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Abstract: We developed a robust object-level change detection method that could capture distinct
scene changes in an image pair with viewpoint differences. To achieve this, we designed a network
that could detect object-level changes in an image pair. In contrast to previous studies, we considered
the change detection task as a graph matching problem for two object graphs that were extracted
from each image. By virtue of this, the proposed network more robustly detected object-level changes
with viewpoint differences than existing pixel-level approaches. In addition, the network did not
require pixel-level change annotations, which have been required in previous studies. Specifically,
the proposed network extracted the objects in each image using an object detection module and
then constructed correspondences between the objects using an object matching module. Finally, the
network detected objects that appeared or disappeared in a scene using the correspondences that
were obtained between the objects. To verify the effectiveness of the proposed network, we created
a synthetic dataset of images that contained object-level changes. In experiments on the created
dataset, the proposed method improved the F1 score of conventional methods by more than 40%.
Our synthetic dataset will be available publicly online.

Keywords: change detection; object detection; graph matching

1. Introduction

The rapid detection of environmental changes that are caused by artificial factors or
natural phenomena is crucial in remote sensing and robotics. For example, an instantaneous
understanding of geometric changes within the environment and keeping environmental
maps up to date are crucial for ensuring navigational accuracy in self-driving vehicles and
indoor service robots. Change detection [1,2] is a technology that automatically detects
environmental changes in data from sensors and has been studied using satellite [3–8],
aerial [9–11] and street view images [12–21]. Among these, change detection using street
view images can capture detailed changes that cannot be captured in satellite or aerial
images; therefore, it is expected to be employed in various applications, such as the
updating of maps for self-driving vehicles.

The most typical change detection method for street view images estimates changes
pixel by pixel. Specifically, it computes the probability of the presence or absence of each
pixel in each image. For example, the methods that were proposed by Taneja et al. [12] and
Palazzolo et al. [14] estimated the changes in urban areas at the pixel level based on image
differences between aligned images using dense 3D maps. Recently, methods that are
based on convolutional neural networks (CNNs) have also been developed [13,17,18,20,21].
They are inspired by the use of CNNs for semantic segmentation, which is achieved by
training models using large sets of labeled data. For example, Alcantarilla et al. [13] and
Heo et al. [20] proposed a method for change detection using a network in which all of the
layers were convolutional layers.
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Although many change detection methods have been studied at the pixel level, the abil-
ity to handle changes at the object level exceeds the range of their application. For example,
some 3D maps that are used for navigation in self-driving vehicles and robots contain
information about geographic objects at the object level. Updating such maps by removing
existing objects or adding new objects requires the detection of changes in the units of the
objects. The detection of changes at the object level is also useful for counting the number
of changed objects. Unfortunately, even though object-level change detection is a very
promising technique, it has rarely been explored in studies on street view images.

Although there has been limited research on object-level change detection using street
view data, several studies have been conducted using satellite images [7,22–24]. In object-
level change detection, the key is how to extract object regions and over recent years,
methods that use deep learning have been proposed for this task [22–24]. For example,
Zhang et al. [24] proposed a method to detect changes in bounding boxes using an object
detector that was implemented with a convolutional neural network. With the development
of these techniques, it has become possible to accurately detect object regions, as long as
sufficient annotated data exist. However, applying the model for satellite images directly
to street view data is difficult since viewpoint differences are likely to occur between
images. Due to differences in driving paths and shutter timing, two images that are
captured at different times by a camera that is mounted on a vehicle may contain viewpoint
differences. Furthermore, in contrast to orthorectified satellite images, street view images
cannot be aligned using parallel shifts. When dense 3D models exist, it is possible to
align images accurately, as demonstrated in previous studies [12,13]; however, it is not
feasible to maintain high-quality 3D data at the city/national level because of the associated
costs. Typically, change detection methods assume image alignment and their accuracy
becomes an issue when there are viewpoint differences between the images. Recently,
change detection networks that are robust to viewpoint differences have been proposed.
However, the relationship between disparity scale and change detection accuracy has not
been comprehensively investigated and remains an ongoing challenge.

To this end, we propose a robust method for object-level change detection in images
with viewpoint differences that utilizes object detection and a graph matching network
(Figure 1). In contrast to existing methods, our method does not depend on pixel-level
predictions. Instead, we formulated the problem as a graph matching problem between
two object graphs that are extracted from each image, which does not require pixel-wise
image alignment and is therefore robust to viewpoint differences. Specifically, the proposed
network detects object-level changes in three steps. Firstly, the object detection module
(e.g., Faster R-CNN [25]) detects the regions and visual features of the target objects in each
image. Secondly, the graph matching module constructs the correspondences between the
objects by considering the similarities and relationships between them. Finally, the regions
and classes of objects with no matching pairs are categorized as appearing/disappearing
objects in each scene. We noted that the object detection module in the proposed network
could also be replaced with an instance segmentation network to predict changes using
instance masks instead of bounding boxes. Moreover, the entire network can be trained
using the supervised loss of object detection and graph matching; thus, it does not require
annotations for pixel-level change masks, which are labor-intensive and time-consuming.

In addition to the methodological proposal, we created a synthesized object-level
change detection (SOCD) dataset, which was the first dataset that could be used to eval-
uate object-level change detection. The SOCD dataset comprised approximately 15,000
perspective image pairs that were rendered by a CARLA simulator [26]. Furthermore,
to investigate the relationships between the scale of the viewpoint differences and the
accuracy of the change detection method, we created image pairs with four separate scales
of viewpoint differences for the same scene. In our experiments on the SOCD datasets,
the proposed method improved the F1 score of existing methods by more than 40%.
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Figure 1. An overview of our alignment-free object-level change detection network. The network
includes an object detection module (as discussed in Section 3.2) and a graph matching module
(as discussed in Section 3.3). The object detection module detects object regions and creates object
features. The graph matching module accepts the object features as input and constructs assignments
using a graph neural network and an optimal matching layer. Finally, the regions of unmatched
objects are categorized as object-level changes.

The main contributions of this paper are as follows:

• The proposal of as object-level change detection network that is robust to viewpoint
differences, which can be trained using bounding boxes and the correspondences
between them;

• The development of an SOCD dataset to allow for the study of the performance of
object-level change detection methods at different scales of viewpoint differences (the
SOCD dataset will be publicly available);

• Experiments on the developed dataset that confirmed that the proposed method outper-
formed the baseline method in terms of the accuracy of object-level change detection.

2. Related Work
2.1. Image Change Detection

Image change detection [2] is the task of detecting scene changes within an image.
The basic approach is to estimate the probability of change for each pixel by comparing
images that were taken at different times from the same viewpoint and various methods
have previously been studied. An important recent trend is the use of deep learning for
more accurate change estimation. For example, Sakurada et al. [27] proposed a method for
predicting change regions based on the differences in visual features that were extracted
by a CNN. Alcantarilla et al. [13] trained a deconvolutional network to detect structural
changes in street view images. Guo et al. [28] applied contrastive loss, which encouraged
CNNs to learn more discriminative features to improve their robustness to noise, such
as illumination or camera poses. Lei et al. [21] proposed a deep CNN that utilized the
adaptive fusion of image features.

One important factor to deal with is viewpoint differences between images. For exam-
ple, when capturing images with cameras mounted on automobiles or mobile robots, most
of the conditions are variable, such as camera trajectory, mounting position and shutter
timing; therefore, capturing images with exactly the same camera pose is challenging.
One of the most straightforward approaches to address this is to align the images using a
dense 3D model. For example, Taneja et al. [12] and Palazzolo et al. [14] proposed change
detection methods for 3D map updates that leveraged existing 3D maps to perform this
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alignment. Alcantarilla et al. [13] utilized geometric information that was reconstructed
from image sequences for image alignment to detect changes using a deconvolutional
network. However, the costs of the data collection and computation that are required to
obtain exact 3D models are extremely high. By contrast, several approaches do not depend
on dense 3D models to detect changes. For example, Sakurada et al. [18] introduced a
robust network architecture that used correlation layers. Furukawa et al. [17] proposed a
method for learning change detection and image alignment without using a hand-labeled
dataset. These two methods achieved robust change detection for images with viewpoint
differences. However, the method that was proposed by Sakurada et al. [18] had a problem
in that the correlation layers could not deal with large viewpoint differences and the method
that was proposed by Furukawa et al. [17] could only learn to predict binary change masks.

Another important issue is the detection of changes at the object level. For example,
Hazel et al. [7] proposed a method for detecting changes in spectral imagery at the object
level by combining multiple steps, such as object region/feature extraction, object associa-
tion and change detection. This method, which performed object extraction and mapping
sequentially, is analogous to our proposed method. For object-level change detection, it is
important to accurately extract object regions, as well as correctly determine changes. Re-
cently, change detection methods that utilize deep learning-based object detection networks
have been proposed, such as Faster R-CNN [25] and Mask R-CNN [29] [22–24]. However,
an unsolved problem is how to match objects when there are viewpoint differences between
images. In particular, there has not yet been any research on object-level change detection
for street view images with viewpoint differences, which was the target of this study.

2.2. Graph Matching

Graph matching [30–34] is a method for establishing node correspondence between
two graphs. Recently, deep learning-based methods have enabled end-to-end learning and
have significantly improved performance [32–34]. Out of the numerous existing methods,
we mainly focused on differentiable (or deep learning-based) graph matching methods that
could be incorporated into our end-to-end change detection network.

Deep learning-based graph matching methods can solve these problems in three steps:
(i) the extraction of node (and edge) features; (ii) the prediction of score matrices; and (iii)
the assignment of nodes from the score matrices. For example, Zanfir and Sminchisecu [32]
developed the first deep learning-based graph matching method by extending each com-
putation for factorized graph matching to differentiable graph matching. Wang et al. [33]
and Sarlin et al. [34] proposed methods that utilized GNNs [35,36] to predict the score
matrices in order to consider the higher structural information of the graphs. The method
that is the most related to our approach is the SuperGlue network that was proposed by
Sarlin et al., which is a graph matching network with an attentional GNN and an optimal
matching layer that was based on the Sinkhorn algorithm [37,38]. In this study, we used
the SuperGlue network as the graph matching module in our change detection network.

3. Methods

Our main challenge was to develop an architecture that could detect object-level
changes, bounding boxes or instance masks to capture changes in objects from unaligned
image pairs, such as crowdsourced images. As shown in Figure 1, we handled the challenge
by (i) extracting object regions and features from each image using an object detection
module and (ii) matching the objects to detect any changes using a graph matching module
that was robust to viewpoint differences. Section 3.1 describes the formulation of the
proposed approach. Sections 3.2 and 3.3 describe the details of the object detection and
graph matching modules, respectively. Finally, Section 3.4 describes the loss function of the
proposed network.
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3.1. Formulation

In this subsection, we discuss the object-level change detection problem. First, we consid-
ered the images I1 ∈ R3×W×H and I2 ∈ R3×W×H, which captured the same scene at times
t1 and t2 (t1 < t2), where W, H are the width and height of the images, respectively. Then,
the change detection model received I1 and I2 and returned the bounding boxes B1 ∈ RN1×4

and B2 ∈ RN2×4 or the instance masks M1 ∈ RN1×W×H and M2 ∈ RN2×W ′×H′ , which lo-
calized the objects in I1 and I2, where N1, N2 ∈ N denote the number of changed objects in
I1, I2, respectively, and W ′, H′ denote the width and height of each mask, respectively. Whether
the outputs were bounding boxes or instance masks depended on the structure of the object
detection module, as described in Section 3.2.

We solved the problem of object-level change detection as follows. Firstly, the object
detection network accepted I1 and I2 as inputs and extracted M and N objects from them,
respectively. Next, the graph matching module predicted the correspondences between
these objects as an assignment matrix P ∈ {0, 1}M×N , where Pi,j = 1 when the i-th object
in image I1 and the j-th object in image I2 matched and Pi,j = 0 when they did not match.
Each object had a maximum of one matching pair. Because a scene could contain changes,
there could be objects with no matching pair. Hence, the assignment matrix satisfied the
following conditions:

P1N ≤ 1M, P>1M ≤ 1N , (1)

where 1M is an all-ones vector of length M. Finally, the changes were determined for each
object using the predicted assignment matrix P̂. In this study, we considered two types
of changes: appearance and disappearance. The jth object in I2 was determined to appear
when ∑M

k=1 P̂k,j = 0. Similarly, the ith object in I1 was determined to disappear when
∑N

l=1 P̂i,l = 0. We neglected other types of changes (e.g., the same object with a different
texture) for future work.

3.2. Object Detection Module

The object detection module extracted objects in the scenes from the pair of images I1
and I2. Specifically, it returned the following object information:

1. Object Categories, which were sets of labels that described the categories;
2. Object Region Coordinates, which were sets of vectors that defined the bounding

box coordinates of the objects;
3. Object Features, which were sets of vectors that encoded the visual information and

were extracted from each object region using RoIAlign [29] (we used ground truth
bounding boxes for training and predicted bounding boxes for testing to extract
features);

4. Object Masks (Optional), which were sets of m×m binary masks of the objects that
were provided when we used an instance segmentation network.

We used Mask R-CNN [29], which is a widely used instance segmentation network,
as the object detection module. Mask R-CNN first extracted feature maps using a CNN
and then detected object regions via the following two-stage pipeline. Firstly, the region
proposal network (RPN) estimated the coordinates of the bounding boxes and the objectness
of the candidate object regions. Next, the second stage estimated the class, bounding box
offset and binary mask of each candidate region. During training, the following loss
function was used. In the first stage, the smooth-l1 loss of the bounding box coordinates
and the binary cross-entropy loss of the objectness were calculated. In the second stage,
the smooth-l1 loss of the bounding box coordinates, the cross-entropy loss of the class
estimation and the per-pixel binary cross-entropy loss of the binary masks were computed.
Finally, the network was trained by performing backpropagation using these calculations.
Although we used Mask R-CNN in this study, the proposed network could also use other
object detectors, such as those in [25,39–42].

Note that our object detection module was a Siamese network that shared weights
between images, which was similar to several related methods [18,21].
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3.3. Graph Matching Module

In this section, we describe our graph matching module. The graph matching module
used the object features from the object detection module as inputs. Then, it output an
assignment matrix P ∈ {0, 1}M×N , which represented the object correspondence between
the M and N objects in the respective images. The module was based on SuperGlue [34]
and had four steps: feature refinement (Section 3.3.1), score matrix prediction (Section 3.3.2),
matching prediction (Section 3.3.3) and post-processing (Section 3.3.4).

3.3.1. Feature Refinement

To consider the global scene structure, we constructed a connected graph with objects
as its nodes and refined the object features using a graph neural network (GNN). This
graph had two types of edges: intra- and inter-image edges (Figure 1). The intra- and
inter-image edges were fully connected edges that linked objects within an image and
between images, respectively. The GNN updated the node features by alternating between
the two types of edges, as follows:

(l+1)F1
i = (l)F1

i + f ([Fi; mE→i]), (2)

mE→i = ∑
j:(i,j)∈E

Softmax(q>i k j)vj, (3)

qi = WqF1
i + bq, (4)

ki = WkF1
i + bk, (5)

vi = WvF1
i + bv, (6)

where (l)F1
i is the l-th layer node feature in I1, E is the set of edges, [·; ·] is the vector

concatenation and W[q,k,v], b[q,k,v] are the weights and biases, respectively. The computation
of this formula was based on the self-(cross-)attention that is used in transformers [43].
First, the weights were calculated by computing qi and k j from the features of the target
node i and its neighboring node j, respectively, and applying a Softmax function to the
inner product of these vectors. The weights were then used to compute the weighted sum
of vj, which was computed from the neighboring nodes to obtain the message mE→i. By
applying the L-layer GNN to (0)Fi, we obtained (L)Fi. The object features in I2 were updated
in the same manner. In contrast to [34], we did not use a positional encoder because it did
not contribute to performance.

3.3.2. Score Matrix Prediction

Using the node features that were obtained by the GNN, we computed the score matrix
S ∈ R(M+1)×(N+1) to compute the assignment matrix that represented the object correspon-
dence between I1 and I2. First, we computed S′ = [sij]M×N,(1<i<M,1<j<N) from the object
features, where sij is the inner product of F1

i , F2
j , Sij represents the similarity between the

features of each object and S′ represents the soft assignment between the objects (Figure 2).
Secondly, to account for objects with no matching pairs (i.e., changed objects), we aug-
mented the score matrix to include a dustbin node [34]. The similarity with the dustbin
node was set using the trainable parameter z.
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Figure 2. A visualization of the affinity scores between the objects in I1 and I2. The lines connecting
the centers of the boxes represent the sij (as described in Section 3.3). The figure demonstrates that
objects with similar appearances had high affinity scores. For example, in the second image in the first
row, the object that is enclosed by the box in I1 and the building in the center of I2 had higher scores.

3.3.3. Matching Prediction

Based on the similarity score, a soft assignment matrix P̄ ∈ R(M+1)×(N+1) was pre-
dicted using an optimal matching layer, which was based on the Sinkhorn algorithm [37,38].
In the algorithm, an iterative row-wise and column-wise normalization of exp(S̄) was con-
ducted to predict the soft assignments. Notably, this process was differentiable and hence,
end-to-end trainable.

3.3.4. Post-Processing

At inference time, the hard assignment P̂ was determined using the following process:

P̂i,j =

{
1 (argmax

k
P̄i,k = j and argmax

k
P̄k,j = i)

0 (otherwise)
. (7)

In contrast to the post-processing in [34], our method did not depend on a specific
threshold. Finally, the hard assignments P ∈ {0, 1}M×N were acquired by dropping the
dustbin scores from P̂ (Figure 3).

Figure 3. A visualization of the object pairs that were obtained by the graph matching module.
The red boxes highlight the object in I1 and the corresponding object in I2. When there was no
corresponding object, no red boxes are displayed.
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3.4. Loss Function

The loss function consisted of two parts: object detection loss and graph matching
loss. In the object detection loss, the cross-entropy loss and smooth-l1 loss were used for
classification and localization, respectively (see Equation (10) in [25]). Additionally, the
per-pixel cross-entropy loss was used when the object masks were estimated. In the graph
matching loss, the negative log-likelihood of the ground truth assignment matrix was
used [34] (see Equation (20) in [34]).

4. Dataset

Most existing change detection datasets only provide pixel-level change labels (penul-
timate column in Table 1). To train and evaluate the object-level change detection models,
we created a synthetic object-level change detection (SOCD) dataset. This section describes
the creation process of the SOCD dataset and the dataset features.

Table 1. A comparison of the existing street view change detection datasets. The Viewpoint Difference
column indicates the scale of the viewpoint differences between image pairs. Notably, the SOCD
dataset included four separate scales for viewpoint differences, which enabled an examination of
the relationship between the scale of viewpoint differences and the accuracy of the change detection
model. The Annotation columns indicate each the annotation type that was used in each dataset
(i.e., pixel-level annotation, such as binary change masks or semantic change masks, and object-level
annotation, such as bounding boxes or instance masks).

Dataset Domain Image Type
Viewpoint
Difference

Number
of Pairs

Number of
Semantic

Classes

Annotation

Pixel-Level Object-Level

PCD (TSUNAMI) [27] Real Panoramic Small 100 - * X
PCD (GSV) [27] Real Panoramic Small 100 - * X
VL-CMU-CD [13] Real Perspective Small † 1362 - * X
CDnet2014 [44] Real Perspective None 70,000 - * X

SOCD (Ours) Synthetic Perspective None∼Large 15,000 4 X X(Four different
viewpoint scales)

* No semantic labels; † image pairs in the VL-CMU-CD dataset were densely aligned using depths that were
reconstructed using stereo matching.

The SOCD dataset was created using a CARLA simulator in order to research and
develop self-driving vehicles. The simulator provided virtual maps that simulated urban
areas. Objects, such as cars and buildings, could be placed freely within the environment.
In addition, users could virtually place cameras at arbitrary locations within the environ-
ment and capture realistic images that corresponded to the camera positions using the
rendering engine of the simulator. The simulator was equipped with various sensors and
could acquire not only RGB images but also depth images, semantic (pixel-wise) labels and
instance masks.

There were three advantages to using a simulator to create our dataset. Firstly, it
allowed the dataset to be created rapidly. When creating a real image dataset, it is necessary
to capture images over long periods of time, such as several months or years, in order
to observe changes. Manual labeling is also very time-consuming, so the use of a simulator
reduced the time that was required because the ground truth images were obtained auto-
matically. Secondly, the cost of creating images and labels is low. Because there was no
need to drive vehicles around to capture the images or perform manual labeling, we could
create a large dataset at a low cost (the fifth column of Table 1). Finally, it was possible
to control the camera position within the environment. Leveraging this advantage, we
investigated the effects of the magnitude of viewpoint differences between images on
change detection performance.

Figure 4 illustrates the dataset creation process. As shown in Figure 4, the cameras
were first placed at random street locations, where the images at t1 were rendered. Next,
objects were added and deleted to create environmental changes. Then, by placing the
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camera at the same position as that in the t1, the images at t2 were captured. This process
was repeated in multiple environments, which resulted in 15,000 image pairs. The field of
view of the cameras was set to 90°. Four object categories were selected: buildings, cars,
poles and traffic signs/lights. For each object, the following annotations were obtained,
as shown in Figure 5: bounding boxes, instance masks, correspondence between objects,
pixel-level changes and object-level changes. In contrast to the traditional change detection
datasets, object-level changes were available.

Generate changes

Render

Render
Camera

Camera

(b) Render images at "!

(c) Render images at ""

Generated change

(a) City-like environment of CARLA simulator

Figure 4. An overview of the data acquisition pipeline. The images were rendered from cameras that
were set within the CARLA simulator environment.

To investigate the robustness of the change detection model to viewpoint differences,
we rendered the image pairs with varying viewpoint differences (the fourth column of
Table 1). Specifically, the dataset had four categories {S1, S2, S3, S4}with varying yaw angle
differences. In S1, there was no difference in yaw angle. In S2,3,4, the difference in yaw
angle was uniformly sampled within the ranges of [0, 10], [10, 20] and [20, 30], respectively.
The rolls and pitches were randomly shifted within the range of [0◦, 5◦] for all categories
and the horizontal translation was randomly shifted within the range of [0, 1.0] m. Figure 6
shows a histogram of the intersection over union (IoU) values of the paired bounding
boxes. When the viewpoint differences increased, the IoU values gradually decreased,
which indicated mild to severe misalignment between the objects. Figure 7 shows some
examples of image pairs from the dataset that had viewpoint differences. With such a wide
degree of misalignment, the robustness of the change detection models could be thoroughly
evaluated in a controlled manner.
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I1 Mask & box for objects Mask & box for changes I2

Figure 5. Examples of the instance masks and bounding boxes for the objects/changes. The light
blue is buildings, pink is cars, green is poles.
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Histogram of the paired bounding box IoUs

Figure 6. The histograms of the IoU values of the paired bounding boxes in the SOCD dataset and
the OCD dataset. In the SOCD dataset, the larger the viewpoint differences between an image pair,
the smaller the overlap of objects. By contrast, the OCD dataset had a wide distribution of IoU values
because of the various viewpoint differences between the image pairs.
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I1 Ii
2

i = 1 i = 2 i = 3 i = 4
(∆yaw = 0◦) (0◦–10◦) (10◦–20◦) (20◦–30◦)

Figure 7. Examples from the SOCD dataset. I1 are images before any changes and Ii
2 are the images

after the changes. For i = 1, there were no viewpoint differences between I1 and Ii
2. For i = 2, 3, 4,

a viewpoint difference existed between I1 and Ii
2. The scale of the difference in yaw angle was different

for i = 2, 3 and 4 and ranged from 0◦ to 10◦, from 10◦ to 20◦ and from 20◦ to 30◦, respectively.

5. Experiments

To demonstrate the feasibility and effectiveness of our object-level change detection
network, we conducted experiments using the SOCD dataset. Section 5.1 explains the
experimental setup and Section 5.2 describes a comparison between the proposed network
and existing state-of-the-art methods.
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5.1. Experimental Settings
5.1.1. Dataset Settings

First, we divided the simulator map into four sections (vertically and horizontally)
and designated two non-adjacent sections as the training/validation and testing sets.
To avoid overlapping the fields of view of the training/validation set and the testing set,
only cameras that did not face the boundary lines were selected in the vicinity of the
division lines. Finally, the dataset was divided into training, validation and testing sets in a
ratio of 40:10:50. The validation data were used to determine the hyperparameters, such as
the number of GNN layers and the learning rate.

5.1.2. Implementation Details

We used Faster R-CNN [25] and Mask R-CNN [29] in a feature pyramid network [45]
with a ResNet-101 [46] backbone. The graph matching module had 15 GNN layers. We
trained our proposed network in two stages: pre-training the object detection module and
fine-tuning the entire network. First, during pre-training using a labeled dataset, the Mask
R-CNN was trained for 26 epochs. The batch size was eight, the image size was 800 × 800
pixels and the images were flipped horizontally with a probability of 0.5. The learning rate
was initially set as 0.002 and was multiplied by 0.1 for both the 16th and 22nd epochs. Next,
we trained the entire network for 20 epochs during the fine-tuning step. The batch size
was set to four and the image size was 800 × 800 pixels. The learning rate was initially set
as 0.001 and was multiplied by 0.1 at the 10th epoch. We used four NVIDIA Tesla V100
GPUs during both steps and implemented the proposed network in PyTorch. The learning
strategy was distributed in parallel.

5.1.3. Comparison to Other Methods

To confirm the effectiveness of the proposed method, we compared it to the following
three methods:

1. Pixel-Level Change Detection Methods: Most of the existing methods could not be
directly compared to our method because they detected pixel-level changes rather
than object-level changes. To compare our method to existing pixel-level change
detection networks, we augmented the existing methods by adding post-processing
that converted pixel-level change masks into instance masks or bounding boxes.
Specifically, the change masks in the existing methods were clipped using the outputs
of the pre-trained Mask R-CNN. This clipping was performed when more than
50% of the instance mask overlapped the change mask in the experiment. We used
ChangeNet [47] and CSSCDNet [18] as the pixel-level networks;

2. Our Method Without the Graph Matching Module: A model without the graph matching
module was tested using the proposed method. This model created a matrix whose
elements were the distances between object features in I1 and I2 and then found
matches in post-processing, which was equivalent to that described in Section 3.3.4;

3. Our Method With a GT Mask: A model that used the correct bounding boxes instead
of the bounding boxes that were extracted by the object detector was also tested. We
used the same parameters for the feature extractor and the graph matching module as
those that were used for the proposed trained network.

5.1.4. Evaluation Metrics

Although pixel-level metrics, such as mean pixel accuracy or mean Intersection over
Union (for more detail, see Section 5 in [48]), have been widely used in previous studies [49],
these metrics were not suitable to evaluate object-level scene change detection. For pixel-level
metrics, errors in small objects have little impact and they are often neglected compared
to larger objects, which was not desirable for testing object-level scene change detection.
Therefore, to evaluate the performance of the change detection methods in an object-centric
manner, we employed the F1 score, which is widely used in object detection tasks.
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The F1 score was calculated as follows. The ground truth (GT) regions with the largest
IoU values were assigned for each predicted region. When the IoU value was greater than
0.5, the predicted region was classified as a true positive (TP) or false positive (FP). Any GT
regions that the model failed to detect were classified as false negatives (FN). We reported
the performance of object-level change detection as the following F1 score:

F1 =
2× Precision× Recall

Precision + Recall
, (8)

where:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
.

5.2. Experimental Results

In Table 2, we present the results of the object-level change detection methods using the
SOCD dataset. When there were no viewpoint differences between the images, the baseline
method with CSSCDNet produced the best score. In the case of crowdsourcing and mobile
cameras, this situation would be uncommon. By contrast, when there were viewpoint
differences between the images, the proposed method outperformed all of the baseline
methods and improved the score by more than 40%. This result indicated the robustness of
the proposed approach to viewpoint differences. In addition, we evaluated the proposed
method using correct instance masks during inference. The results that are shown in the
last row of the table suggested that the performance of the proposed method could be
further improved by employing a more powerful object detector, such as DyHead [42],
which is a state-of-the-art object detection network.

Table 2. Our evaluation of object-level change detection methods using the SOCD dataset. Our
proposed network outperformed all baseline methods in terms of F1 score when viewpoint differ-
ences existed.

Method Viewpoint Difference
∆yaw = 0◦ ∆yaw = 0–10◦ ∆yaw = 10–20◦ ∆yaw = 20–30◦

Pixel-level Methods + Post-Processing
ChangeNet [47] 0.219 0.142 0.155 0.133
CSSCDNet [18] (Without correction layer) 0.453 0.234 0.241 0.205
CSSCDNet [18] (With correction layer) 0.508 0.274 0.258 0.208

Object-level Methods
Ours (Without graph matching module) 0.406 0.337 0.335 0.295
Ours 0.463 0.401 0.396 0.354

Ours (With GT mask) 0.852 0.650 0.652 0.546

Figure 8 shows some of the results from our qualitative evaluation. Our network suc-
cessfully detected object-level changes, even when viewpoint differences existed between
the images (see from the second to sixth rows). The proposed method also successfully
detected thin objects, such as street light poles (first row), and small objects, such as traffic
signs (fifth row), which the existing methods failed to detect. Furthermore, it could be ob-
served that the change masks captured the shapes of objects more accurately than those in
the existing methods, particularly when the scale of the viewpoint difference was relatively
large (fourth, fifth and sixth rows).
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Figure 8. The qualitative results from using the SOCD dataset. Object-level changes indicated by
color-coded bounding boxes: light blue for buildings, pink for cars, green for poles and purple for
traffic signs. Our network was good at locating object-level changes in image pairs.

6. Discussion

In this section, we present a more detailed discussion about the properties and chal-
lenges of the proposed method. Firstly, we discuss the differences between the proposed
network and the existing methods in Section 6.1. Then, we provide a quantitative and
qualitative analysis of the errors in Section 6.2. Finally, we describe the future directions of
our work in Section 6.3.
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6.1. Comparison to Existing Methods

Figure 9 shows the precision, recall and F1 scores of the proposed method and the
existing methods for each scale of viewpoint difference. Firstly, the values of precision de-
creased as the yaw angle between the images increased for all methods. However, the recall
scores for the existing methods decreased as the yaw angle between the images increased,
whereas the score for the proposed method remained unchanged. This difference in trend
was reflected in the final F1 score and, therefore, the proposed method outperformed the
conventional methods when there were viewpoint differences. In other words, the pro-
posed method had an advantage over the existing methods because it did not “miss” many
changes, even when viewpoint differences existed. This property would be important for
various applications, such as infrastructure inspection, because missing changes (e.g., aging
or damage to infrastructure) could lead to hazards.

yaw = 0 0 10 10 20 20 300

20

40

60

80

%

72.3

47.11 49.14

36.27

52.62

40.42 39.55
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CSSCDNet + post-processing

Ours

Figure 9. The precision, recall and F1 scores of our proposed network and the existing methods [18]
for the separate scales of viewpoint differences between the images.

6.2. Error Analysis

The proposed method still presented scope for improvement and a non-negligible
number of errors occurred. In this subsection, we present a qualitative and quantitative
analysis of these errors in the proposed network. First, we discuss three typical failures
that occurred with our proposed method. The first major failure was caused by an error in
the object detection module. As shown in the first row in Figure 10, the proposed method
failed to detect a building in the center of the screen in I2 and detected a single building
with multiple instance masks. Thus, this error in object detection directly led to an error
in change detection. The second failure was a matching error. As shown in the second
row in Figure 10, even though the proposed method could detect the same vehicle in I1
and I2, it failed to match it and incorrectly detected it as a change. The third failure was
an error that was caused by recognizing objects that moved out of the field of view as
changes. A traffic sign was on the left edge of I1 (third row in Figure 10); however, in I2,
the traffic sign that should have remained unchanged was obscured. The proposed method
incorrectly detected the transition of objects out of the field of view as a change.
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GT Ours

Figure 10. Examples of failures. Object-level changes indicated by color-coded bounding boxes: light
blue for buildings, pink for cars, green for poles and purple for traffic signs. The examples in the first
and second rows suffered from errors in the object detection module and the graph matching module,
respectively. The last row shows the error that was caused by moving an object out of the field of view.

Next, we present a quantitative analysis of the errors in the proposed network.
Figure 11 presents a summary of the errors in the proposed method using the testing
data for each viewpoint difference scale. Errors were classified into the following three
categories: (1) errors that were due to recognizing objects that moved out of the field of
view as changes (FP (out of view)); (2) false positives (FP) other than FP (out of view); and
(3) false negatives. FP (out of view) included the errors that are shown in Figure 8 and in
the third row of Figure 10. Figure 11 shows that when there were no viewpoint differences
between the images (i.e., the bar for ∆yaw = 0◦), FP and FN results accounted for all of the
errors. In this case, the number of errors could be reduced by improving the performance
of the object detection and graph matching modules. However, when there were viewpoint
differences between the images (i.e., the bars for 0◦–10◦, 10◦–20◦ and 20◦–30◦ in Figure 11),
the only errors that occurred were classified as FP (out of view). Furthermore, as the
viewpoint difference increased, FP (out of view) errors accounted for a more significant
percentage of the total errors. Section 6.3 describes some possible countermeasures against
objects moving out of the field of view.
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Figure 11. A summary of the errors in the proposed network. The bars show the percentage of each
error in the proposed method for the separate scales of viewpoint differences between the images. FP
denotes false positive results (except for FP (out of view) as FP (out of view) represents false positive
results that occurred because of an object moving out of the field of view) and FN represents false
negative results.

6.3. Limitations and Future Directions

In this section, we describe several limitations of this method and directions for future
research. Firstly, continuous objects that bounding boxes could not surround, such as roads
or white lines, were beyond the scope of this work. Therefore, it is a challenge for future
work to simultaneously handle object-level changes in countable objects and pixel-level
changes in continuous objects. This task corresponds to panoptic segmentation [50–54]
and we believe that panoptic change detection research is a promising direction for the remote
sensing community.

Secondly, our proposed network suffered from errors that were caused by the move-
ment of objects to/from the field of view (last row in Figure 8). In principle, this error would
be a difficult problem to address using current matching-based change detection. One
possible countermeasure could be to use images with broader fields of view; however, this
would limit the applicability of the proposed network. Therefore, to solve this problem,
we will investigate the possible use of depth information. By using the depth information
of objects, we could estimate where an object in one image is located in the paired image.
Hence, we plan to extend our network to include monocular 3D bounding box estimation,
which could improve the overall performance of our object-level change detection method.

Thirdly, the proposed method could not handle changes other than the appearance
or disappearance of objects. For example, various types of changes can occur to objects in
images, such as deformation, discoloration and changes in position or posture. However,
the current framework could not recognize these various categories of change. Therefore,
in the future, it is necessary to expand the dataset and method to include various changes.
In addition, by assuming that all types of change could occur, we plan to express the content
of changes in natural language using image captioning technology [55–60].

Finally, there was a lack of verification using real data. There are several difficulties
in creating a dataset that includes all of the possible changes in real urban environments.
Firstly, many years of observation in urban areas would be required to monitor changes in
the real environments. In addition, to observe enough changes to train a model, a large
area must be observed and a large amount of image data must be acquired. Moreover,
the creation of object-level annotations is time-consuming and labor-intensive. Therefore,
in this study, we only performed validation using synthetic data. Now that we know that
we can use synthetic data to some extent, we plan to construct a real image dataset for
future further validation.

7. Conclusions

We proposed a new change detection network to detect object-level changes in image
pairs with viewpoint differences. The proposed framework effectively combined an object
detection module and a graph matching module to detect object-level changes in image
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pairs accurately and robustly, as shown in Figure 1. The object detection module extracted
object regions in the form of bounding boxes or instance masks. The graph matching
module considered the objects in each image as a graph and built correspondences between
the objects in the image pairs. To verify the effectiveness of the proposed network, we
created an SOCD dataset using the CARLA simulator, which was the first dataset with
object-level change labels. Our experimental results using the SOCD dataset demonstrated
that our proposed framework was superior to existing methods, as shown in Table 2 and
Figure 8. We also analyzed our experimental results to gain a deeper understanding of
the properties of the proposed network. The analysis revealed that the proposed method
did not suffer from loss of recall, even when viewpoint differences increased (Figure 9)
and several typical failures were identified (Figure 10). The main failures could be cate-
gorized as object detection errors, graph matching errors and errors that were caused by
objects moving out of the field of view. Future directions of study include improving the
performance of each module by devising new network structures and learning methods
and introducing 3D object detection to handle objects that move out of the field of view.
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