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Abstract: Ground-based synthetic aperture radar (GBSAR) has the advantage of retrieving submil-
limeter deformation of the mine slope by using the differential interferometry technique, which is im-
portant for safe production in mining applications. However, the moving vehicle’s defocus/displaced
signal will mask the SAR image of the mining area which affects the accuracy of interference phase
extraction and deformation inversion. In order to remove its influence, the moving target can first
be refocused and then removed. To our knowledge, there is no GBSAR moving target refocusing
method currently. Hence, the refocusing method is necessary. To solve the above problem, this paper
proposes a single-channel FMCW-GBSAR moving target refocusing method based on relative speed.
Firstly, the FMCW-GBSAR moving target signal model is analyzed, and then the relative speed based
signal model is deduced. Based on the model and GBSAR’s feature of incomplete synthetic aperture,
the Range Doppler (RD) algorithm is adopted and improved to achieve refocusing using relative
speed parameters. The algorithm is controlled by relative speed and squint angle; thus, the refocused
target image can be obtained via searching 2D parameters. The proposed method is verified by the
synthetic data, which are generated by combining NCUT FMCW GBSAR real data and simulated
moving target echo.

Keywords: ground-based synthetic aperture radar; relative speed; moving target refocusing; range
doppler algorithm

1. Introduction

Mining slope stability monitoring and deformation information acquisition are directly
related to production safety. Ground-based synthetic aperture radar (GBSAR) combined
with differential interferometry technique can achieve submillimeter deformation informa-
tion retrieval after around a minute. It has become an effective tool for slope deformation
monitoring [1,2]. The accuracy of deformation retrieval relies on high coherence of GB-
SAR image stack. However, the moving vehicles in the mining area will generate lots of
defocused/displaced signatures on the SAR image, which can cause decoherence. Hence,
such phenomenon reduces the accuracy of deformation inversion. One feasible way to
eliminate the influence is to remove the refocused moving target. Under a refocused state,
the moving targets only occupy a very small area, such as several pixels. Then, they can
be removed with minimal information loss of the static mine slope scene. Currently, the
frequency modulated continuous wave (FMCW) system is widely used in GBSAR, and
there is no moving target refocusing for GBSAR (to our knowledge). Therefore, as a research
foundation for removing the above influence, the moving target refocusing method for
FMCW-GBSAR is necessary.

Due to the moving target’s motion-induced imaging parameter mismatch, there is a
defocusing effect in SAR images. The moving target imaging aims at obtaining the well
focused target signature. The well refocusing relies on compensation for target motion-
induced three terms (range walk, range curvature, quadratic and higher phase term).
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Typical methods include two kinds, the keystone transform-based methods and SAR
imaging algorithm-based methods. The keystone transformation was first proposed by
Perry [3]. It can remove range walk without prior knowledge of moving target range
motion. However, the original method can only correct range walk and the transformation
will affect the quadratic phase term. The improved and modified method can be found
in [4–7]. The other kind is to modify the current SAR imaging method [8–14]. The most
typical idea is based on the relative speed method, which was first introduced by Jao [9]. By
constructing a relative speed-based moving target signal model, the moving target signal
model is equal to the stationary target model. A new efficient algorithm for refocusing of
ground fast-maneuvering targets is presented by [13]. Another new idea for SAR imaging
of moving target using range azimuth joint processing (RAJP) is presented by Shu [14].
Thus, the existing imaging algorithm can be fully utilized. However, the above methods
are usually used for airborne and spaceborne pulsed SAR systems. Ground-based SAR
usually uses the FMCW radar system, i.e., FMCW-SAR, due to the cost and near-range
imaging need.

The main difference in FMCW SAR is that the “stop-go-stop” model is not applicable,
due to the continuous signal transmitting and receiving. In recent years, the FMCW-SAR
algorithms for stationary scene are relatively matured such as Range Doppler (RD), Fre-
quency Scaling (FS), Polar Format Algorithm (PFA) and Omega-K (ωK) [15–26]. Thus,
developing a relative speed-based FMCW-SAR moving target imaging method is a viable
option, as for airborne platform in [27]. However, the key difference in GBSAR is the
incomplete synthetic aperture feature caused by limit rail length, so it is not readily appli-
cable to FMCW-GBSAR. Another difference is that the GBSAR moves slower than moving
vehicle, which is different from fact that moving vehicle moves slower than airborne and
spaceborne SAR. The above facts make researchers reconsider and analyze the relative
speed-based signal model.

To solve the above problems, this paper proposes a moving target imaging algorithm
based on relative speed for FMCW-GBSAR. The FMCW-GBSAR moving target signal model
is analyzed, and relative speed-based signal model is deduced. Based on the model and
the incomplete synthetic aperture of GBSAR, the Range Doppler (RD) algorithm is adopted
and improved. The key modification in RD is adding the time domain phase compensation
step in azimuth compression to achieve refocusing. The algorithm is controlled by relative
speed and squint angle; thus, the refocused target image can be obtained via searching 2D
parameters. The proposed method is verified by the synthetic data, which are generated by
combining NCUT FMCW GBSAR real data and simulated moving target echo.

The rest of the paper is organized as follows. Section 2 analyzes the FMCW-GBSAR
moving target signal model, which shows that the complexity of developing the imaging
algorithm based on this model. Section 3 gives the relative speed-based signal model,
and the relationship between radar velocity and moving target velocity is analyzed. The
four detail conditions due to the fact that moving target speed faster than GBSAR are also
presented in this section. In the Section 4, the moving target imaging algorithm based
on relative speed signal model is introduced in detail. The algorithm improves the RD
algorithm to suit for GBSAR. Section 5 is the experiment. Last is conclusion.

2. Moving Target Signal Model

Figure 1 shows the geometry when azimuth time t = 0. Y-axis is the azimuth direction
that the radar moves along with constant speed vs; x-axis is the range direction; the origin
O is the rail’s midpoint. Radar position is (0, vst). va and vr are the velocities of the moving
target in azimuth and range, respectively. The moving target is at P (x0, y0) when t = 0, and
its velocity is (vr, va). The moving target’s motion can be expressed as (x0 + vrt, y0 + vat).
Here, we assume the moving target speed does not exceed the Pulse Repetition Frequency
(PRF), i.e., no Doppler ambiguity occurs. Due to stop-and-go, approximation is not valid in
FMCW SAR [28–30]. Above, t is given as t = ta + tr, where ta and tr are the azimuth and
range time, respectively.
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As in Figure 1, the range equation is given as:

R(t) =
√
(x0 + vrt)2 + (y0 + (va − vs)t)

2 (1)

The received signal after dechirp processing is:

S(tr, ta) = A · exp
[
−j 4π

λ R(tr, ta)
]
· exp

[
j 4πKr

c2

(
R(tr, ta)− Rre f

)2
]

exp
[
−j 4π

c Kr

(
R(tr, ta)− Rre f

)(
tr −

2Rre f
c

)] (2)

In the formula, A is the complex constant and window functions in azimuth and range
which will be neglected in paper’s following deduction. λ is wavelength, c is the speed of
light, Kr is the chirp rate and Rre f is the reference range which typically selects scene center.

Apply Taylor expansion to Equation (1) at t = 0 and omit the higher order terms:

R(t) ≈ R(0)
0! + R′(0)

1! (t− 0) + R′′ (0)
2! (t− 0)2 = R(0) + R′(0) · t + R′′ (0)
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Substitute t = ta + tr into Equation (3), since the focusing effect is mainly related to
the quadratic term of ta, so the quadratic term of tr can be omitted [31] and we can obtain a
simplified formula as:

R(tr, ta) ≈ R(0) + R′(0) · (tr + ta) +
R′′ (0)

2 · (tr + ta)
2

= R(0) + R′(0) · (tr + ta) +
R′′ (0)

2 ·
(
t2
r + t2

a + 2trta
)
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2 ·
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) (4)

Rewrite Equation (2) with Equation (4), and the signal can be expressed as:

s(tr, ta) = exp
(
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λ
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a
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Recall the expression of R(0), R′(0) and R′′ (0); if they are substituted into Equation (5),
the expression of moving target signal can be obtained. The expression of Equation (5)
replaced with all terms is listed in the Appendix A. It can be seen that the moving target
signal model in FMCW-SAR is quite complex. To obtain a well focused image, it is necessary
to compensate each exponential term. Each parameter should be tuned for refocusing
which makes the algorithm complex and time-consuming.

In the next section, we introduce relative speed to simplify the moving target signal
model. It can be seen that the relative speed-based moving target signal model is equal to
the static target signal model. In that model, only one parameter of relative speed needs to
be tuned. Therefore, the existing imaging algorithm can be fully utilized, and its complexity
can be reduced.

3. Relative Speed-Based Moving Target Signal Model
3.1. Relative Speed Transformation

In this section, the relative speed-based moving target signal model is derived and
analyzed. Figure 2 shows the geometry after relative speed transformation when azimuth
time t = 0. The radar position changes from (0, vst) to (0, v′st). The moving target is
at P (x0, y0) when t = 0, its velocity is (vr, va). After relative speed transformation, the
moving target P rotates θ to P’ as a stationary target. The target position changes from
(x0 + vrt, y0 + vat) to (x′0, y′0).
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Figure 2. Geometry of the GBSAR and moving target after relative speed transformation.

Equations (6) and (7) are relative speed transformation, v′s is the value of relative
speed, θ shows its direction. According to the aforementioned geometry and motion
assumptions, the v′s and θ are constant.

v′s =
√
(vs − va)

2 + (vr)
2 (6)

θ = arctan
(
|vr|

|vs − va|

)
(7)

Applying Equations (6) and (7) to Equation (1) with proper mathematical deduction,
we can rewrite range equation as Equation (8).

R(t) =
√
(x0 cos θ − y0 sin θ)2 + ((x0 sin θ + y0 cos θ)− vs ′t)

2 (8)
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Since (x0, y0) are also constant, and x′0 and y′0 in Equation (9) are used to simplify
Equation (8) as shown in Equation (10).{

x′0 = x0 cos θ − y0 sin θ
y′0 = x0 sin θ + y0 cos θ

(9)

R(t) =
√
(x′0)

2 + (y′0 − v′st)2 (10)

By examining Equation (10), we can find its form is equal to the stationary target’s
range equation formula. This can be seen by setting vr and va in Equation (1) as zero, which
is shown below.

R(t) =
√
(x0)

2 + (y0 − vst)2 (11)

Comparing Equations (10) and (11), we can find that after the relative speed trans-
formation, the moving target range equation is equal to the stationary target’s formula.
Hence, the current imaging method can be utilized with minor modification, which reduces
complexity. The difference is that target position is projected from (x0, y0) to (x′0, y′0).
The new position is determined by relative speed’s value and direction based on rotation
formula (9).

3.2. Analysis on Relative Speed Model

As in Equation (10), it is clear that the moving target is projected as a stationary target
at (x′0, y′0). We can find that it is the squinted SAR imaging model, which make it is easier
to link the current imaging method. This subsection conducts the analysis on the relative
speed model with squint angle.

The geometry of radar and moving target is shown in Figure 3. The origin O is the
rail’s midpoint, O’ is the position of radar at time t and P’ is the position of moving target
after relative speed transformation. O’P’ is the range between the radar and the target at
arbitrary time, and R0 is the range between the target and radar at t = 0. Additionally, θ′ is
the squint angle at t = 0.
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From Figure 3, we can obtain R0 =
√
(x′0)

2 + (y′0)
2 and θ′ = arctan y′0

x′0
. Based on the

law of cosines, the range equation can be expressed as:

R(t) =
√
(v′st)2 + R2

0 − 2R0v′st sin θ′ (12)
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Since the GBSAR system uses the FMCW signal, replace t = tr + ta into Equation (12)
to obtain Equation (13).

R(tr, ta) =
√
(v′sta + v′str)

2 + R2
0 − 2R0(v′sta + v′str) sin θ′ (13)

Then, the received signal is rewritten as follows:

s(tr, ta) = exp
[
−j 4π

λ R(tr, ta)
]

· exp
[
−j 4π

λ Kr

(
R(tr, ta)− Rre f

)(
tr −

2Rre f
c

)]
· exp

[
−j 4πKr

c2

(
R(tr, ta)− Rre f

)2
] (14)

Tp is the duration of transmitted signal, and the fast time tr is |tr| ≤ Tp/2. The
third exponential term is RVP (residual video phase term). This item can be compensated
according to reference [32].

Since the range equation in Equation (13) is related to the fast time, we expand the
slant range R(tr, ta) at tr = 0 by Taylor expansion and ignore higher order term to obtain
Equation (15).

R(tr, ta) =
√
(v′str + v′sta)

2 + R2
0 − 2R0(v′str + v′sta) sin θ′

≈
√
(v′sta)

2 + R2
0 − 2R0v′sta sin θ′ + (v′s)

2ta−R0v′s sin θ′√
(v′sta)

2+R2
0−2R0v′sta sin θ′

tr
(15)

Let R(ta) =
√

R2
0 + (v′s)

2t2
a − 2R0v′sta sin θ′, then apply Taylor expansion at ta = 0

and ignore the high order term:

R(ta) =
√

R2
0 + (v′s)

2t2
a − 2R0v′s sin θ′

≈ R0 − v′s sin θ′ta +
(v′s)

2 cos2 θ′

2R0
t2
a

(16)

Among them, −v′s sin θ′ta causes linear range walk and Doppler centroid shift, de-
noted as ∆R(ta). During the imaging process, the influence of the linear range walk and
Doppler centroid shift should be corrected.

Substitute Equation (15) with (16), the range equation is:

R(tr, ta) ≈ Ra(ta) +
(v′s)

2ta − R0v′s sin θ′

Ra(ta)
tr (17)

By substituting Equation (17) into (14), the echo model of the signal can be simplified as:

S′(tr, ta) = exp
{
−j 4π

λ

(
R0 +

(v′s)
2 cos2 θ′

2R0
t2
a

)}
· exp

{
−j 4π

λ
(v′s)

2ta−R0(v′s) sin θ′

Ra(ta)
tr

}
· exp

{
−j 4π

c Kr

[
Ra(ta) +

(v′s)
2ta−R0v′s sin θ′

Ra(ta)
tr − Rre f

](
tr −

2Rre f
c

)} (18)

The analysis of signal model in Equation (18) shows that the first exponential term
causes azimuth defocusing [33]. The second exponential term is a Doppler shift caused
by the continuous motion of the radar. Since the Doppler shift will bring the migration
through range cell to the echo envelope and result in azimuth defocusing during the
imaging process [34], the impact of this item should be eliminated in processing.
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3.3. Analysis of Searching Refocusing Parameters

It can be seen from Section 3.2 that the moving target can be refocused by tuning
parameters v′s and θ′. Therefore, this section analyzes 2D parameters searching based on
v′s and θ′. Firstly, as can be seen from Figure 3, θ′ is the squint angle at t = 0. So, based on
the prior of beam pointing direction, the search range of θ′ is |θ′| < 90

◦
.

Next, we discuss the tuning of relative speed parameter v′s. Because the GBSAR
moves slower than moving target speed due to it being constrained to the rail (typically as
cm/s level). It should consider both value and direction. It has four cases when considering
the situations of target-radar speed difference. The four cases are listed in Figure 4. Here,
the positive speed value means the target speed direction along the positive axis.
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(a) (b) (c) (d) 

Figure 4. Relative speed’s four cases due to speed difference. (a) vs − va > 0,vr < 0. (b) vs − va > 0,
vr > 0. (c) vs − va < 0,vr > 0. (d) vs − va < 0,vr < 0.

From Figure 4a,b, when vs − va > 0, v′s can be calculated by
√
(vs − va)

2 + (vr)
2.

From Figure 4c,d, when vs − va < 0, v′s can be calculated by −
√
(vs − va)

2 + (vr)
2. Ad-

ditionally, as denoted in Equation (7), the rotation angle θ will change according to the
direction of the resultant velocity v′s. So, the search range of v′s is |v′s| < vm, where vm
is the maximum relative speed for refocusing, which can be set according to the practical
needs in application.

Here, the two-dimensional parameters’ searching strategy is not discussed due to it
not being the scope of this paper, and it will be studied in the future.

4. Refocus Imaging Algorithm

Figure 5 is a flowchart of the proposed refocusing imaging algorithm, which mainly
includes the three parts: (1) The 2-dimensional parameters search space (v′s, θ′) is first
established. (2) In each parameters search loop, the modified RD algorithm is applied to the
input data. The modified RD method contains linear range migration correction, Doppler
centroid correction, range cell migration correction, Doppler shift correction and azimuth
compression. (3) When target is refocused, the iteration loop stops, and the refocused target
image is output.
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As mentioned in Equation (16), −v′s sin θ′ta causes linear range walk and Doppler
centroid, denoted as ∆R(ta). The Doppler centroid and linear range walk can be corrected
by multiplying the Equation (18) with (19):

Hdc = exp
{

j
4π

c
Kr∆R(ta)

(
tr −

2Rre f

c

)
+ j

4π

λ
∆R(ta)

}
(19)

Then, based on the stationary phase principle, Equation (18) after linear range walk
correction in Doppler domain is:

S′(tr, fa) = exp
{
−j 4π

λ R0β( fa)
}
· exp

{
−j 4πKr

c

[
R0

β( fa)
− Rre f

](
tr −

2Rre f
c

)}
· exp

{
−j 2πλK2

r R0
c2

β2( fa)−1
β3( fa)

(
tr −

2Rre f
c

)2
}

· exp{j2π f ′dctr} · exp
{

j 2π sin θ′R0 f 3
a

λ cos θ′( f 2
aM− f 2

a )
3/2

} (20)

In Equation (20), faM = − 2v′s
λ , and the Doppler centroid is f ′dc =

2v′s sin θ′
λ . Since the

Doppler shift caused by the continuous motion of radar should be corrected, the Doppler
shift correction function is:

Hd f s = exp
[
−j2π f ′dctr

]
(21)

The β( fa) in Equation (20) is the RCMC correction factor as shown in Equation (22):

β( fa) =

√
1−

(
λ fa

2v′s cos θ′

)2
(22)
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Similar to [14], we use the following approximation (23):

R0

β( fa)
≈ R0 +

1
2

R0
λ2 f 2

a

4(v′s)
2 cos2 θ′

(23)

The corresponding range cell migration correction function is as following:

Hrcmc = exp

{
j
4πKr

c
1
2

R0
λ2 f 2

a

(2v′s cos θ′)2

(
tr −

2Rre f

c

)}
(24)

The third exponential term in Equation (20) is a function of fast time, which provides
a second range compression function:

Hsrc = exp

{
j
2πλK2

r R0

c2
β2( fa)− 1

β3( fa)

(
tr −

2Rre f

c

)2
}

(25)

Next, compensate the last term using H fa in the Doppler domain as Equation (26):

H fa = exp

{
−j

2π sin θ′R0 f 3
a

λ cos θ′
(

f 2
aM − f 2

a
)3/2

}
(26)

The echo signal can be expressed as:

S′(tr, fa) = exp
{
−j

4π

λ
R0β( fa)

}
· exp

{
−j

4πKr

c

[
R0 − Rre f

](
tr −

2Rre f

c

)}
(27)

By using azimuth inverse FFT and range FFT, the signal can be expressed as:

S′( fr, ta) = sin c
{

πTp

[
fr +

2Kr

c

(
R0 − Rre f

)]}
· exp

{
−j

4πRre f

c
fr

}
· exp

{
−j

4π

λ

(
R0 +

(v′s)
2 cos2 θ′

2R0
t2
a

)}
(28)

The remaining exponential term in Equation (28) is the phase history in the azimuth
time domain, which controls azimuth focusing. It is easy to find the quadratic phase in this
term. Due to the incomplete synthetic aperture feature in GBSAR, the imaging scene is
imaged in the Doppler domain; thus, this quadratic phase term will cause target azimuth
defocusing. The compensation term is therefore given as Equation (29).

Hre f = exp

(
j
4π

λ

(
(v′s)

2 cos2 θ′

2R0
t2
a

))
(29)

After applied Fourier transform along azimuth direction, the target image can be
obtained. By evaluating the parameter of contrast, the refocusing state of target can be
obtained. If the maximum contrast is reached, then the focusing target image is output as
the final result.

For different moving targets, the values of v′s and θ′ for refocusing are different. When
the values of v′s and θ′ are determined, only the moving targets with matching parameters
can be refocused. The targets that do not match will be defocused. For these mismatched
moving targets, the greater the difference between true parameters and processing parame-
ters, the more serious the defocusing will be in the image.

5. Experiments

In this section, the experiments of point target simulation and synthetic data are
introduced, respectively.
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5.1. Point Target Simulation

Table 1 shows the system parameters used in simulation, which are extracted from the
real system of NCUT’s GBSAR system. It works in 17 GHz, and the radar moving speed on
rail is limited as 0.03 m/s, which is slower than most moving targets. The rail length of
the radar is 0.8 m. The signal bandwidth is 400 MHz. The maximum illuminating range is
2500 m to 5000 m. Here, we used 2500 m as simulation parameter. Since the NCUT risk
radar uses the transmitted signal for pulse compression, the reference range (Rref) is zero.
The Pulse Repetition Frequency (PRF) is set 500 Hz.

Table 1. Radar parameters.

Parameter Value Parameter Value

Center frequency 17 GHz PRF 500 Hz
Signal bandwidth 400 MHz Near range 500 m

Radar speed 0.03 m/s Far range 2500 m
Pulse duration 0.002 s Rail length 0.8 m

Table 2 shows the parameters of targets in experiment. T1, T2, T3 and T4 are moving
targets, and S1 is the stationary target for comparison. The simulation includes two cases.
The difference is that the position component y is 0 or not when azimuth time tazi is 0.
According to Chinese regulation of safe production in mining areas, the maximum driving
speed is less than 30 km/h (8.3 m/s) [35]. Thus, target maximum speed set in experiment
is 10 m/s.

Table 2. Target parameters.

Target Coordinate [m] Vr [m/s] Va [m/s]

S1 (1850, 0) 0 0
T1 (2000, 0) 0 10
T2 (2050, 100) 0 10
T3 (2200, 0) 2 5
T4 (2300, 100) 2 2

The stationary reference point S1 is located at (1850 m, 0). After GBSAR imaging, it
can be seen from the Figure 6. S1 is well focused. Moving targets T1 and T2 are defocused
and T3 and T4 are defocused and displaced.
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Case 1: target position y = 0 at tazi = 0
When tazi = 0, the moving targets T1 and T3 are located at (2000 m, 0) and (2200 m, 0),

respectively. The motion parameters of T1 are vr =0 m/s and va =10 m/s, and the motion
parameters of T3 are vr =2 m/s and va =5 m/s. According to Equation (6) in Section 2, the
relative speed v′s of T1 and T3 are −9.97 m/s and −5.35 m/s, respectively. Their refocusing
result is shown in Figure 7. The T3 is taken as an example to analyze refocusing quality.
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Figure 7. Refocused result of the moving targets T1 and T3.

The impulse responses of T3 and the azimuth and range profiles are shown in Figure 8.
The Peak Side-Lobe Ratio (PSLR) and Integration Side-Lobe Ratio (ISLR) are used as
criteria, and their theoretical values are around −13.26 dB (PSLR) and −9.80 dB (ISLR),
respectively [36]. The PSLR and ISLR of the refocused image in the range direction are
−13.3 dB and−10.6 dB. The PSLR and ISLR of the refocused image in the azimuth direction
are −12.5 dB and −9.1 dB, respectively. It can be seen that evaluated parameters agree with
the theoretical values, which means the algorithm can achieve good refocusing results.
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Figure 8. Refocused result of the moving target T3. (a) Impulse responses of T3. (b) Range profile of
T3. (c) Azimuth profile of T3.

Figure 9 shows the comparison before and after the refocusing of T1. After considering
the motion characteristics of the moving target, the 2D parameters search space (v′s, θ′) is
established for T1, and the refocusing is performed. It can be seen from the figure that T1
changes from the original defocusing state to the focusing state. Additionally, the original
focused static point S1 becomes defocusing. So, for different targets, the matched values of
v′s and θ′ are different. Only the moving target that matches the parameters in iteration can
be refocused. The other targets become defocusing due to the relative speed parameters’
mismatch. Therefore, the refocusing algorithm processes the target by target via searching
2D parameters space.
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Figure 9. Comparison before and after the refocused of T1.

Case 2: target position y 6= 0 at tazi = 0
The moving targets T2 and T4 are located at (2050 m, 100 m) and (2300 m, 100 m)

when tazi = 0, respectively. The motion parameters of T2 are vr =0 m/s and va =10
m/s, and the motion parameters of T4 are vr =2 m/s and va =2 m/s. The relative
speeds v′s are −9.97 m/s and −2.80 m/s, respectively. Their refocusing result is shown in
Figure 10. Similar to that in case 1, take the T4 as an example to analyze the refocusing
quality. The impulse responses of T4 and the azimuth and range profiles are shown in
Figure 11. The PSLR and ISLR of the refocused image in the range direction are −13.4 dB
and −10.7 dB. The PSLR and ISLR of the refocused image in the azimuth direction are
−13.2 dB and −9.6 dB, respectively.
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T4. (c) Azimuth profile of T4.

The above cases validate the proposed algorithm.

5.2. Synthetic Data

This section describes the synthetic data experiment which combines the real data
acquired in mine and simulated moving target echo. The real data is collected by NCUT-
RiskRadar GBSAR system. Figure 12 shows the photo of GBSAR system, its parameters
are same as shown previously in Table 1. Two targets, A1 and A2, are simulated, and
the positions are (1900 m, 0 m) and (2000 m, 50 m) when azimuth time is 0. The range
and azimuth speed of A1 and A2 are (0, 3) m/s and (0, 2) m/s. Table 3 shows the target
parameters of synthetic data.
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Table 3. Target parameters of synthetic data.

Target Coordinate [m] Vr [m/s] Va [m/s]

A1 (1900, 0) 0 3
A1 (2000, 50) 0 2

The synthesized image is shown in Figure 13, and the image of mine area is located at
the middle. A1 and A2 are labeled with a red dashed box. Apply the proposed method to
the two targets, A1 and A2 before and after refocusing are shown in Figure 14. In the local
image, we can find that the stationary scene is well focused and the targets are defocused.
When imaging iteratively using different 2D parameters, the targets getting focused and
the scene is defocused.
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(a) Imaging results of A1 before and after refocusing. (b) Imaging results of A2 before and after
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Thus, the effectiveness of proposed method in data contain real scene is validated.

6. Conclusions

In this paper, a single-channel FMCW-GBSAR moving target refocusing imaging
algorithm based on relative speed is proposed. The FMCW-GBSAR moving target signal
model is firstly analyzed. Then, the relative speed signal model is deduced. Based on
this model and the incomplete synthetic aperture of GBSAR, the Range Doppler (RD)
algorithm is adopted and improved in this paper. The algorithm is controlled by relative
speed and squint angle; thus, the refocused target image can be obtained via searching
2D parameters. By introducing the relative speed, the original complex moving target
signal model is simplified to the same form as the stationary signal model. The existing
imaging algorithms can be fully utilized to reduce the difficulty of algorithm modification.
The proposed method is verified by the synthetic data, which are generated by combining
NCUT FMCW GBSAR real data and simulated moving target echo.
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The future works includes conducts the real FMCW-GBSAR moving target experiment,
and studies and optimizes the 2D parameters searching strategy. Additionally, study
moving targets suppress method based on the proposed refocusing method for GBSAR.
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Appendix A

Recall the expression of R(0),R′(0) and R′′ (0); if they are substituted into Equation
(5), the expression of moving target signal in GBSAR is as follows:
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