consider the spatial discrepancy (i.e., we
removed the weight Wx,y

i,j,k of Equations (4) and (5)). The loss functions are rewritten as
Equations (10) and (11).

lSSG =
1

(W − 1)(H − 1)(L− 1)
(10)

·
W−1

∑
i=1

H−1

∑
j=1

L−1

∑
k=1
|Gx(I′)i,j,k − Gx(Igt)i,j,k|1

+ |Gy(I′)i,j,k − Gy(Igt)i,j,k|1
+ |Gz(I′)i,j,k − Gz(Igt)i,j,k|1)

lSSG enforces the spatial and spectral structure consistency between the results and
the ground truth. Thus, lp + lSSG had better performance compared to lp in the objective
assessment. With additional employment of the DGT loss, lp + lSSG + lDGT achieved
a slightly worse performance because a large spatial discrepancy leads to the gradient
distortion in the reconstructed HS images (see the red blocks in Figure 9). Therefore,
considering the spatial discrepancy (GCE net in Figure 4), the proposed method achieved
the best performance among the four loss functions.
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lDGT =
1

(W − 1)(H − 1)
(11)

·
W−1

∑
i=1

H−1

∑
j=1

(Wx
i,j,k × |Gx(I′d)i,j,k − Gx(IM)i,j,k|1

+ Wy
i,j,k × |Gy(I′d)i,j,k − Gy(IM)i,j,k|1)

Table 6. Average objective results of different losses on the three datasets. lp + lSSG and
lp + lSSG + lDGT do not consider the spatial discrepancy (i.e., Wx,y

i,j,k) by GCE net in Figure 4. Lloss
includes all losses with GCE net. The best scores are highlighted in bold font.

Dataset Loss SSIM SAM ERGAS PSNR Q2N

CAVE

lp 0.980 6.200 2.935 40.310 0.920
lp + lSSG 0.984 5.840 2.608 41.595 0.926

lp + lSSG + lDGT 0.981 5.774 2.837 40.685 0.924
Lloss 0.989 4.416 2.158 43.034 0.940

Chikusei

lp 0.716 6.031 6.828 31.604 0.868
lp + lSSG 0.876 2.538 3.991 36.814 0.946

lp + lSSG + lDGT 0.830 3.636 4.291 35.234 0.925
Lloss 0.884 2.416 3.319 37.152 0.951

WV-2

lp 0.962 0.853 0.748 35.167 0.908
lp + lSSG 0.967 0.797 0.687 35.821 0.919

lp + lSSG + lDGT 0.967 0.792 0.694 35.746 0.918
Lloss 0.968 0.780 0.684 35.847 0.920

(a) (b)

(c) (d) (e)

Figure 9. Experimental results for test image cds with different loss functions. (a) Ground truth;
(b) HR MS images; (c) lp + lSSG + lDGT ; (d) Lloss; (e) zoomed regions of the red blocks (top-left: (a),
top-right: (b), bottom-left: (c) and bottom-right: (d)).

4.3.2. Component Analysis

This section analyzes the effect of the spatial feature fusion and spectral feature fusion
in the SSF blocks. We utilized different network structures of the spatial–spectral fusion
(SSF) block for this experiment. The experiments analyzed the effect of spatial feature
fusion, spectral feature fusion, and both features’ fusion. The different network structures
are shown in Figure 10 and the rightmost figure of Figure 4. These networks should be
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retrained. Table 7 shows the objective evaluation of the results generated by the spatial
feature fusion, spectral feature fusion, and both features’ fusion. Figure 11 shows the visual
results by the spatial fusion, spectral fusion, and both features’ fusion. It is shown that the
proposed method with both feature’s fusion preserves more spatial and spectral information
from the ground truth (see Figure 11c,d). Table 7 also validates that the proposed method
with both features’ fusion achieves the best performance in the objective evaluation.

(a) (b)

Figure 10. The network architecture of (a) spatial feature fusion blocks and (b) spectral feature
fusion blocks.

(a) (b) (c) (d)

Figure 11. Comparison of different model components in the proposed method on the CAVE and WV2
datasets. (a) Spatial feature fusion; (b) spectral feature fusion; (c) both features’ fusion; (d) ground truth.

Table 7. Average objective results of different model structures on the three datasets. The best scores
are highlighted in bold font. Comp. represents component.

Dataset Comp. SSIM SAM ERGAS PSNR Q2N

CAVE
Spa 0.734 31.449 13.767 27.374 0.831
Spe 0.978 5.262 3.123 39.700 0.915

Spa + Spe 0.989 4.416 2.158 43.034 0.940

Chikusei
Spa 0.555 11.204 13.444 26.855 0.708
Spe 0.716 3.483 6.533 31.059 0.861

Spa + Spe 0.884 2.416 3.319 37.152 0.951

WV2
Spa 0.888 2.763 1.737 29.013 0.752
Spe 0.964 0.803 0.720 35.412 0.912

Spa + Spe 0.968 0.780 0.684 35.847 0.920

4.4. Compared to 2D Convolutional Neural Network

This section compares the performance of the 2D CNN and 3D CNN in the proposed
method. Figure 12 shows that the results of the 2D CNN and 3D CNN. It is seen that the 3D
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CNN considers the spectral correlation and generates a results with spectral information
more similar to the ground truth (see the similar colors in Figure 12b,c). It is shown that
the the proposed method by the 3D CNN provides better performance compared to the
2D CNN.

(a) (b) (c)

Figure 12. Comparison of the 2D CNN and 3D CNN in the proposed methods on the CAVE and
WV2 datasets: (a) 2D CNN; (b) 3D CNN; (c) ground truth.

4.5. Extension to Different Downsampling Factors

In the previous section, we conducted the experiments on the corresponding LR HS
images with a downsampling factor of four. Here, we provide the objective experiments of
the compared methods on different downsampling factors. Tables 8 and 9 represent the
average objective evaluation of the five compared methods with downsampling factors of
1/16 and 1/32. We utilized the five objective evaluations of the SSIM, SAM, ERGAS, PSNR,
and Q2N metrics for the experiment. With the increase of the downsampling factors, it
is shown that the proposed method achieved the best performance among the compared
methods in terms of the five objective metrics.

Table 8. Average objective evaluation of the five compared methods on the three datasets with a
1/16 downsampling factor. The best scores are highlighted in bold font.

Dataset Methods SSIM SAM ERGAS PSNR Q2N

CAVE

RFuse 0.585 28.925 4.070 24.030 0.818
MHF 0.791 13.337 2.744 30.219 0.793

CNMF 0.878 10.797 6.194 31.223 0.799
DI-DCNN 0.852 11.843 3.900 27.547 0.809
Proposed 0.961 8.314 1.268 35.701 0.893

Chikusei

RFuse 0.737 12.297 10.740 26.354 0.391
MHF 0.945 3.863 4.980 32.563 0.991

CNMF 0.784 5.936 8.153 28.516 0.350
DI-DCNN 0.885 6.126 9.923 27.676 0.974
Proposed 0.951 3.649 4.870 32.770 0.994

WV-2

RFuse 0.911 2.005 1.381 30.152 0.791
MHF 0.955 1.458 1.021 32.990 0.777

CNMF 0.937 1.468 1.061 32.287 0.842
DI-DCNN 0.940 1.578 1.172 31.763 0.823
Proposed 0.970 1.311 0.978 33.324 0.845
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Table 9. Average objective evaluation of the five compared methods on the three datasets with a
1/32 downsampling factor. The best scores are highlighted in bold font.

Dataset Methods SSIM SAM ERGAS PSNR Q2N

CAVE

RFuse 0.578 28.694 4.673 23.584 0.800
MHF 0.791 13.971 3.810 29.800 0.776

CNMF 0.877 9.860 6.277 30.247 0.802
DI-DCNN 0.788 15.918 5.298 24.614 0.770
Proposed 0.953 9.122 1.516 33.968 0.885

Chikusei

RFuse 0.726 14.794 11.687 25.778 0.391
MHF 0.923 4.648 5.461 30.819 0.988

CNMF 0.778 6.720 8.861 27.894 0.343
DI-DCNN 0.862 8.593 11.242 25.510 0.979
Proposed 0.942 4.503 5.394 31.288 0.996

WV-2

RFuse 0.878 2.668 1.681 28.772 0.772
MHF 0.935 1.667 1.150 31.963 0.810

CNMF 0.926 1.798 1.211 31.469 0.821
DI-DCNN 0.923 2.003 1.523 30.337 0.792
Proposed 0.961 1.660 1.131 32.240 0.821

5. Conclusions

In this paper, we proposed a novel supervised pansharpening network, which was
designed as the spectral super-resolution framework. The network consists of three stages:
spectral/spatial feature extraction, feature transformation, and image reconstruction. We
designed the SSF blocks, which reuse the extracted feature in the image reconstruction. The
DDHG losses were developed to preserve the spatial and spectral features from the HR MS
and HR HS images considering the spatial and spectral discrepancy between two images.
The experimental results showed that the proposed method achieved the best performance
in the subjective and objective evaluation of the spectral and spatial preservation among
state-of-the-art methods.
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