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Abstract: Very-high-resolution (VHR) optical imaging satellites can offer precise, accurate, and direct
measurements of snow-covered areas (SCA) with sub-meter to meter-scale resolution in regions of
complex land cover and terrain. We explore the potential of Maxar WorldView-2 and WorldView-3
in-track stereo images (WV) for land and snow cover mapping at two sites in the Western U.S. with
different snow regimes, topographies, vegetation, and underlying geology. We trained random forest
models using combinations of multispectral bands and normalized difference indices (i.e., NDVI)
to produce land cover maps for priority feature classes (snow, shaded snow, vegetation, water, and
exposed ground). We then created snow-covered area products from these maps and compared them
with coarser resolution satellite fractional snow-covered area (fSCA) products from Landsat (~30 m)
and MODIS (~500 m). Our models generated accurate classifications, even with limited combinations
of available multispectral bands. Models trained on a single image demonstrated limited model
transfer, with best results found for in-region transfers. Coarser-resolution Landsat and MODSCAG
fSCA products identified many more pixels as completely snow-covered (100% fSCA) than WV
fSCA. However, while MODSCAG fSCA products also identified many more completely snow-free
pixels (0% fSCA) than WV fSCA, Landsat fSCA products only slightly underestimated the number of
completely snow-free pixels. Overall, our results demonstrate that strategic image observations with
VHR satellites such as WorldView-2 and WorldView-3 can complement the existing operational snow
data products to map the evolution of seasonal snow cover.

Keywords: cryosphere; seasonal snow cover; fractional snow-covered area (fSCA); WorldView

1. Introduction

As one of the most dynamic components of the cryosphere, seasonal snow is an integral
part of hydrologic, ecologic, economic, cultural, and climatic systems. Snow accumulates
during the cool season and releases meltwater during warmer and drier periods [1,2]. The
timing and quantity of the accumulation and melt can have consequential impacts on
downstream processes, phenology, and water supply [3–6], especially within mountain
watersheds. Seasonal snowpack acts as a natural reservoir, providing a critical freshwater
resource to over one billion people worldwide [7].

Despite the significant role of seasonal snow in many different Earth systems, un-
derstanding and measuring its distribution and water content can be challenging. Snow
cover varies across a range of spatiotemporal scales based on meteorology, topography,
and vegetation. Localized sources of redistribution, such as wind transport, combine
with topography and vegetation processes to generate additional spatial variability after
snow has fallen [8,9]. This highly heterogeneous distribution of snow suggests that in situ
point measurements (e.g., snow depth from automatic weather stations) may not be repre-
sentative of broader snowpack characteristics [10], especially for remote, topographically
complex, and inaccessible areas. Though useful for hydrological models, the existing snow
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fraction estimates are insufficient for process-based ecohydrological [11,12] and ecological
research that requires more fine-scale and spatially distributed information [13–16].

1.1. Satellite Snow Mapping and Mixed Pixels

Satellite remote sensing can offer measurements over large spatial extents with variable
temporal coverage. Passive microwave ‘all-weather day-or-night’ approaches are capable
of expansive daily coverage but with a limited spatial resolution of ~25 km and a variable
performance for wet vs. dry snow. These issues limit the ability of passive microwave
sensors to observe fine-scale processes affecting the highly heterogeneous snow conditions
in complex terrain. Active microwave approaches (e.g., synthetic aperture radar) can offer
much finer spatial resolutions (0.25–20 m), but its interpretations are affected by wet snow,
vegetation, and steep topography (increased layover and shadow effects).

The widely available optical remote-sensing earth observation instruments (e.g., Mod-
erate Resolution Imaging Spectroradiometer [MODIS] on Aqua/Terra, Enhanced Thematic
Mapper Plus [ETM+] on Landsat 7, and Operational Land Imager [OLI] on Landsat 8)
have been essential for mapping regional to global snow cover [17]. Snow-covered area
(SCA) can be extracted from optical data using relatively simple approaches [18] given the
difference in albedo between snow and other common land cover types. However, the
presence of optically thick clouds and variable illumination in complex terrain still present
challenges for optical remote-sensing land cover classification [19]. For a more detailed
discussion of the methods and issues associated with optical remote sensing for global
snow cover mapping, we refer the reader to [19–23].

Optical snow-cover-mapping approaches [24] routinely leverage the relatively low
reflectance of snow in the shortwave infrared (SWIR) and relatively high reflectance in the
visible spectrum to calculate a normalized difference snow index (NDSI), which can more
effectively distinguish snow from clouds. The operational workflows to derive snow-cover
products from remote-sensing satellites employ reflectance thresholding and a rule-based
approach using this index for pixel-based snow classification [17,22,25]. These products
are dependent on SWIR band(s) and are typically limited to a binary snow vs. “not snow”
classification at the lower resolution of SWIR sensors. Thus, the spatial resolution of
most publicly available snow products is relatively coarse (~15–500 m), resulting in mixed
radiance values from multiple land cover features in each pixel. In one study, mixed pixels
were found to comprise 25–93% of all pixels at a 40 m resolution and 67–100% at 500 m [26].
The WorldView-3 satellite can also collect SWIR image data, but the resolution is coarser
than the multispectral bands (~3.7 m vs. ~1.2 m, respectively) and must be requested
during tasking, with additional product costs.

Subpixel snow-mapping techniques were developed to address mixed pixels by sepa-
rating snow endmembers from non-snow endmembers using field and laboratory spectral
libraries [20]. These spectral unmixing models use linear spectral mixture algorithms to de-
construct constituent signals of different land-cover features. They then estimate fractional
snow cover for each pixel and aggregate the fractional snow-covered area (fSCA) [21,27–29].

While unmixing provides estimates of the snow fraction within a pixel (with post-
processing yielding values between 0–100% or 0–1), these approaches rely on well-calibrated
data, both in terms of spectral libraries and radiometrically calibrated satellite instruments
such as MODIS. Even with this calibration, the coarser products tend to overestimate the
snow at boundaries with other feature classes [30] and are not able determine the true
spatial distribution of snow at the subpixel level. To address these limitations, approaches
involving downscaling, histogram matching, and data fusion techniques can potentially be
used to extract finer spatial resolution fSCA products [31,32].

1.2. Very-High-Resolution Snow Mapping and Machine Learning

Despite improvements in subpixel fractional snow mapping, these techniques cannot
identify small-scale snow features such as drifts or snow patches, which can be important
for late-season water resources [33]. Very-high-resolution (VHR) image products (<1–2 m
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resolution) can capture precise and accurate measurements of snow and land cover in
regions of complex terrain and can be used to resolve snow cover in forest gaps and even
between individual trees. This enables a more detailed study of snow deposition [34–36]
and snowmelt processes [37]. The percentage of mixed pixels at a fine resolution is also
considerably smaller than at coarser Landsat or MODIS resolutions [38].

However, this boost in spatial resolving power comes with tradeoffs—large data
volumes and larger-than-memory datasets present major challenges for standard process-
ing approaches. While GUI-based unsupervised and semi-supervised classification tools
(e.g., ESRI, ArcGIS) may be sufficient for some studies, those approaches can be cumber-
some and inefficient for large data volumes.

Modern machine learning approaches, combined with enhanced computational re-
sources, can be used to extract information from large data volumes with limited super-
vision (i.e., manual intervention). The random forest (RF) algorithm [39], a pixel-based
method, is often used for land cover mapping due to its computational efficiency, inter-
pretability, ability to extract feature importance metrics, and relatively low requirements
for its training data volume [40,41] compared to other machine learning approaches such
as neural networks. Though machine learning models have demonstrated substantial skill
in classification accuracy, the spatiotemporal transferability (i.e., generalization) of such
models is variable [42–45].

Beyond operational snow-monitoring applications, accurate, fine-resolution maps of
snow and land cover are needed to identify static, exposed control surfaces for the precise co-
registration of “snow-on” and “snow-off” DEMs to derive snow depth products from stereo
VHR images [46,47]. However, stereo images inherently require larger off-nadir viewing
angles, often >20–30◦, to provide sufficient parallax for accurate stereo triangulation of the
snow surface. While not ideal compared to sensors with nadir orientation, we attempt to
use these off-nadir stereo images to produce accurate landcover maps, with the goal of
combining them with contemporaneous stereo DEMs for accurate snow depth mapping.

In this work, we use WorldView-2 and WorldView-3 stereo panchromatic and multi-
spectral images and a semi-automated workflow to train land cover models to produce
fine-scale snow and land cover maps over mountainous areas at two study sites in the
Western U.S. Though other studies have demonstrated the uneven transferability of random
forest models, we also investigated whether our simple land cover models could transfer
to other images, specifically to classify snow. To assess how the resulting VHR snow cover
maps may complement publicly available, operational snow cover datasets such as those
derived from MODIS and Landsat, the VHR maps were downsampled and compared with
corresponding coarser-resolution operational fSCA products. These VHR snow maps can
also be used for the calibration and validation of coarser products [48], despite differences
in instrument architectures (e.g., whiskbroom vs. pushbroom), illumination geometries,
viewing geometries, and methodological processing approaches.

Using varying combinations of spectral bands and band ratio indices, we developed
simple random forest models to classify a broad subset of priority land cover classes
(i.e., illuminated snow, shaded snow, vegetation, exposed surfaces, surface water, and
clouds) common to mountainous areas and needed for stereo snow depth mapping. With
these models and land cover classifications, we investigated the following questions:

1. Can random forest models and minimally processed VHR stereo multispectral images
be used to accurately classify snow cover at the meter scale without SWIR bands or
more complex atmospheric, topographic, and BRDF corrections?

(a) What combination(s) of input layers provide the best model performance?
(b) Can a single model trained for one region be used to accurately classify snow

when applied to out-of-region images?

2. How do coarser resolution operational fSCA products from the spectral unmix-
ing of Landsat (30 m) and MODIS (500 m) images compare with the VHR snow
cover products?
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This paper is organized as follows: Section 2 describes the study sites and data.
Section 3 details the data preprocessing steps, the machine learning model training, the
mode of assessment, the model generalization tests, and the procedure for the snow cover
product comparison. Section 4 summarizes the key results of the classification, gener-
alization, and snow cover comparison tests. In Section 5, we discuss machine learning
model performance, provide insight into classification challenges, examine the differ-
ences with coarser resolution snow cover products, and provide a commentary on the
operational potential.

2. Study Sites and Data
2.1. Study Sites

We selected two snow monitoring sites in the Western US: the Washington North
Cascade Range and Grand Mesa in Colorado (Figure 1). These two sites have distinct
climates, topography, and land cover that produce different snow conditions. The North
Cascades site is more challenging for optical snow observation compared to the Grand
Mesa site, with increased cloud cover, terrain shadowing, and the presence of glacial ice
and firn.

108.10˚W 108.00˚W108.20˚W108.30˚W
121.45˚W 121.25˚W 121.05˚W 120.85˚W

48.30˚N

48.40˚N
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48.20˚N
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39.00˚N

39.10˚N

38.80˚N

48.70˚N

Figure 1. (a) Study site locations with VHR image footprints over shaded relief basemap: North
Cascades, WA, USA (left in blue, southern footprints show images over South Cascade Glacier) and
Grand Mesa, CO, USA (right in orange). Oblique aerial context images of (b) mountain peaks and an
alpine lake in the North Cascades site (July 2017, photo courtesy of Long Bach Nguyen) and (c) the
north arm of the Grand Mesa site (February 2017, photo courtesy of Chris Chickadel).

The North Cascade Range of the Washington state (Figure 1) site spans an elevation
range of 430–2703 m a.s.l. from the river valley bottom to the mountain peaks. The exposed
areas in this region are primarily schist, orthogneiss, and plutonic rocks [49]. Western
hemlock, red cedar, and Douglas fir are the predominant tree species at lower elevations
(below 800 m) while silver fir is found between 600–1300 m [50]. At higher elevations,
mountain hemlock is mixed with subalpine meadows between 1200–1600 m [50], with
alpine lakes between 1270–1749 m a.s.l.

This site is geologically complex with perennial snowfields and dozens of active
glaciers, including the USGS benchmark South Cascade Glacier [51]. Winters in the
Washington North Cascades are generally mild, with moisture-laden air from the Pa-
cific Ocean [52,53] helping to generate warm, dense maritime snow [54] and some of the



Remote Sens. 2022, 14, 4227 5 of 27

deepest snowpack in the Western U.S., with mean annual snowfall exceeding 15 m in some
locations [55].

Grand Mesa, located in western Colorado, is one of the largest high-elevation, flat-
topped mountains in the world (Figure 1a,c). Chosen as the primary site for NASA’s
SnowEx campaigns, the mesa spans an elevation range of 3000–3400 m a.s.l., with a relief of
1800 m above the surrounding valley floor [56]. The mesa is dotted with lakes and reservoirs
as well as isolated stands of Engelmann spruce and subalpine fir [57], which increase in
density and coverage from west to east. The snow water equivalent (SWE) and elevation
also increase from west to east [56]. The geology of the mesa includes a cap of volcanic
basalt, with exposures of the Green River shale and Wasatch sandstone formations [58,59]
on the surrounding hillslopes. During the accumulation season, prevailing maritime air
masses coming from the Pacific generate cold, continental snowpack [60], with a mean
annual snowfall of ~5–6 m [58].

2.2. Data

We obtained archived “System-ready” Level-1B (L1B) Maxar WorldView-2 and
WorldView-3 satellite images acquired over our study sites between 2015 and 2019 un-
der the NGA NextView license (Table 1). All the images were collected as in-track
stereo pairs, with both panchromatic (PAN, 450–800 nm) and 8-band multispectral (MS,
397–1040 nm) images. The off-nadir viewing angles ranged between 6.9◦ and 33.5◦ (Table 1)
with corresponding ground sample distance (GSD) values between 0.31–0.65 m for PAN
and 1.25–2.59 m for MS images. Some of the images (e.g., 24 April 2018) of illuminated
snow-covered surfaces suffered from limited detector saturation due to overexposure.
Supplementary Table S1 includes additional information on commercial VHR sensors
including the available products, spectral coverage, and GSD for data products.

Table 1. Metadata for WorldView-2 (WV-2) and WorldView-3 (WV-3) images analyzed in this study.
Ground sample distance (GSD) is a measure of the ground-projected distance between the center of
two adjacent pixels.
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WA N
Cascades

20 May 2015 WV-3
104001000C1BB800 60.0◦ 157.2◦ 58.5◦ 196.4◦ 28.3◦ 0.39 1.55

104001000CB3D400 60.0◦ 156.7◦ 82.7◦ 6.6◦ 6.9◦ 0.31 1.25

WA N
Cascades:

South Cascade
Glacier

24 April 2018 WV-3
104001003B034600 53.8◦ 162.7◦ 63.5◦ 145.3◦ 23.8◦ 0.36 1.45

104001003B7AC300 53.8◦ 162.3◦ 61.4◦ 54.2◦ 26.0◦ 0.37 1.50

27 May 2018 WV-3
104001003D88B900 63.0◦ 171.7◦ 61.7◦ 318.2◦ 25.7◦ 0.37 1.49

104001003DD34200 63.0◦ 172.2◦ 58.9◦ 246.9◦ 28.0◦ 0.39 1.54

5 May 2019 WV-3
104001004C8CF300 56.6◦ 158.2◦ 58.1◦ 132.6◦ 28.7◦ 0.39 1.57

104001004CBC0600 56.6◦ 157.8◦ 58.8◦ 72.2◦ 28.3◦ 0.39 1.55
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Table 1. Cont.
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CO: Grand
Mesa

1 February 2017 WV-3

1040010026C28A00 31.9◦ 160.5◦ 62.3◦ 137.0◦ 24.9◦ 0.37 1.47

10400100276B9500 31.9◦ 160.2◦ 57.1◦ 52.7◦ 29.9◦ 0.40 1.59

1040010028192C00 32.0◦ 160.7◦ 56.9◦ 152.4◦ 29.6◦ 0.40 1.59

10400100286A3900 31.9◦ 160.4◦ 63.3◦ 65.7◦ 24.2◦ 0.36 1.45

3 April 2018 WV-2
103001007A0DBD00 53.7◦ 290.0◦ 78.9◦ 109.4◦ 10.0◦ 0.48 1.91

103001007B395800 53.7◦ 210.2◦ 52.7◦ 28.1◦ 33.5◦ 0.65 2.59

26 March 2019 WV-3
1040010048434C00 52.3◦ 163.4◦ 62.7◦ 315.7◦ 24.9◦ 0.37 1.47

104001004918EB00 52.3◦ 163.8◦ 55.8◦ 236.1◦ 30.7◦ 0.41 1.62

The WorldView-2 and WorldView-3 instruments include time-delay integration (TDI)
linescan sensors with arrays of adjacent CCD detectors providing images across the full
~13–17 km wide swath. Each detector requires relative geometric and radiometric cali-
bration, including dark offset subtraction and relative gain modifications, to produce the
self-consistent Level-1B products. More information can be found in the technical note for
WorldView-2 and WorldView-3 [61].

We orthorectified the WorldView images using the 1/3-arcsecond (~10 m) seamless
digital elevation model (DEM) from the USGS 3D Elevation Program (3DEP, formerly
known as the National Elevation Dataset) [62]. The 3DEP DEM basemap is a mosaic of
terrain models with varying sources (i.e., airborne lidar and digitized contour maps) and
collection dates (USGS, 2017). The source of the DEM timestamp for the Grand Mesa site
(CO_MesaCo-QL2_2015) was 2016 and between 1958 and 2017 for the North Cascades site.
We adjusted the 3DEP DEM datums to the ellipsoid using the dem_geoid utility from the
NASA Ames Stereo Pipeline (ASP) [63,64].

3. Materials and Methods
3.1. Pre-Processing

Figure 2a shows the general preprocessing workflow. We used the ASP mapproject
utility with bilinear interpolation to orthorectify all PAN and MS L1B images to a common
1.2 m (for WorldView-3) or 2.0 m (for WorldView-2) grid using the rational polynomial
coefficient (RPC) sensor models and the 3DEP DEM basemap with ellipsoid heights.
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Figure 2. (a) Preprocessing workflow from Level-1B products to model input data stacks; (b) list of
input data layers used to train random forest models and commonly available data stacks for spectral
bands collected by earth-observing sensors. Table 2 contains all input data layer combinations used
to train models presented in this work.

Table 2. Input data stack layer combinations for all models described.

Data Stack Input Data Stack Layers

coastal_V coastal, NDVI

coastal_VW coastal, NDVI, NDWI

PAN_VW panchromatic, NDVI, NDWI

RGB red, green, blue

RGBN red, green, blue, near infrared 2

RGBN_V red, green, blue, near infrared 2, NDVI

MS coastal, blue, green, yellow, red, red edge, near
infrared 1, near infrared 2

MS_V coastal, blue, green, yellow, red, red edge, near
infrared 1, near infrared 2, NDVI

PAN_MS panchromatic, coastal, blue, green, yellow, red,
red edge, near infrared 1, near infrared 2

PAN_MS_V panchromatic, coastal, blue, green, yellow, red,
red edge, near infrared 1, near infrared 2, NDVI

Additionally, we performed absolute radiometric corrections to convert the 11-bit L1B
digital number (DN) values to top-of-atmosphere (TOA) radiance values for each band.
We used the absolute calibration factors and effective bandwidths provided with the L1B
metadata, along with the 2016v0.int version calibration adjustment factors (i.e., gain and
offset) following the methodology outlined in Updike and Comp for WV-2 [65] and Kuester
for WV-3 [61]. We then corrected for solar spectral irradiance to convert TOA radiance
to TOA reflectance values. Any TOA reflectance values less than 0.0 or greater than 1.0
were clamped to 0.0 and 1.0, respectively. TOA values exceeding 1.0 amounted to less
than 1.5% of any single image. As mentioned earlier, one of our primary objectives was
to evaluate the performance of simple landcover-classification approaches for accurate
snow-cover mapping using VHR stereo images. Thus, we did not attempt to convert
the TOA reflectance products to higher-level surface reflectance products, which would
require more complex models and corrections for atmospheric, topographic, and bidirec-
tional reflectance distribution function effects. See Section 5.2 for further discussion of
these issues.
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We also calculated common spectral indices and included them in our data stacks
(Figure 2) to mitigate the impacts of sensor calibration error and shading and atmospheric
variability. We calculated normalized difference vegetation index (NDVI) values using the
red (626–696 nm) and NIR 1 (765–899 nm) bands, and normalized difference water index
(NDWI) [66] using the green (507–586 nm) and NIR 2 (857–1039 nm) bands.

3.2. Classification
3.2.1. Machine Learning Algorithm Selection and Model Implementation

After preliminary exploration and consideration of classification algorithms
(e.g., support vector machines, Gaussian Processes, and artificial and convolutional neural
networks), we chose the random forest algorithm [39] implemented in the scikit-learn
Python package [67]. A random forest classifier leverages an ensemble of decision tree pre-
dictors to determine the class label for a given input. Preliminary testing ranged between
100 and 500 trees, but we observed little to no improvement in accuracy over the 100-tree
configuration. As noted in the scikit-learn documentation, to control overfitting, the ran-
dom forest implementation uses the highest average probability estimate from decision
trees rather than majority voting to make class predictions. The final model parameters
were 100 trees (n_estimators) with a square root maximum feature number (max_features)
used for splitting and tree-building.

3.2.2. Model Input Configurations

We considered several variables when preparing the models: input data layer combi-
nation, time of year, and site/physiography of training images. All combinations of input
data layers used to build the models are listed in Table 2.

Several different combinations of input data layers were created to emulate commonly
available optical and near-infrared spectral combinations for earth-observing satellite
sensors (e.g., RGB and RGBN, see Figure 2b). As these models used a subset of bands
from the WV MS products, they are referred to as “limited band models.” These limited
band models were included to assess the feasibility of using only a few spectral inputs to
produce accurate land cover maps. Models trained using all eight MS bands (for both WV-2
and WV-3) as inputs are referred to as “8-band MS” models (e.g., MS, MS_V, PAN_MS, and
PAN_MS_V). These models were constructed to leverage the full multispectral coverage
available from Maxar VHR sensors.

For interpretation, models were also qualitatively subdivided into two categories based
on the source of training data: single-scene or multiple-scene models. The single-scene mod-
els were trained on a data stack from a single date and location. These models were used
to answer questions about models’ spatiotemporal transferability (i.e., generalization)—
how the site and time of year impact trained model performance (Section 3.2.6). The
multiple-scene model (M101) was trained on two input data stacks with different dates
and locations (both North Cascades and Grand Mesa sites) with the full input of available
spectral bands (i.e., PAN_MS_V) to assess training data expansion impacts on classification
accuracy. Supplementary Table S2 provides details for the 155 model configurations we
considered in this analysis, with their corresponding F-scores.

3.2.3. Feature Importance

Machine learning models with computable feature importance metrics, such as ran-
dom forest, are useful for helping to identify the most important inputs, removing unim-
portant inputs, and reducing the feature space to balance computational efficiency with
model performance. In this work, rather than reducing feature space, we primarily used
feature importance to compare important inputs between different model configurations.

Both the Gini importance and permutation importance are implemented as feature
importance metrics in scikit-learn. The Gini importance (mean decrease in impurity [MDI])
is a measure of how often a random pixel is incorrectly classified when given a random
label according to the feature class label distribution. This makes the Gini importance
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strongly dependent on the class label distribution. Permutation importance (mean decrease
in accuracy [MDA]) is the decrease in model score when a single feature class label is
randomly shuffled and the linkage between data and label is deliberately broken. Through
this shuffling, important features are identified as those that generate more error when
intentionally mislabeled [68]. Despite the increased processing time required, we chose to
analyze permutation importance (MDA) for its improved accuracy. Feature importance
values were used to evaluate which inputs were consistently important for building models
that could accurately classify land cover in the presence or absence of other input layers.

3.2.4. Training Data

Polygons outlining clusters of pixels for each feature class were manually delineated to
use during model training for each unique image acquisition date (Table 1). We attempted to
maintain uniform spatial distribution of polygons [69] (e.g., Supplementary Figure S1) and
attempted to minimize classification bias by balancing feature classes [70] with ~65,000 pixels
(~0.1 km2 at 1.2 m GSD) per feature class. This was more challenging for snow-covered images
with little exposed ground, surface water, and/or few clouds. Polygons were combined to
create 3–6 different priority class labels: illuminated snow, shaded snow, vegetation, exposed
ground, surface water, and cloud cover. In some cases, the number of feature classes varied
with date; for example, the Grand Mesa model (26 March 2019; M17 in Supplementary
Table S3) was trained with fewer feature classes than the North Cascades model (20 May 2015;
M7 in Supplementary Table S3), as land and frozen water surfaces were heavily snow-covered.
When exposed ground was visible at the Grand Mesa site, training polygons were focused on
shale and sandstone units, as the basalt cap was covered with snow or vegetation.

3.2.5. Accuracy Assessment

Model development involved a train/val/test split of 70% training, 15% validation,
and 15% testing [71] for each unique image acquisition date, implemented in scikit-learn.
We used 10-fold cross-validation to assess overall model performance (i.e., accuracy) and
stability via Precision, Recall, and F-scores (Equations (1)–(3)). Weighted macro F-scores
were calculated to account for any training label imbalances by “weighting” label metrics
based on the number of true instances (i.e., support). We did not use Cohen’s Kappa, a
traditional accuracy metric reported for land cover classifications, as other studies have
indicated that it unnecessarily accounts for correct predictions due to chance [72–75].

Precision =
True Positives

True Positives + False Positives
(1)

Recall =
True Positives

True Positives + False Negatives
(2)

F = 2 · Precision · Recall
Precision + Recall

(3)

3.2.6. Model Transfer Tests and Generalization

We attempted to assess model generalization using our pre-trained models for new
images, with the goal of reducing duplicate training effort. After training, testing, and
validating models for a single image (i.e., single-scene models), we conducted model
transfer tests using a “base model” with acquisition date that offered the best feature
class distribution for each site. We used the M7 model (20 May 2015 image data stack)
for the North Cascades site and the M17 model (26 March 2019 image data stack) for
the Grand Mesa site base model. These tests were used to assess a single-scene model’s
ability to generalize to images from the same physiographic region and images outside the
physiographic region in which the model was trained. We also conducted similar model
transfer tests using the multiple-scene model (M101) to assess generalization to new images,
though all images were from the same physiographic region based on the inputs for the
multiple-scene model.
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We expected physiography to affect both initial snow grain conditions and subse-
quent redistribution, metamorphism, and snowmelt processes, all of which impact the
reflectance of snow. Each image in Table 1 was assigned to either the North Cascades
region or the Grand Mesa region. Acquisition dates were thus grouped together as follows:
24 April–27 May for the North Cascades site and 1 February–3 April for the Grand Mesa
site. Images acquired as in-track stereopairs inherently shared the same day of year and
physiography, near-identical solar illumination, but different viewing geometry than the
M7 and M17 models. The M7 and M17 models were trained on stereo image data stacks for
the smaller off-nadir view angle. We define the “first” stereo image in each stereopair as
the image with the smaller off-nadir view angle and define the “second” as the image with
the larger off-nadir view angle.

These qualitative categorizations were used to inform interpretation of overall model
generalization performance. Supplementary Table S3 shows the full set of model transfer
experiments and corresponding F-scores.

3.2.7. Snow Cover Products and Comparison with Other Snow Cover Datasets

To assess the quality of coarser-resolution fractional snow cover products, we down-
sampled our VHR land cover classifications to prepare fractional snow-covered area prod-
ucts (WV fSCA). First, we extracted binary snow cover from the random forest classification
maps by assigning a value of 1 to pixels classified as snow or shaded snow and a value
of 0 to all other non-snow classes (Figure 3a–c). We then reprojected and downsampled
our VHR snow cover maps using an averaging algorithm to match the publicly accessible,
“viewable” fractional snow-covered area products from MODIS (MODSCAG fSCA, ~500 m
GSD) [28] and canopy-adjusted products from Landsat (Collection 1 fSCA, ~30 m) [76,77].

D� E� F� G�

Figure 3. WorldView fractional snow-covered area (WV fSCA) workflow: (a) input data stack of WV
images, (b) model-derived land cover classification, (c) binary snow map, and (d) WV fSCA map,
downsampled to match the coarser resolution fSCA products for analysis.

We created binary cloud masks using the VHR land cover classification and resampled
these masks to produce WV cloud cover percentage products to match the coarser fSCA
products. We excluded pixels with resampled cloud cover percentage values of 50% or
higher. We also used the revised cloud mask products (REVCM) from Landsat and cloud
flag values from MODSCAG and omitted these cloud-flagged pixels from analysis.

Finally, we subtracted the resampled, cloud-masked WV fSCA product from corre-
sponding coarser resolution products to produce difference maps, and then calculated
per-pixel statistics for each difference map and aggregated statistics for all difference maps
at both sites (Supplementary Table S4). All products were reprojected to a local Universal
Transverse Mercator (UTM) zone for visualization (Figure 3d).

We used the MODSCAG fSCA products from the same day as the corresponding WorldView
image acquisition. The local time of observation for MODIS was ~10:30 AM +/− 5 min [78].
We used the viewable MODSCAG fSCA products for comparisons with our resampled WV
fSCA products, as they identify snow cover that is unobstructed from the sensor’s view. The
more recent “on-the-ground” STC-MODSCAG fSCA products [23] include additional corrections
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based on forest canopy to estimate occluded snow cover, but these products were not publicly
available at the time of this analysis.

We used the Landsat Collection 1 fSCA products with the shortest possible temporal
offset from the corresponding WorldView image acquisition (~2–5 days, Supplementary
Table S4). The limited temporal offsets should not significantly impact our fSCA com-
parisons. There were no new precipitation events and no large wind events that could
have resulted in substantial redistribution between Landsat and WorldView collections.
The local time of observation for Landsat 7/8 was ~10:00 AM local +/− 15 min [79]. The
Landsat Collection 1 fSCA products have all undergone canopy correction post-processing
and are thus “on-the-ground” datasets. Viewable fSCA have since been made available for
Collection 2, but these products were not released for our sites and acquisition dates at the
time of this analysis.

We expected the canopy-corrected Landsat fSCA products to display greater dif-
ferences over dense vegetation than the viewable MODSCAG fSCA or WV fSCA, al-
though we recognized that the magnitude would vary based on the actual view an-
gles for each of these sensors. To avoid potential issues related to view angle, we fo-
cused our comparisons on “open” areas, defined by a fractional vegetation cover product
(WV fVeg) for subsequent aggregation. As with the WV fSCA products, we used a binary
vegetation/non-vegetation classification approach followed by average downsampling to
match coarser resolution fSCA product grids. Open areas were designated as pixels where
WV fVeg < 25% and densely vegetated areas as pixels where WV fVeg ≥ 25%, broadly
following the canopy-cover-density classes used by McGrath et al. [80].

We also compared per-pixel fSCA values for completely snow-free (0% fSCA) or
completely snow-covered (100% fSCA) pixels to assess snow detection performance. This
approach was adopted to minimize the impact of mixed pixels for fSCA comparison at
the coarse sensor resolution, with the presence of only the snow endmember or complete
absence of the snow endmember. Accurately detecting snow absence (i.e., completely
snow-free pixels) is integral to calculating snow disappearance dates and constraining the
surface albedo evolution for energy balance and hydrologic models [81]. Compared to
intermediate fSCA (0% < x < 100% fSCA) values, we expected good agreement between the
three fSCA products for completely snow-free and completely snow-covered pixels.

4. Results
4.1. Single-Scene Model Performance

The 10-fold cross-validated F-scores using the validation sets from the training data
discussed in Section 3.2.4 show that the single-scene models generated accurate classifica-
tions with all model configurations, attaining F-scores of 84% or higher (Supplementary
Table S2). The models trained with 8-band MS inputs (e.g., M7–M10 in Supplementary
Table S2) displayed the highest accuracy (F-scores > 99%), with minimal class confusion and
both precision and recall scores nearing 100%. Figure 4 shows the classification results for
two of the base 8-band MS single-scene models (M7 and M17 in Supplementary Table S2)
for each study site.

In general, the snow, shaded snow, and vegetation classes were correctly classified
(e.g., Figure 4c). Exposed surfaces, cloud, and water classes were the most common feature
classes for which the pixels were incorrectly classified (i.e., errors of commission). These
misclassified pixels were located most often at the boundaries of feature classes (e.g., pixels
between snow and exposed ground misclassified as cloud cover) and in dark, shaded areas
with low reflectance values (which were misclassified as surface water).

The limited band models (e.g., M1–M6 in Supplementary Table S2) consistently pro-
duced lower classification accuracies than the models that included all eight MS bands
(e.g., M7–M10 in Supplementary Table S2). The models trained with a single spectral band
and normalized indices (i.e., PAN_VW, coastal_V, and coastal_VW, such as in M1–M3 in
Supplementary Table S2) performed comparably with the models trained on data stacks
without normalized indices (e.g., M4, M5 in Supplementary Table S2).
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Figure 4. (a) Color-infrared WorldView-3 (WV-3) images acquired on 20 May 2015 over the North
Cascades site and on (b) 26 March 2019 over the Grand Mesa site. Corresponding land cover
classification maps from random forest models (c) M7 and (d) M17 (see Supplementary Table S2).
Zoomed insets show detail for corresponding points in (a–d).

4.2. Single-Scene Feature Importance

Feature importance tests for the varying single-scene model data stack inputs indicated
that the coastal blue and NDVI inputs were important for both study sites (Figure 5). When
restricting the model training stacks to these two inputs, the classifications were less
accurate than the 8-band MS models, but still performed quite well (F-scores: 97.7% vs.
99.8%). The models with five or fewer input layers relied more heavily on individual inputs
than the models with more than five inputs.

We observed different feature importance proportions for the two sites. The RGB
models for the North Cascades site showed that blue and red inputs were more important
than the green input, while the RGB models for the Grand Mesa site showed the opposite.
What is additionally noteworthy is the apparent importance of the coastal blue input in the
Grand Mesa models for several different data layer configurations.
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Figure 5. Permutation importance (mean decrease in accuracy [MDA]) for single-scene models with
variable input data layer configurations (Table 2) using images acquired on (a) 20 May 2015 at the
North Cascades site and on (b) 26 March 2019 at the Grand Mesa site. NDVI is consistently important
(as is the NIR2 band, especially in the absence of NDVI), and the coastal blue band is important
compared to other multispectral (MS) bands.

4.3. Model Transfer and Generalization

Single-scene models for the North Cascades and Grand Mesa sites (M7 and M17,
respectively, Supplementary Table S2) were capable of limited generalization. The best
model performance was observed when classifying a different image acquired for the same
site during a similar time of year (i.e., the second image from an in-track stereopair for a
model trained on the first image). As anticipated, the classification accuracy decreased
when models were transferred and applied to images from different locations (Figure 6).

The models applied to the second image of an in-track stereopair (e.g., E1, E8, E15,
and E22 in Supplementary Table S3) were the most accurate (F-scores: 96.5% in the North
Cascades and 72.8% in Grand Mesa for M7 and M17 models, respectively) while the
models applied to the in-region images (e.g., E2, E3 in Supplementary Table S3) had the
second highest accuracy (F-scores: 94.3% in the North Cascades and 63.9% in Grand Mesa).
Figure 6 shows the F-scores by feature class, ranging between 50.7–98.7% for the second
image of an in-track stereopair, and much more widely (F-scores: 0–98.1%) for the other
tests. The Grand Mesa model showed a good out-of-region performance for illuminated
snow (average F-score: 89.7%), while the North Cascades model did not perform as well
(average F-score: 46.1%).

The multiple-scene model (M101 in Supplementary Table S2), built from WV-3 im-
ages over both the North Cascades and Grand Mesa sites, performed better than any of
the 8-band MS single-scene models for out-of-region transfer (Supplementary Figure S2,
Supplementary Table S3). However, single-scene models produced more accurate classifi-
cations than multiple-scene models when employed in-region (Supplementary Figure S2),
that is, for the second image of a stereopair or an image acquired on a different date for
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the same site. Based on the higher in-region transfer accuracy and single-scene stack accu-
racy presented in Section 4.1, we used the 8-band MS single-scene models (e.g., M7, M17,
M27, M128, and M138 in Supplementary Table S2) for subsequent snow classification and
fSCA comparisons.

D�

E�

��

Figure 6. Aggregated results of the model transfer experiments presented in Supplementary Table S3
(the second image of an in-track stereopair, in-region images from the same site as the model, and
out-of-region images from a different site than the model) for the (a) 20 May 2015 North Cascades
base model (M7) and (b) 26 March 2019 Colorado Grand Mesa base model (M17). Weighted macro
average F-scores are shown for individual feature classes. The expected similarity of images to model
training data decreases nonlinearly from left to right.

4.4. Snow Classification Comparisons
4.4.1. Qualitative Assessment of fSCA Difference

When compared to the downsampled WV fSCA products (Figure 7), both the Landsat
and MODSCAG products showed higher fSCA values (e.g., Figure 7h,i, middle and bottom
rows in blue) near areas classified as vegetation. The MODSCAG fSCA products showed
differences in fSCA estimates over large areas classified as snow (Figure 7i). The largest
fSCA differences were observed for the Grand Mesa site, where MODSCAG had higher
fSCA values both on and off the mesa, and lower fSCA values on adjacent slopes.

Due to the nature of the available VHR in-track stereo collections, most of the images
in this study had mean off-nadir viewing angles larger than 20◦ (Table 1), which can result
in occlusions near trees and high-relief terrain. Comparisons of the per-pixel fSCA values
with only the smallest mean off-nadir viewing angle image (CATID: 104001000CB3D400,
off-nadir viewing angle: 6.9◦) showed smaller fSCA differences (Supplementary Figure S3).
Supplementary Figure S3 shows individual difference maps and histograms for all the
comparisons in Supplementary Table S4.
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Figure 7. Selected snow classification comparison results for the North Cascades site (top row—
20 May 2015; middle row—24 April 2018) and Grand Mesa site (bottom row—26 March 2019).
(a) WorldView color-infrared context image, (b) land cover classification map and (c) binary snow
cover map, (d) Landsat fractional snow-covered area (fSCA), (e) WV fSCA for Landsat grid,
(f) MODSCAG fSCA, and (g) WV fSCA for MODIS grid. Difference maps of fSCA values for
(h) WV fSCA were subtracted from Landsat fSCA in Landsat grid, and (i) WV fSCA was subtracted
from MODSCAG fSCA in MODIS grid with (j) corresponding histograms. Missing data shown in
black for all panels.

4.4.2. Quantitative Assessment of Aggregated fSCA Difference

The aggregation of all fSCA difference products for both sites and all time periods
(Supplementary Figure S3) showed good agreement between the coarse resolution fSCA
products and the downsampled WV fSCA products (Figure 8). In the aggregate, the median
difference was 0% for both Landsat fSCA and MODSCAG fSCA, but both products had
slightly positive mean fSCA differences (Landsat mean of 14% and MODSCAG mean of 7%;
Supplementary Table S5, Figure 8c,d).

Further analysis over open the areas defined using the WV fractional vegetation cover
(WV fVeg < 25%, see Section 3.2.7) showed no median difference (0%) between Landsat
and WV fSCA and a small negative median difference (−2%) between MODSCAG and
WV fSCA (Figure 8e,f, Supplementary Table S5). Over dense vegetation (WV fVeg ≥ 25%),
both Landsat and MODSCAG fSCA (Figure 8e,f, Supplementary Table S5) showed higher
median difference values (Landsat median of +25% and MODSCAG median of +5%). While
the measures of spread were relatively stable for MODSCAG fSCA (~20–25%), the standard
deviation and interquartile range (IQR) of the fSCA difference values was much lower for
the Landsat fSCA estimates over open areas compared to densely vegetated areas (SD—19%
vs. 35% and IQR—4% vs. 62%, respectively).

The analysis of the completely snow-covered pixels (100% fSCA) showed that both
Landsat and MODSCAG fSCA products identified more snow-covered pixels than
WV fSCA (Supplementary Table S6). Out of the 26,315 valid fSCA values for the common
MODSCAG grid, MODSCAG identified 3418 pixels with 100% fSCA, while WV identified
257 pixels with 100% fSCA. In other words, MODSCAG overestimated the number of
snow-covered pixels by a factor of 13.3. Out of the 4,515,817 valid fSCA values for the
common Landsat grid, LS identified 2,090,153 pixels with 100% fSCA while WV identified
927,935 pixels—LS overestimated the number of completely snow-covered pixels by a
factor of 2.3.
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Analysis of the completely snow-free pixels (0% fSCA) showed that MODSCAG
identified 2.7 times as many pixels as WV (MODSCAG—5717; WV—2139). Conversely,
the Landsat fSCA products identified nearly the same number of pixels as WV (~0.8×;
LS—1,165,256; WV—1,416,735), slightly underestimating the number of snow-free pixels.

9

a.

c.

e.

b.

d.

f.

Figure 8. Aggregated statistics for all fractional snow-covered area (fSCA) comparisons (Supplementary
Table S4 and Supplementary Figure S3). Top row shows histograms of fSCA for (a) Landsat grid and
(b) MODIS grid. Middle row shows histograms of per-pixel fSCA difference for (c) WV fSCA subtracted
from Landsat fSCA in Landsat grid, and (d) WV fSCA subtracted from MODSCAG fSCA in MODIS
grid. Bottom row shows corresponding histograms of fSCA difference values when separated by
vegetation density (WV fVeg) for (e) Landsat and (f) MODSCAG. Bin size is 5% fSCA for all panels and
all histograms were normalized by bin height so that the integral sums to 1.

5. Discussion

VHR land cover classification maps with short repeat time intervals can enable quan-
titative analyses of rapidly changing landscapes. These detailed maps can be used to
delineate feature classes of interest (e.g., snow, vegetation, and exposed surfaces), track
their evolution, and evaluate/improve the accuracy of coarser land cover and snow cover
products. Beyond these tasks, accurate single-scene land cover classifications offer valuable,
dense labels for training deep learning models [82].
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5.1. Single-Scene Models

Our results show that the single-scene random forest model configurations produced
accurate snow and land cover classification maps using WV images for both study sites.
Despite the higher resolution and fewer mixed pixels compared to the coarser resolution
products, the qualitative assessment of the WV classifications indicated that the misclassifi-
cation of mixed pixels (e.g., pixels along two feature class boundaries) remains a challenge.
The feature importance tests highlighted the importance of the NDVI input across the
single-scene models trained at each of the sites. At both sites, the limited band models
produced classifications with accuracies comparable to those produced by the 8-band
models. This suggests that despite the limitations in multispectral coverage, sensors with
high radiometric quality and fine spatial resolution may still produce broad land cover
classifications at accuracies that compete with more extensive spectral coverage.

Despite attempts to define small, well-distributed training data polygons, the semivar-
iogram tests for each feature class indicated that the reflectance values and single-scene
accuracy assessments were affected by spatial autocorrelation in the training data. The
common practice of using a random cross-validation approach for our single-scene accu-
racy assessments resulted in inflated accuracy scores of >99%, as has been documented
elsewhere [83]. To gauge the impact of this spatial autocorrelation, we created a sepa-
rate set of test polygons spaced several hundred to several thousand meters from the
initial polygons. Using the original models to classify these test polygons (Supplementary
Figure S4), new accuracy assessments indicated F-scores of ~94% for the North Cascades
model (M7) and ~82% for the Grand Mesa model (M17), which are more representative of
the models’ performance.

5.2. Model Transfer and Generalization

In the model transfer tests, single-scene models performed well on similar images
(i.e., similar physiography and illumination conditions) but did not generalize well to
out-of-region images. The differing performance between the models (Section 4.3) can be
attributed to the differences in the acquisition dates, the number of feature classes, and
terrain-induced spectral variability within the feature classes. The topography of Grand
Mesa and its influence on snow distribution may have also contributed to the differences
in spectral variability of the training data and resulting model transfer. The consistently
strong performance of the Grand Mesa model for classifying illuminated snow (Figure 6,
F-scores > 87%) could have resulted from capturing a wider range of spectral variability for
the illuminated snow class over open, windblown surfaces on the mesa. Its consistently
poor performance in classifying both in-region and out-of-region shaded snow (Figure 6;
F-scores < 20%) could have arisen from a smaller range in spectral variability due to the
relative scarcity of shaded snow in the Grand Mesa images.

Overall, the transfer tests using the multiple-scene model showed better performance
across for both sites than the single-scene models transferred to out-of-region images
(Supplementary Figure S2). However, the single-scene models still outperformed the
multiple-scene models when deployed in the same physiographic region as the model
training site (Supplementary Figure S2). Both single-scene models (M7 and M17) had strong
in-region performance, outperforming the multiple-scene model (M101), and possessed
differing feature importance metrics, suggesting that regionally specific models may be
more attainable than a global model [84] when seeking strong generalization performance
and accurate classification.

Our feature importance analysis (Section 3.2.3) also showed differences between sites,
especially for the coastal blue band, the NIR2 band, and the NDVI inputs. The apparent
importance of the coastal blue band across the model configurations could be partially
related to the susceptibility of this shorter wavelength band (397–454 nm) to downwelling
scattering and increased reflected path radiance, especially from neighboring snow pixels,
which are not accounted for in the TOA reflectance values.
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Although it should have minor impacts on the variation of reflectance within the
feature classes, atmospheric corrections to obtain surface reflectance (rather than top-of-
atmosphere reflectance) may help reduce some variability in the absolute feature class
reflectance values between images. Additionally, corrections for the topographic, view,
and illumination effects are important in areas of rugged terrain [85,86] and may help to
reduce reflectance variability within feature classes for improved model generalization and
land cover classification. Using a hierarchical series of binary classifiers [87] rather than a
single classifier for multiple feature classes could also improve model generalization by
simplifying the classification tasks.

5.3. Snow Classification Comparisons

The VHR snow cover (SCA and fSCA) observations currently offer the finest spatial
resolution products available for our study sites and may serve to complement coarser
fSCA products with a better temporal resolution, spatial coverage, and historical archives.
Our aggregate analyses showed good agreement between both the Landsat and MOD-
SCAG fSCAs when compared to the WV fSCA over open areas. The Landsat fSCA had
a particularly small IQR while both coarser resolution products had near-zero median
differences. Larger off-nadir view angles arising from the in-track stereo collection strategy
impacted WV viewable snow cover near trees and in areas of high relief, just as with
oblique perspectives near the edges of the MODIS swath and corners/edges of the Landsat
images [23,88]. This means that despite good overall agreement in the viewable snow cover,
both the MODSCAG fSCA and WV fSCA underestimated the true amount of snow cover
in the areas of dense vegetation due to occlusions. These findings highlight the significance
of sensor view angle impacts for forest-snow analysis [89] as well as the importance of
adjusting for canopy cover [23] to accurately estimate snow cover using MODIS. Future
efforts to minimize off-nadir acquisition geometry and implement canopy corrections for
VHR images could improve overall snow-cover-mapping accuracy.

The assessment of completely snow-free (0%) and completely snow-covered (100%)
fSCA values showed that both coarser resolution products overestimated the number of
completely snow-covered pixels (LS: ~2×; MODSCAG: ~13×), suggesting that despite
the near-zero median per-pixel differences, the coarser products evaluated here tended
to overestimate the total fractional snow cover for the full scene. While the MODSCAG
products also overestimated the completely snow-free pixels to a lesser extent (~2.7×),
the Landsat fSCA products more accurately identified these pixels and only slightly un-
derestimated the number of snow-free pixels (~0.8× as many pixels as WV fSCA). Our
initial analysis suggests that the Landsat fSCA may better characterize both completely
snow-covered pixels and completely snow-free pixels than the MODSCAG fSCA, though
a more detailed consideration of viewable vs. canopy-corrected products for additional
sites/times is warranted. Fusion products leveraging the spatial resolution of satellites
such as Landsat and Sentinel and the temporal coverage of sensors such as MODIS and
VIIRS [78,90,91] may offer further improvements. These approaches could reduce snow-
cloud discrimination errors, provide finer resolution observations on shorter timescales,
and generate a longer and denser time series for evaluation. While not evaluated here,
the VIIRS binary snow cover products posted at 375 m [78] and the spectral unmixing
fractional snow cover products posted at 1 km [91] may provide continuity for daily global
snow observations as MODIS is decommissioned.

5.4. The Need for Fine-Scale Snow Cover

Fine-scale remote sensing observations are needed to accurately monitor changes in
snow cover at critical locations and times. Along with the spatial boundaries of different
land cover classes (e.g., near forest edges and within forest gaps), observing seasonal
boundaries is also important. In late summer, sparse snow cover in the form of snow patches
and drifts [33,92] support plant communities, maintain alpine meadows [93], and can be
used as indicators of climate change [94]. In addition to shaping plant species diversity
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and distribution, snow patches can determine the timing and quantity of hydrologic and
nutrient inputs [95–97].

These patches can have outsized impacts, but can be challenging to observe with
spaceborne sensors, which can result in inaccurate hydrologic modeling outputs. Budd
Creek, an ephemeral stream in California’s Sierra Nevada range, surrounded by granite
peaks, exemplifies this issue (J. Lundquist, personal communication). Draining a northeast-
ern cirque, late season streamflow in Budd Creek is sustained by snow-filled fissures and
adjoining snow drifts. Small patches of snow are not easily detectable by 500 m MODSCAG
fSCA products [30,91], as they likely occupy small percentages of any given pixel. Though
The Landsat fSCA products offer an improvement by showing later snow disappearance
dates, these products are also unable to detect snow later in the season as Budd Creek
continues flowing.

The fine-scale snow mapping approaches presented in this work could provide the
observations necessary for detecting these small, ecosystem-sustaining snow patches. As
the climate continues to warm, these outliers of late snow disappearance may grow in
ecohydrological importance, controlling biotic range shifts and buffering temperature
fluctuations to become the climate refugia of the future [98–100].

5.5. Limitations and Considerations

One of the greatest strengths of WorldView-2 and WorldView-3 images—fine
resolution—also presents one of the largest challenges for model transfer. The spatial
variability of reflectance values for most surfaces is inherently linked to the spatial (and
radiometric) resolution of the image. Though small pixels result in less spectral mixing
from fewer feature classes in each pixel, there is also a wider range of reflectance values
within each feature class. In other words, where unmixing methods are needed for other
images, the WorldView-2 and WorldView-3 images can capture detailed surface properties—
whether the snow is clean or dirty, whether the exposed surfaces are rock or soil, whether
the trees are coniferous or deciduous, etc.

When aggregating these features with broad labels (i.e., snow, vegetation, and ex-
posed), each feature class then contains more diverse values than what is observed and
observable with coarse-resolution sensors. This makes a wide-ranging coverage of feature
class representation an important consideration when generating training data for machine
learning models. A two-stage approach would likely improve model transfer, employing an
initial evaluation stage to focus classification efforts in generating large datasets that more
adequately represent intra-class heterogeneity. Generating synthetic datasets based on
these datasets by systematically perturbing values for each band (i.e., data augmentation)
may also improve generalization.

While the relatively high accuracy of these simple random forest model configurations
for a handful of land cover classes is encouraging, validation sets need to be made more
rigorous for the widely varying reflectance within feature classes. One approach is to
assign labels pixel by pixel rather than by polygons. While more efficient, polygon-based
delineation potentially captures more uniform spectral reflectance within a polygon than
a comparable number of randomly selected, individually labeled pixels. A preferable
compromise may be to use a patch of pixels with a standard size to randomly select batches
of single feature classes to label. Furthermore, stratifying the training and test sets via
block cross-validation is recommended to eschew biased non-spatial cross-validation in the
accuracy assessments [101].

The wide range and variability of observable reflectance values in our VHR images
suggests that feature class expansion (more and narrower classes) could improve model
accuracy, though potentially at the expense of model generalization. In other words, the
number of feature classes needs to increase to manage larger ranges in the individual pixel
reflectance values arising from a finer pixel resolution. In the case of accurately mapping
small snow patches and snow boundaries, enumerating more targeted feature classes is
preferable as there will be a larger proportion of boundary pixels with more distinct spectral
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signatures than those found in spatially contiguous areas of open snow. Extra care and
attention in the training data curation is needed for areas with a rapidly changing snow
presence (e.g., wind-scoured landscapes, ablation near the snowline during spring, etc.).

Traditional approaches rely on expert knowledge or unsupervised methods, which
present challenges to including more training data. While the size of each VHR image
(108–109 pixels per band for 1.2 m WorldView-3 MS products) precludes manually labeling
each pixel, unsupervised methods such as spectral clustering can result in dozens of
clusters within a single feature class that still require manual aggregation and labeling [48].
Though there are existing datasets that could be used to derive land cover feature class
labels, such as the 30 m National Land Cover Database [102], these products are too
coarse, outdated, or insufficiently labeled (i.e., they do not capture or represent seasonal
snow or clouds as thematic classes) for our purposes. Potential solutions to the “training
data bottleneck” include crowd-sourcing methods [103], attempts to adapt pre-existing
labeled datasets [104], and weak labeling approaches [105]. The deep learning approaches
developed by Cannistra et al. [106] and John et al. [107] produce binary snow cover maps
from 3 m PlanetScope imagery using convolutional neural networks trained on thresholded
aerial lidar snow-depth products. As mentioned earlier, the training requirements for
neural networks greatly exceed those for random forest models—Cannistra et al. [106]
trained their models on 370 million pixels compared to our ~65,000 samples per land
cover class (~400,000 training pixels per model). Regardless of the machine learning
approach applied, sufficiently representative and accurate training data labels for land cover
beyond the built environment remains the primary challenge for accurate VHR optical land
cover classifications.

A lesser confounder for model classification and transfer has been the magnitude and
distribution of saturated pixels in the input data stack layers. In every combination of input
layers, saturated regions in some bands have resulted in misclassification of the regions
with extremely bright snow as clouds and vice versa. Dai and Howat [108] documented
these saturation “striping” issues in the Level-1B WorldView images that can propagate
to land-cover classification outputs. Though a few of our images were affected by these
issues (Supplementary Figure S5), we observed limited impacts, such as classifying areas
of relatively uniform snow features in one strip as ‘shaded snow’ and in another strip as
‘illuminated snow’.

To develop robust pixel-based models capable of accurately classifying multiple land-
cover classes in VHR images from different seasons, locations, and illumination conditions,
we recommend exploring:

1. Improved preprocessing routines to obtain reliable absolute-surface-reflectance values
for inter-image comparison;

2. A larger library of training data (i.e., more labeled images to cover the range of
reflectance values within each class);

3. Simplified classification via hierarchical binary models;
4. Regionally specific models over global models.

These improved models can then be deployed for operational seasonal-snow monitor-
ing, which in turn will offer a growing library of training data from which to adaptively
improve the models. Adopting approaches from the field of computer vision for remote-
sensing science transcend employing the latest machine learning techniques and algorithms.
As we strive to imbue domain relevance and physical meaning into model assessment
metrics, we must also generate benchmark datasets, training sets, and create baseline
models upon which we can iterate and improve as a community.

5.6. Operational Potential of WorldView-2 and WorldView-3 Snow Cover Products

Operational snow cover products need to be timely, accurate, reliable, and acces-
sible [17,109]. We demonstrated that the accurate pixel-based classification of snow in
WorldView-2 and WorldView-3 images is possible without SWIR bands, but our current
models are limited in their generalizability. Figure 9 shows the cloud-free archive of
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WV-2 and WV-3 images collected between 2009 and 2020 for the Western U.S., which can
potentially provide such a sample of seasonal snow cover across the region.
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Figure 9. Heatmap showing multispectral WorldView-2 and WorldView-3 image coverage in the
Maxar archive (<25% cloud cover) over the mountainous Western United States between 1 October
and 1 June for the period spanning 2009 to 2020. A mask was applied to highlight coverage over
mountains with seasonal snow, using data products from Wrzesien et al. [110].

It is important to remember that most VHR satellites are tasked—collecting images
for predetermined points and areas—and do not constantly acquire regular images over
systematic paths and rows such as Landsat or Sentinel-2. With strategic tasking for areas of
interest at critical times of year, VHR images have the potential to provide fine measures
of snow cover. Furthermore, the in-track stereo collections analyzed here offer two view-
ing perspectives to observe clouds and other feature classes, which can be combined to
provide a measure of uncertainty characterization for the resulting classification products.
Finally, beyond snow cover, the in-track stereo collections can also offer precise snow depth
measurements [47,80], enabling many additional applications.

6. Conclusions

Very-high-resolution images from WorldView-2 and WorldView-3 provide new op-
portunities and approaches for the detailed satellite mapping of seasonal snow cover in
mountainous terrain, with many spectral bands and native image GSDs of 0.31, 1.2 m,
and 3.7 m for PAN, MS, and SWIR bands, respectively. However, these detailed images
involve large data volumes that prohibit manual analysis and flexible machine-learning
approaches are required for large VHR satellite image archives.

We developed a suite of pixel-based classification models to better understand the
potential for deriving land cover maps and snow cover products from WV images. We show
that there is considerable potential for using random forest models to create classification
maps (for a subset of priority land cover classes) that can accurately map snow cover
to complement and evaluate coarser resolution products. Even when limited to a few
spectral band inputs, these RF models offer a high accuracy for snow, suggesting that
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images collected at fine spatial and radiometric resolutions could overcome limited spectral
coverage, provided that the spectral bands are strategically located.

We observed the best model generalization performance for images from the same site
and a similar time of year, with the highest accuracy in the illuminated snow class and the
vegetation class for all the transfer tests, especially at the Grand Mesa site. Variability in
feature class reflectance likely contributed to the poor performance with the attempted out-
of-region model transfer, and this intra-class variability remains a challenge to developing
a single, highly accurate, and robust multi-class land cover classification model for VHR
images. Such a model will likely require larger libraries of training data, simplified feature
classes, and potentially regional and seasonal specificity.

Comparisons of the completely snow-free and completely snow-covered WV fSCA
pixels showed that both the Landsat and MODSCAG fSCA products identified many more
completely snow-covered pixels when compared to the downsampled WV fSCA products
(2× and 13×) but that the Landsat fSCA products more closely estimated the number of
completely snow-free pixels than MODSCAG fSCA (~0.8× vs. 2.7×). Aggregate compar-
isons of all WV fractional snow cover products with coarser resolution fSCA products
showed good agreement over open areas. The differences in the fSCA over dense vegeta-
tion between the three products can be partially attributed to differences in the viewing
geometry and canopy correction approaches. Future snow cover analyses using VHR
images should prioritize smaller off-nadir view angles and canopy correction to minimize
such issues. Regardless, the growing archives of VHR satellite images offer potential for
global seasonal snow observation, measurement, and monitoring efforts as both standalone
products and when combined with complementary coarser resolution observations.
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