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Abstract: Urban growth, characterized by expansion of impervious at the cost of the natural land-
scape, causes warming and heat-related distress. Specifically, an increase in the number of buildings
within an urban landscape causes intensification of heat islands, necessitating promotion of cool roofs
to mitigate Urban Heat Islands (UHI) and associated impacts. In this study, we used the freely avail-
able Sentinel 2 and Landsat 8 data to determine the study area’s Land Use Land Covers (LULCs), roof
colours and Land Surface Temperature (LST) at a 10-m spatial resolution. Support Vector Machines
(SVM) classification algorithm was adopted to derive the study area’s roof colours and proximal
LULCs, and the Transformed Divergence Separability Index (TDSI) based on Jeffries Mathussitta
distance analysis was used to determine the variability in LULCs and roof colours. To effectively
relate the Landsat 8 thermal characteristics to the LULCs and roof colours, the Gram–Schmidt tech-
nique was used to pan-sharpen the 30-m Landsat 8 image data to 10 m. Results show that Sentinel
2 mapped LULCs with over 75% accuracy. Pan-sharpening the 30-m-resolution thermal data to 10 m
improved the spatial resolution and quality of the Land Surface map and the correlation between
LST and Normalized Difference Vegetation Index (NDVI) used as proxy for LULC. Green-colour
roofs were the warmest, followed by red roofs, while blue roofs were the coolest. Generally, black
roofs in the study area were cool. The study recommends the need to incorporate other roofing
properties, such as shape, and further split the colours into different shades. Furthermore, the study
recommends the use of very high spatial resolution data to determine roof colour and their respective
properties; these include data derived from sensors mounted on aerial platforms such as drones and
aircraft. The study concludes that with appropriate analytical techniques, freely available image data
can be integrated to determine the implication of roof colouring on urban thermal characteristics,
useful for mitigating the effects of Urban Heat Islands and climate change.

Keywords: cool roofs; urban heat islands; land surface temperatures; roof colour; mitigation;
urban growth

1. Introduction

Urbanization, and the associated urban land use and land cover (LULC) spatial
structure transformations influence the urban thermal characteristics [1–3]. This process
is typified by transformation from natural to impervious surfaces such as buildings and
other urban fabrics that alter surface and near-surface temperatures [4,5]. The increase
in temperatures attributable to urban growth are associated with a range of challenges
that include adverse effects on human health, increased water and energy demand and air
pollution [6–8]. As such, urbanization and consequent thermal elevation has been known to
exacerbate in- and out-door ambient thermal discomfort that diminish the quality of urban
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life [9,10]. Hence, it is increasingly becoming desirable to adopt climate-smart approaches
that could enhance sustainable urban living.

Remotely sensed data offer an opportunity to determine urban spatio-temporal vari-
ations and their respective thermal characteristics [11,12]. Additionally, remotely sensed
data allows for analysis at a range of time-scales that include sub-seasonal patterns. Over
the years, technological advancement has facilitated the acquisition of both optical and
thermal data on the same sensor platforms (e.g., Landsat, ASTER and MODIS), valuable
for urban landscape transformation and thermal analysis [13–16]. Hence, these moderate
resolution sensors have been widely used to determine the influence of LULCs on the
thermal environment e.g., [17–22]. However, such moderate resolution datasets suffer from
the mixed pixel problem, especially in urban areas characterized by landscape heterogene-
ity, which compromises their value for detailed surface analysis such as the detection of
individual houses and their thermal properties [23].

Fortunately, recent sensor developments and advancements in computational power
offer an opportunity for improved land surface analysis. For instance, whereas the Landsat
series has over the years improved in spectral and radiometric properties, new generation
sensors such as Sentinel 2 offer data with improved spatial resolution [24–26]. The sensors’
10-m spatial resolution for instance, ref. [27] allows for analysis of complex environments
such as urban areas with reduced mixed pixel effect and high mapping accuracy. Whereas
the Sentinel 2s platform lacks a thermal sensor, its integration with high quality data such as
Landsat has potential to improve our knowledge of the relationship between urban LULCs
and surface temperatures. Recently, Mushore et al. [28] showed that pan-sharpening of
Landsat thermal data improves its Land Surface Temperature (LST) mapping accuracy,
while Kaplan and Avdan [26] used Sentinel 2′s pan-sharpened 10-m to improve 20-m
resolution bands. However, whereas the Sentinel’s 10-m spatial resolution optical data can
be used to derive detailed urban surface features, Landsat thermal data need to be at a
similar spatial resolution for optimal analysis and mapping accuracy.

Several studies have demonstrated that built-up areas absorb and store large amounts
of heat when compared to other LULC types, e.g., [22,27–30]. The thermal effect is en-
hanced by increased building densities that result in large surface areas for heat absorption.
Furthermore, dense high-rise buildings increase heat storage capacity as walls present
even larger surface areas for heat absorption. Buildings also concentrate heat in an area by
retarding its removal by winds [31]. To date, a significant number of studies have dwelt
on the effect of buildings on temperature. For instance, the effect of building density and
height have been widely demonstrated in both the developed and the developing world,
e.g., [28,32–35]. Besides density and height, building materials and other properties such
as roof characteristics influence a built environment’s thermal properties. For example,
Mackey et al. [36] demonstrated that cool roofs surpassed green roofs, street trees and green
spaces in cooling effects in Chicago. However, the adoption of remotely sensed data to
understand the influence of roofing properties on temperature remains limited. Emphasis
has been largely placed on understanding the influence at a broad scale and general LULC
classes on the thermal environment. Focus on localized phenomena that include the effect
of individual houses and their characteristics such as roof properties using freely available
remotely sensed data has remained a grey area.

Studies on the effect of roofs on buildings thermal characteristics have mainly focused
on rooftops with vegetation (i.e., ‘green roofs’) and commonly use data derived from
installed meteorological instruments and analytical models [37–40]. Other studies have
investigated roof characteristics such as roof angle; for instance, Tian et al. [41] compared
the thermal characteristics of curved and flat roofs. Studies on roof colour have established
that white roofs have more cooling effect than grey, red and black roofs [42–44], while
coating coloured roofs with highly reflective materials can increase thermal performance
and energy efficiency of buildings [45]. For instance, Libbra et al. [45] found that the use of
cool roofs can reduce air conditioning energy consumption by 70%. For the same roof type,
variations such as colour and age may also influence their interactions with heat [43,46,47].
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However, due to limitations of the new generation sensors’ spatial resolution, literature on
the influence of roof colour on thermal performance of buildings remains scarce.

Zhao et al. [48] examined daytime and nighttime effects of roof footprints and configu-
rations using high resolution airborne LIDAR and Quickbird satellite data (2.4-m resolution)
and MODIS/ASTER simulated airborne 7-m-resolution surface temperature data. They
observed that rooftop spectral attributes, slope, aspect and surrounding trees affected roof
surface temperature. Although they accurately delineated roof configurations, they did
not segment the roofs by colour. Furthermore, while sensors on aerial platforms such as
drones and airplanes can provide data for detailed analysis of effects of roofs on thermal
characteristics, such data remain expensive and not viable for studies over large spatial
extents. Hence, there is a need to test the value of freely available moderate resolution
optical and thermal datasets to enhance our understanding on the influence of building
roof colour on thermal characteristics, especially in growing cities of developing countries.
Such efforts are necessary to determine the potential adoption of roof type and colour to
mitigate heat islands.

According to Alchapar and Correa [46], roof coating is the most influential morpho-
logical determinant of roof thermal behavior, while Libbra et al. [45] notes that roof colour
controls the absorption of heat during the day and its emission at night. As such, it is
necessary to consider “cool” roofs for UHI mitigation. Hence, in relation to adjacent LUCLs,
this study sought to determine the value of Sentinel 2 10-m resolution and pan-sharpened
Landsat image data in differentiating the influence of roof colour on surface thermal values.

2. Methodology
2.1. Description of the Study Area

The study was carried out in a low-density residential area close to the Central Business
District (CBD) of the capital city of Zimbabwe, Harare (Figure 1). Since the study sought to
determine the influence of roof colour on urban thermal characteristics, it was restricted
to a small spatial extent to limit excessive heterogeneity that typifies urban landscapes.
Also, a large area could have introduced additional variables (e.g., elevation and slope) that
influence thermal characteristics. The area is in a low-to-medium-density residential type,
however, some of the houses, especially towards the CBD, have been turned into offices.
Low-to-medium-density residential areas in Zimbabwe are characterized by spacious
housing units, high land value and higher vegetation density when compared to high-
density residential areas, which are predominantly occupied by the low-income strata.
Since house units in the low-to-medium-density residential areas are generally large, they
are potentially discriminable using 10-m or higher spatial resolution image data. Hence,
based on the 10-m spatial resolution image data, the area was chosen to minimize the mixed
pixel problem that characterizes the high-density residential areas. Furthermore, the area
is dominated by houses with tiles, thus eliminating the effect of other roof types such as
concrete, zinc, aluminium or thatch on the area’s thermal characteristics. This enabled the
study to determine the variability in temperature based on roof tiling of different colours.
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vey’s earth explorer portal at no cost. To minimize variation between field data and image 
scenes, cloud-free imagery was collected on dates close to field data collection. Two Land-
sat images (scene capture dates: 16 September 2021 and 3 November 2021) and Sentinel 
images (scene capture dates: 18 September and 2 November 2021) were used in this study. 
The dates were chosen as they correspond to the period of maximum radiation in the hot 
season and the proximity of the two sensor dates. The wind was calm and cloudless, pre-
senting similar weather conditions when data from the same sensor were acquired. Given 

Figure 1. Location of the study area in Southern Africa, Zimbabwe and Harare (a), Harare and the
study area (b) and 10-m resolution natural colour composite showing variations of LULC in the study
area (c).

2.2. Field and Remotely Sensed Datasets

A field survey was conducted to identify the LULCs and roof colours in the area. The
survey revealed that the major LULC classes are grasslands, buildings with heterogeneous
tiled roof colouring, bare soil and roads. The building class was further split into roof
colours in line with the main objective of the study, and a stratified random sampling
approach used to collect the ground control points (GCPs). Non-tiled roofs were categorized
into “Other LULCs”. For each identified category, coordinates of representative covers
were collected using a handheld Global Positioning System. To maximize the spectral and
thermal variability, the hot dry season (mid-September to mid-November) was chosen for
the collection of the well-distributed LULCs’ GCPs as it presents a period of maximum solar
energy with no rainfall cooling effect. The LULC types were verified using a GoogleEarth
image, which was also used to verify the roof colours and to shift the GCPs to the roof
center for classification and validation purposes. The data were split: 70% to be used for
classification and 30% for validation.

Landsat and Sentinel 2 data were downloaded from the United States Geological
Survey’s earth explorer portal at no cost. To minimize variation between field data and
image scenes, cloud-free imagery was collected on dates close to field data collection.
Two Landsat images (scene capture dates: 16 September 2021 and 3 November 2021) and
Sentinel images (scene capture dates: 18 September and 2 November 2021) were used in this
study. The dates were chosen as they correspond to the period of maximum radiation in the
hot season and the proximity of the two sensor dates. The wind was calm and cloudless,
presenting similar weather conditions when data from the same sensor were acquired.
Given that the period is dry, vegetation conditions were assumed to be uniform and largely
maintained by irrigation/watering throughout the periods. Landsat data acquired on the
16th of September were matched with Sentinel data of the 18th of September, a short enough
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period to assume that LULCs did not change. Similarly, Landsat data acquired on the 3rd
of November were matched with Sentinel data of the 2nd of November. This gave the best
compromise to enable relating and blending multi-sensor data with different spatial and
temporal resolutions. The two Landsat images were used to compute the average LST to
minimize randomness associated with a single-date image, while the two Sentinel 2 image
datasets were used for LULC classification. Multi-spectral optical 10-m resolution Sentinel
2 and 3-m resolution Landsat 8 data for each acquisition date were merged into a multi-
layer files using the ‘Layer stacking’ tool in ENVI software. This was done separately for
Landsat 8 and Sentinel 2 data. In order to eliminate the effect of aerosols on reflectance
values, atmospheric correction was done using the Fast Line-of-sight Atmospheric Analysis
of Spectral Hypercubes (FLAASH) module in the ENVI software. Due to the proximity to
the CBD and location in an urban area, the urban aerosol mode was used in FLAASH, which
produced multi-layer reflectance files. Multilayer 10-m resolution Sentinel 2 reflectance
data were required to provide multi-spectral information to enhance separation of features
in supervised image classification. On the other hand, spectral reflectivity bands in the
near-infrared and red range from Landsat 8 were needed for the computation of normalized
difference vegetation index (NDVI), useful for emissivity correction in LST retrieval.

2.3. Separability Analysis

Sentinel 2 10-m resolution bands and the 70% of the field-collected GPS points for
the LULCs and roof colour categories were overlaid in an ENVI version 4.7 environment.
Surface separability was done using the Transformed Divergence Separability Index (TDSI)
based on Jeffries Mathussitta distance analysis. For each paired classes, TDSI ranges
between 0 and 2, with values greater than 1 indicating that two classes are distinguishable
and values close to 2 implying very high separability. Values below 1 and close to 0 suggests
that the classes should be merged. The TDS analysis was necessary to test whether different
roof colours and LULCs could be separated before classification.

2.4. Land Use/Cover Mapping and Retrievals of Roof Colours

The LULCs were derived from Sentinel 2′s 10-m bands based on the 70% GCPs using
the Support Vector Machines (SVM) algorithm in ENVI version 4.7 software. Default
settings of 0.083 and 100 were used for Gamma in kennel function and penalty parameter,
respectively. The SVM uses two classes of training samples within a multidimensional
feature space to fit an optimum dividing hyperplane. It aims to maximize the variability
between the most proximal training samples (support vectors) and the hyperplane [49,50].
To achieve our objective, we chose a Gaussian radial-basis kennel function as it is ideal for
working in an infinite-dimensional space and has a single parameter [49–51]. We classified
the images into eight classes, namely, Roads and Bare, Trees, Grassland, Red roof, Blue
roofs, Green colour roofs, Black roofs and Grey roofs. To display the roof colours from other
LULCS, the Roads and Bare, Trees and Grassland classes were amalgamated into “Other
LULC”. Thereafter, a confusion matrix was generated. A confusion matrix compares the
assigned class labels on the classified map with the location’s actual LULC class observed
in the field (ground truth). The confusion matrix was used to derive the most widely used
accuracy indicators, namely, Overall Accuracy (OA) and Kappa (k) [52].

2.5. Land Surface Temperature Retrieval from Landsat 8 Data

Band 10 of Landsat 8 was used to retrieve LST from thermal infrared data using
Planck’s radiation law-based equation for single-channel Landsat thermal data [53]. Ini-
tially, thermal infrared digital numbers were converted to surface-leaving radiance using
Equation (1);

LI = MI QCAL + AL (1)

where, Ll is spectral radiance at Top of the Atmosphere measured in Watts/m2/srad/µm,
Ml is Band-specific multiplicative rescaling factor, QCAL represents pixel values (Digital
Numbers) and AL is the Band-specific additive rescaling factor. Ml, AL and QCAL are
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obtained from the metadata downloaded together with the Landsat 8 data. As described
by U.S. Geological Survey [54], the coefficients for converting digital numbers to thermal
radiances were obtained from the metadata file accompanying Landsat 8 data download.

Mumtaz et al. [55] provides an in-depth description of steps for land surface tem-
perature retrieval. The procedures include conversion of thermal radiances to black-
body/brightness temperature followed by emissivity correction to obtain surface tem-
peratures. As such, derived radiances were used in Equation (2) to determine bright-
ness/blackbody temperature.

TB =
K2

ln
(

K1
LI I

+ 1
) (2)

where, TB is the brightness temperature (in degrees Kelvins), K2 and K1 area conversion
constants for the thermal band (in this case Band 10), also obtained from the metadata file.
Since brightness temperature over surfaces is calculated by assuming emissivity to be equal
to 1, further analysis must consider actual emissivity which varies with LULC type. This
was achieved through emissivity correction, which converted brightness temperatures to
actual surface temperatures using Equation (3) [53,55].

TS =

 TB

1 +
(

λ×TB
α

)
ln ε

− 273.16 (3)

where TS is the LST in Degree Celsius, λ is the central wavelength of emitted radiance
(10.9 µm for band 10 of Landsat 8), ε is the emissivity and α is a constant (1.438 × 10−2 mK).
Due to its simplicity, Equation (4) was used to estimate emissivity from Normalized
Difference Vegetation Index (NDVI) using [55–57];

ε = a + b ln(NDVI) (4)

where a = 1.0094 and b = 0.047. Developed in Botswana, which is close to the study area, the
equation was chosen due to ease of computation, parsimony and proven applicability in a
tropical environment [55]. The NDVI was retrieved using reflectance in the Near Infrared
(Band 5) and Red (Band 4) of Landsat 8 in Equation (5) [53,58];

NDVI =
(NIR− RED)

(NIR + RED)
(5)

where NIR and RED are reflectance in the near-infrared and red ranges [59] derived from
Band 5 and Band 4 of Landsat 8, respectively. The steps above obtained LST at a resampled
resolution of 30 m, requiring further enhancement for analysis of roofs thermal properties
at a local scale.

2.6. Gram-Schmidt Pan-Sharpening Based Method for LST Image Data Pan-Sharpening

Improvement of LST data from 30-m to 10-m spatial resolution was achieved using
the Gram–Schmidt pan-sharpening technique. The Gram–Schmidt method uses weighted
addition of multi-spectral bands to produce a replicated pan-sharpened low-resolution
image. Gram–Schmidt orthogonalization is then used to make all bands of the multi-
spectral low-resolution data orthogonal and scalar products are computed and turned
into covariances [60]. For each band of the low-resolution multispectral data, angles
between the band and the simulated low-resolution panchromatic are computed. Gain
and bias of the high-resolution panchromatic band is used to simulate each low-resolution
panchromatic band. The process is reversed using the same transformation coefficients,
and high resolution pan-sharpened bands are produced [60,61]. Using Gram–Schmidt
transformation, the colours of the composite RGB pan-sharpened bands are near similar
to the respective original images, thus there is minimal distortion of spatial patterns.
The method was chosen because all transform coefficients are computed in the low MS
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resolution, hence are more robust to spatial misalignment of the bands than most other
pan-sharpening methods [60]. In this study, the Sentinel 2′s 10-m resolution Band 2 was
used to improve the Landsat data. The purpose was mainly aimed at producing thermal
data for retrieval of LST at 10-m resolution to match with the products from supervised
image classification.

2.7. Intensity Analysis for In-Depth Characterization of Local Climate Zones Changes

The LST spatial configurations before and after pan-sharpening were compared to
assess the effect of improving spatial resolution on image quality. The root mean-square
error was also used to check the difference after resampling the LSTs to 30-m resolution to
assess the effect on values per pixel. A 30-m resolution Landsat scene was used to derive
NDVI and its correlation with 30-m LST (after resampling using a bicubic convolution) was
obtained using the “Zonal Statistics as a Table” tool in ArcGIS version 10.2, ESRI, Redlands,
California, USA. Similarly, NDVI was calculated using 10-m resolution near infrared and
red Sentinel 2 and correlated with pan-sharpened 10-m resolution LST. The LST correlations
with NDVI before and after pan-sharpening were then compared.

2.8. Linking LULC Types and Roof Colours with LST

Qualitatively, the spatial structure of LULC and roof colours was compared with that
of LST using visual inspections of maps produced from the combination of Sentinel 2 10-m
resolution and Landsat 8 thermal data. For quantitative assessment, field-collected points
corresponding to each LULC and roof colour category were used to extract LST values
using the “Extract values to points” spatial overlay function in ArcGIS version 10.2. The
field-collected points were used instead of overlaying the LST with the retrieved LULC map
to eliminate the effect of classification accuracy on extracted temperatures for the different
categories. Box plots were used to depict the variations of LST between and within LULC
and roof colour categories in the study area. The mean LSTs for the different LULC and
roof colour categories were also used to compare their thermal performances. This was
done to assess the effect of improving resolution on the relationship between LULC and
LST using NDVI as a proxy for LULC spatial patterns.

Figure 2 summarizes the procedures from data collection to linking of roof colours to
LST spatial structures in the study area.
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3. Results
3.1. Separability of LULC and Roofs by Colour

Table 1 indicates that the TDSI values ranged between 1.74 and 2.00, implying that the
LULC and roof colour categories were distinguishable using spectral signatures from 10-m
resolution Sentinel 2 bands. Tarred roads and Trees were the most discriminable classes
while the Green and Grey roofs were least discriminable, as indicated by TDSI values of
2.000 and 1.708, respectively. However, although Green and Grey roofs were the least
separable, the TDSI value was significantly above the separability threshold of 1, hence
guaranteed that the two classes were distinguishable. Among the roof colour categories,
blue and red roofs were the most separable with a TDSI value of 1.995. The trees LULC
category was the most separable from other cover types, with TDSI values ranging between
1.997 and 2.000. Overall, TDSI values greater than 1.7 indicate that the LULC and roof
colour classes in the study area were easily distinguishable.

Table 1. Discriminability of LULC types in the study area using 10-m resolution Sentinel 2 data.

Compared LULC and Roof Classes TDSI

Green-colour roofs and Grey roofs 1.708
Black roofs and Grey roofs 1.769
Black roofs and Green-colour roofs 1.826
Grey roofs and Red roofs 1.835
Black roofs and Tarred roads 1.874
Black roofs and Red roofs 1.920
Green-colour roofs and Red roofs 1.928
Blue roofs and Grey roofs 1.930
Red roofs and Bare areas 1.935
Blue roofs and Green-colour roofs 1.944
Grey roofs and Tarred roads 1.945
Black roofs and Blue roofs 1.955
Grey roofs and Bare areas 1.965
Black roofs and Bare areas 1.970
Grass and Bare areas 1.972
Grass and Red roofs 1.985
Red roofs and Tarred roads 1.985
Grass and Grey roofs 1.986
Green-colour roofs and Bare areas 1.990
Blue roofs and Tarred roads 1.994
Blue roofs and Red roofs 1.995
Black roofs and Trees 1.996
Grass and Green-colour roofs 1.997
Black roofs and Grass 1.998
Blue roofs and Bare areas 1.998
Grass and Tarred roads 1.998
Grey roofs and Trees 1.999
Blue roofs and Grass 1.999
Tarred roads and Bare areas 2.000
Trees and Bare areas 2.000
Blue roofs and Trees 2.000
Green-colour roofs and Trees 2.000
Grasslands and Trees 2.000
Red roofs and Trees 2.000
Tarred roads and Trees 2.000

3.2. Land Use/Cover and Roof Colour Mapping Using 10 M Resolution Sentinel 2 Data

The LULCs presented the houses surrounded by abundant vegetation, a characteristic
of low-to-medium-density residential areas in Zimbabwe (Figure 3a). The study area has
large grasslands, especially in the northeastern regions. The grasslands in the northeast
are mainly sporting grounds. The other open grasslands within built-up areas are school
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grounds while the fragmented grasslands are mainly lawns around houses as well as
unused land. The other abundant vegetation was in built-up areas. Figure 3b shows that
due to narrow widths in relation to the 10-m resolution of the data, most roads, especially
in the black roofs category were not visible.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

Grey roofs and Bare areas 1.965 
Black roofs and Bare areas 1.970 
Grass and Bare areas 1.972 
Grass and Red roofs 1.985 
Red roofs and Tarred roads 1.985 
Grass and Grey roofs 1.986 
Green-colour roofs and Bare areas 1.990 
Blue roofs and Tarred roads 1.994 
Blue roofs and Red roofs 1.995 
Black roofs and Trees 1.996 
Grass and Green-colour roofs 1.997 
Black roofs and Grass 1.998 
Blue roofs and Bare areas 1.998 
Grass and Tarred roads 1.998 
Grey roofs and Trees 1.999 
Blue roofs and Grass 1.999 
Tarred roads and Bare areas 2.000 
Trees and Bare areas 2.000 
Blue roofs and Trees 2.000 
Green-colour roofs and Trees 2.000 
Grasslands and Trees 2.000 
Red roofs and Trees 2.000 
Tarred roads and Trees 2.000 

3.2. Land Use/Cover and Roof Colour Mapping Using 10 M Resolution Sentinel 2 Data 
The LULCs presented the houses surrounded by abundant vegetation, a characteris-

tic of low-to-medium-density residential areas in Zimbabwe (Figure 3a). The study area 
has large grasslands, especially in the northeastern regions. The grasslands in the north-
east are mainly sporting grounds. The other open grasslands within built-up areas are 
school grounds while the fragmented grasslands are mainly lawns around houses as well 
as unused land. The other abundant vegetation was in built-up areas. Figure 3b shows 
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Figure 3. 10-m resolution (a) LULC map and (b) roof colour map.

3.3. Accuracy of LULC and Roof Colour Retrievals from Sentinel 2 Data

LULC and roof colour categories were mapped with Overall Accuracy (OA) of 84.5%
and Kappa of 0.81. Producer Accuracies (PA) were greater than 75% except for the grey
roofs and tarred roads (Table 2). User Accuracies (UA) were less than 75% for the black
roofs, trees and grey roofs, while greater than 77% for the other categories. The red roofs
were mapped with the highest accuracy of all the other categories (PA and OA greater
than 93%).

Table 2. LULC and roof colour mapping accuracies.

LULC and Roof Colour Category Producer Accuracy (%) User Accuracy (%)

Black roofs 74.44 70.42
Blue roofs 95.79 98.45
Grasslands 92.38 79.66
Green-colour roofs 81.69 90.64
Grey roofs 70.38 69.02
Red roofs 93.43 94.97
Tarred roads 53.47 77.42
Trees 75.96 72.51

3.4. Comparison of 30 M Resolution with Sharpened 10 M Resolution LST Retrievals

Although the study area was small, variations in temperature were observed as some
places were more than 15 ◦C cooler than others. Hotspots were noticed, especially on
the southern half of the area where LSTs close to 49 ◦C were observed. The northern half
was generally cooler, with the dominance of LSTs close to 41 ◦C. There was a general
southeastward warming in the area. Comparison of Figure 4a,b shows that sharpening of
LSTs to 10-m resolution by blending Landsat-derived LSTs with 10-m resolution Sentinel
2 did not compromise the spatial structure of LST and their ranges in the area. The 30-m
resolution LST map was more pixelated than the 10-m resolution, indicating the latter’s
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improved quality. When compared to the 30-m resolution, 10-m LST were retrieved with
high accuracy (RMSE = 0.5 ◦C). Correlation between LULC and NDVI was −0.516 and
−0.999 before and after pan-sharpening, respectively.
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3.5. Variations of LST with LULC and Roof Colours

Although there were overlaps in temperature between different LULCs and roof
colour categories, their mean LSTs were clearly distinct (Figure 5). The mean LST was
lowest in the trees LULC category followed by blue roof. Highest LSTs were recorded in
green-colour roofs and tarred roads areas. The grasslands LCZ showed greatest variability
in LST, followed by green and red roofs. The order of roof colours from coolest to warmest
based on average LST was blue (36.2 ◦C), black (35.8 ◦C), grey (36.9 ◦C), red (37.4 ◦C) and
green (37.7 ◦C).
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4. Discussion

Separability of all classes was high, as indicated by a TDSI greater than 1.7. This
was attributed to the strength of the spectral information at the 10-m resolution bands of
Sentinel 2 to distinguish between different LULC and roof colours. As aforementioned,
separability values close to 2 indicate that the classes are sufficiently separable using the
remotely sensed image guided by GCPs [49]. The LULCs and roof colours in the study area
were mapped with 75% and 0.73 accuracy and kappa, respectively. To facilitate effective
separability of the heterogeneous study area, the study focused on a small spatial extent.
Hence, the mapping accuracy was reasonable and comparable with other studies in urban
environments such as Sithole and Odindi [62]. However, in this study, roads, (producer
accuracy < 50%) were not effectively mapped. The low roads-mapping accuracy can be
attributed to their narrow width, that they are largely below 10-m and along the road, and
tree and tree shading, hence camouflage and/or mixed pixel with adjacent features.

Based on validation points, the roof colours were retrieved with reasonable accuracies.
Producer accuracies (PA) ranged between 58 and 95%, while user accuracies (UA) were
between 55 and 91%. The PA and UA values between 55 and 65% could be attributed to
intra-class variabilities, which caused some similarities between different roof colours. For
instance, some fading shades of black were near similar to dark shades of grey. Similarly,
some shades of blue were closer to grey and black. Although not investigated, we speculate
that roof ages and fading influence the similarities in roof colours. This is consistent with
Alchapar and Correa [46] who noted that for a given roof colour, thermal properties can
change due to age. Mapping accuracy could also be influenced by other effects such as
roof shapes, reflectivity [63] and ventilation. For instance, Triano-Juárez et al. [64] observed
variations in thermal properties for the same roof colour depending on reflectivity and
presence of coating materials. On the other hand, Bojić et al. [65] observed differences
between slanted and flat roofs. However, despite the above-named factors that could
influence thermal variability based on roof colouring, our study shows that roof colours
could be mapped with acceptable accuracy. We however suggest that for applications that
require very high mapping accuracy (>90%), the Sentinel 2′s 10-m resolution data may
be insufficient. In this regard, the use of Unmanned Aerial Vehicles derived high spatial
resolution data offers great potential for fine-scale mapping.

Similar LST spatial structure was observed before and after sharpening, while accuracy
of retrieved 10-m resolution LST relative to the original 30-m resolution was high (RMSE
of about 0.5 ◦C). Similar to a recent study by Mushore et al. [28], pan-sharpening also
improved correlation between LST and NDVI. In this study, the LST maps effectively
showed thermal variations. Spatial comparison of the LULC and LST maps showed that
vegetation covers such as large grasslands and trees as well as built-up areas with abundant
vegetation (which characterize most of the study area) had comparatively low temperature,
an indication that even vegetation within built-up areas has heat mitigation value [62].
Zhang et al. [66] also highlighted that vegetation patches and spatial structure combine
in contributing to the reduction in surface temperature of the area they occupy. This
explains the surface-temperature-reduction effect of vegetation even within built-up areas.
Besides latent heat transfer, the shading effect of vegetation, especially trees, lowers surface
temperatures in areas they cover. As such, Zhao et al. [48] noticed the cooling effect of
shadows of surrounding trees on roof-top surface temperatures during daytime.

The grey and red roofs were warmer than the black roofs, but cooler than green-colour
roofs, which were the warmest (Figure 4). Contrary to expectation, black roofs were not
the warmest. This could be attributed to variations in thermal characteristics in relation
to, among others, roof and colour shading. For example, due to age, black roofs colouring
ranged between dark black and grey. Red and green also had higher thermal values. This
finding is consistent with Farhan et al. [44], who found that red roofing had higher thermal
values than white roofing. Our findings show that green-colour roofs were the warmest,
with average LST values close to tarred roads. On the other hand, blue roofs were the
coolest, a finding consistent with Libbra et al. [45], who note that roof colour influences
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surface temperatures and hence could be used to mitigate heat islands. Although not
investigated in this study, pigments on roof materials could have influenced their thermal
behaviour. For example, it was reported that for the same roof colour, cool pigments have
the potential to increase albedo by at least 20% [67]. This may have caused dark roofs to
absorb less than or comparable heat to light-coloured roofs.

5. Conclusions

The 10-m resolution Sentinel 2 data mapped LULC and roofs by colour with reasonable
accuracy. However, findings show that Sentinel 2′s 10-m spatial resolution is still limited
by the mixed pixel problem. Other roof characteristics such as age, shape and coating need
to be investigated for potential improvement in mapping accuracy. Sharpening of LSTs
derived from Landsat to Sentinel’s 10-m resolution improved the LST spatial structure. It
also increased the correlation between LST and NDVI, implying an improved relationship
with LULC. Different roof colour showed variations in mean LST, which highlighted the
contribution of roof colours in mitigating or intensifying the heat island effect. Due to
variations in shades attributed to changes in age, black roofs were not the warmest. Blue
roofs were found to be the coolest while green-colour roofs were the warmest, followed
by red roofs. Grey roofs had a moderate effect, with the cooling effect increasing with
lightness of the grey colour. Overall, the study showed that colour, in combination with
other roof properties, determines a building unit’s thermal characteristics. However, the
study observed that even after pan-sharpening, Sentinel 2′s 10-m spatial resolution was
still coarse for urban roof mapping.

The study observed that even after pan-sharpening, Sentinel 2s 10-m spatial resolution
was still coarse for urban roof mapping. This implies the need to test other higher spatial
resolution datasets, for example those derived from UAVs and aircraft platforms. Future
studies should also consider separating different shades of the same colour, especially in
view of colour changes associated with roof aging. Additionally, the combined effects
of various physical factors, which include roof coating, thickness, ventilation, and shape,
should be included for in-depth analysis of the effect of roofs on the area’s thermal en-
vironment. Among the factors to be included simultaneously is the presence and effect
of any pigment that may affect albedo and heat absorption capacities, even for rooftops
of the same colour. Given the inadequacy of freely available moderate-resolution Land-
sat 8 and Sentinel datasets in mapping thermal properties of rooftops, there is a need to
test other higher spatial resolution datasets, for example those derived from UAVs and
aircraft platforms.
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