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Abstract: Pansharpening methods based on deep learning can obtain high-quality, high-resolution
multispectral images and are gradually becoming an active research topic. To combine deep learning
and remote sensing domain knowledge more efficiently, we propose a double-stack aggregation
network using a feature-travel strategy for pansharpening. The proposed network comprises two
important designs. First, we propose a double-stack feature aggregation module that can efficiently
retain useful feature information by aggregating features extracted at different levels. The module
introduces a new multiscale, large-kernel convolutional block in the feature extraction stage to
maintain the overall computational power while expanding the receptive field and obtaining detailed
feature information. We also introduce a feature-travel strategy to effectively complement feature
details on multiple scales. By resampling the source images, we use three pairs of source images at
various scales as the input to the network. The feature-travel strategy lets the extracted features loop
through the three scales to supplement the effective feature details. Extensive experiments on three
satellite datasets show that the proposed model achieves significant improvements in both spatial
and spectral quality measurements compared to state-of-the-art methods.

Keywords: convolutional neural network; double-stack aggregation; large kernel; feature-travel;
dense fusion

1. Introduction

Remote sensing images provide technical advantages, such as multiresolution, wide
coverage, repeatable observation, and multispectral/hyperspectral recording. Therefore,
they are widely used in urban area classification, vegetation cover monitoring, target
identification, and national defence security [1–3]. Among remote sensing images, multires-
olution images provide users with the highest resolution in both the spatial and spectral
domains. However, due to the limitations of remote sensing imaging principles and the
physical structure of sensors, the instantaneous fields of view of sensors can differ [4]
therefore, satellites usually carry various sensors to acquire multiresolution images. For
example, Earth observation satellites, such as QuickBird, WorldView-2 and, WorldView-3,
carry two sensors to simultaneously capture two types of high-resolution remote sensing
images: panchromatic (PAN) images with high spatial but low spectral resolution and
multispectral (MS) images with high spectral but low spatial resolution (LRMS).

In practical remote sensing applications, MS images with high spatial and spectral
resolution are often necessary, encouraging researchers to establish an effective method to
generate such images from multiple images. The pansharpening algorithm was created to
fully use the spatial information of PAN images and the spectral information of MS images.

Pansharpened images are important in remote sensing scenes and as a preprocessing
step for image processing tasks, such as feature extraction, segmentation, and classifi-
cation. In recent decades, researchers have proposed pansharpening algorithms in sev-
eral directions, primarily classified into (1) component substitution (CS) methods [5–8],
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(2) multiresolution analysis (MRA) methods [9–13], (3) variational optimisation (VO)-based
methods [14–16], and (4) deep learning methods.

The core idea of CS-based methods is to first project the MS image onto another space
to separate the spatial structure component from the spectral information component. Then,
a histogram matches the PAN image to the spatial structure component and replaces the
spatial intensity component with the PAN image. Finally, a reverse projection returns the
data to the original MS domain to obtain a sharpened MS image. Methods of this type
include principal component analysis [5], intensity–hue–saturation transform [6], Gram–
Schmidt (GS) sharpening [7], and partial replacement adaptive component substitution
(PRACS) [8]. CS methods can obtain results with high spatial fidelity; however, this usually
results in significant spectral distortion.

MRA-based methods retain more spectral information than CS methods. Moreover,
MRA-based methods usually inject the spatial details extracted from PAN images into
MS images through the MRA framework to obtain MS images with high spatial resolu-
tion. However, MRA methods suffer from spatial distortion, although they retain spectral
information. Examples of such methods include smoothing filter-based intensity modula-
tion (SFIM) [9], additive wavelet luminance scaling [10], “a-trous” wavelet transform [11],
Laplace pyramid [12], and generalised Laplace pyramid [13], among others.

In contrast, VO-based methods consider PAN sharpening to be an optimisation prob-
lem. The key concept of VO methods is to establish the objective function, which is used to
determine an appropriate solution among variational optimisation schemes. Furthermore,
VO methods can reduce the distortion of spectral information, but the optimisation calcula-
tion is complex, and the time complexity is high. Common methods include P+XS [14] and
Bayesian methods [15], and sparse representation-based [16] methods also belong to the
VO category.

With the rapid development of hardware devices and machine learning, deep-learning-
based models have achieved exciting results in various image processing fields, such as
image super-resolution (SR), target detection, image segmentation, and other fields. In im-
age SR, Dong et al. [17] pioneered an SR convolutional neural network (CNN) model using
CNNs and obtained good results. In target detection, Ghorbanzadeh et al. [18] integrated
CNN models with object-based image analysis (OBIA) capabilities to effectively support
refugee/IDP (internally displaced person) camp planning and humanitarian assistance.
In hazard detection, Ghorbanzadeh et al. [19] first applied fully convolutional network
(FCN) algorithms, such as U-Net and ResU-Net, to freely available data and achieved high
landslide detection performance. In image segmentation, Ronneberger et al. [20] proposed
a U-Net architecture consisting of a contraction path and a symmetric expansion path and
successfully trained deep networks.

Inspired by the SRCNN, Masi et al. [21] designed a three-layer CNN architecture
to achieve pansharpening using the powerful nonlinear mapping ability of CNNs. This
CNN application was the first in the field of pansharpening. Since then, pansharpening
algorithms using deep learning have become a research focus. Wei et al. [22] designed
a deep residual network with 11 layers to obtain rich detail information and strong non-
linear mapping ability. He et al. [23] summarised a detail-injection-based CNN model,
which solved the redundant part of the network structure and enhanced interpretability.
Liu et al. [24] combined the advantages of generative adversarial networks (GANs) and
designed a GAN-based pansharpening algorithm called PSGAN. Fu et al. [25] borrowed
the idea of feedback connection [26] to designed a two-path network with a feedback
connection (TPNwFB), which refined the low-level features by feeding back the high-level
features extracted from the feature extraction block to the low-level features. Xu et al. [27]
designed a cross-directional and progressive network (CPNet) from the input image, which
considers that most methods only take the four-fold upsampled LRMS and source PAN
images as input. Wu et al. [28] proposed a new three-stage detail-injection-based network
(TDPNet) that takes the difference between the PAN and MS images as input [29]. They
designed a cascaded cross-scale fusion method to fully utilize the detail information on
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different scales, using a detail compensation mechanism to supplement details lost in the
fusion process.

However, pansharpening is subject to some drawbacks, as follow: (1) in order to
achieve powerful performance, many researches have added various large functional mod-
ules, making the model increasingly large in size with an increased number of parameters;
(2) many proposed models do not sufficiently consider and treat the input images; and
(3) some frameworks do not reach their full potential.

To improve and solve the problems mentioned above, we propose a double-stack
aggregation network using a feature-travel strategy for pansharpening. By capturing
detailed feature information on different scales in a round-robin manner, information loss
due to upsampling on LRMS is reduced. The main contributions of this study are as follow:

1. In the feature extraction stage, we propose a novel multiscale, large-kernel residual
convolution block (MLRB) combining the ideas of large-kernel convolution and di-
lated convolution to extract more fine-grained detail information while effectively
expanding the receptive field. The design of MLRB has positive significance for
the subsequent feature fusion, especially with respect to preservation of spectral
information.

2. We propose a powerful double-stack feature aggregation module (DSFAM) to make
full use of the feature details extracted at different levels. We aggregate the features
extracted by the shallow and deep networks through multiple skip connections so
that the final extracted features can fully retain the details extracted at each level,
including spatial and spectral details.

3. We propose a novel feature circumnavigation strategy to preserve as much detail as
possible in response to the loss of sampling in LRMS images. We obtain source images
at three scales as input by processing and constructing three network levels. The
extracted features are looped at different scales by resampling. The looped features
complement the information at the three scales, reduce the details lost in the input
images due to resampling, and improve the final reconstruction results.

4. We let each network layer learn the spatial and spectral detail information missing
from the LRMS images and attach the loss function to each network layer to ensure
that each feature loop can be supplemented with the correct information.

The rest of this paper is organised as follows. In Section 2, we review related work
based on CNNs in other domains and summarise other pansharpening methods based on
deep learning. In Section 3, we details the proposed DFS-Net, including the motivation
for the proposal, network architecture design, and loss function definition. In Section, we
present the experimental results and qualitatively and quantitatively compare the proposed
method with other methods in different datasets. In Section 5, we discusses the validity
of various network structures and the rationality of the overall framework. Finally, we
summarize the work in Section 6.

2. Background and Related Work
2.1. Convolutional Neural Network

Researchers have studied three main aspects of many related vision tasks to improve
CNN performance: depth, width, and cardinality [30].

In terms of depth, Simonyan and Zisserman [31] first proposed a very deep CNN (the
VGG), arguing that the receptive field obtained using a small convolutional kernel multiple
times is the same as that obtained using a large convolutional kernel once and that the
number of parameters can be reduced. He et al. [32] proposed a residual learning frame-
work to solve the gradient degradation problem that occurs during the training of deep
networks, considerably improving the depth and accuracy of the neural network. Based
on this, Huang et al. [33] proposed a densely connected network (DenseNet), connecting
each layer to every other layer in a feedforward fashion, further optimising the gradient
convergence problem of the network and obtaining improved results. To better employ the
features in the residual framework, Liu et al. [34] proposed a residual feature aggregation
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network (RFANet), which aggregates multiple residual operations within a residual range
for adequate feature extraction.

Regarding width, GoogLeNet [35] uses multiple convolutional kernels to extract fea-
tures. GoogLeNet experiments reveal that width is another important factor for improving
model performance.

Concerning cardinality, Xception [36] fully decouples GoogLeNet, proposing a deeply
separable convolution and allowing each feature channel to be convolved using a separate
convolution kernel. This method improves performance while reducing the number
of parameters.

The receptive field size of a network model is also an important factor in improving
performance. Yu and Koltun [37] proposed dilated convolution to systematically aggregate
multiscale contextual information; dilated convolution supports the exponential expansion
of the receptive field without the loss of resolution or coverage.

Ding et al. [38] reviewed the design of large kernels in modern CNNs. They suggested
that using several large kernels instead of multiple small convolutions may be a more
powerful paradigm. Large-kernel CNNs have much larger effective receptive fields than
traditional CNNs but exhibit a higher shape bias than texture bias, providing a new way
of thinking.

With the continuous development of deep learning, many novel and effective network
models have emerged in various fields. These network models are limited to their original
fields and motivate and inspire researchers in the field of pansharpening to apply novel
ideas to CNN-based pansharpening work with good results.

2.2. Convolutional-Neural-Network-Based Pansharpening Algorithm

Because pansharpening can be considered a special form of SR, Masi et al. [21] bor-
rowed the deep learning method employed in the field of image SR [17] and applied it
to the field of pansharpening for the first time. Specifically, upsampled LRMS and PAN
images are first concatenated in the channel direction and then fed into a CNN for nonlinear
learning algorithm, resulting in a pansharpened image.

To improve the performance of CNN in pansharpening, Wei et al. [22] combined the
concept of residual learning to design a deep CNN structure that further exploits the high
nonlinearity of deep learning models. Moreover, He et al. [23] attributed the traditional
pansharpening algorithm to a uniform detail injection context and combined the deep
learning approach to design a new detail injection model. The proposed model provides a
clear physical explanation and solves some problems of previous models.

Yang et al. [39] incorporated knowledge from the remote sensing domain to design
a new deep network structure, PanNet, by focusing on the two objectives of spectral and
spatial preservation. Resampled LRMS images are added to the network output to preserve
the spectral information, and the network parameters are trained in the high-pass filtering
domain instead of the image domain to maintain the spatial structure.

Inspired by dilated convolution [37], Fu et al. [40] proposed DMDNet with grouped
multiscale dilated convolution, whereby the network model becomes more capable of
extracting details and can preserve more spatial details. Unlike previous CNN-based
methods that perform pansharpening at the pixel level, Liu et al. [41] proposed TFNet
to fuse PAN and LRMS images at the feature level because both PAN and LRMS images
contain spatial and spectral information.

Fu et al. [25] proposed TPNwFB with feedback connections to deliver feedback in-
formation through the structure of recurrent neural networks to take full advantage of
powerful deep features with strong representation capability. Most deep-learning-based
methods process PAN and LRMS images in a feedforward manner, such that the shallow
level cannot obtain useful information from the deep level. The deep features continu-
ously refine the shallow features in four time steps of feature extraction. The rich feature
information provides strong support for the final network output results.
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To fully process information, Xu et al. [27] proposed a cross-direction and progressive
network. CPNet. Original images at different scales are obtained by resampling the source
images in cross direction and used as the input for the fusion module at different stages
to maximise the use of the multiscale information in the source images. In contrast, a
progressive reconstruction loss training network maintains the consistency of the fusion
results and the true values.

Wu et al. [28] proposed a three-stage detail injection network to preserve spatial and
spectral information. First, a two-branch structure extracts details at multiple scales, em-
ploying downsampling using a maximum pooling operation to preserve as much feature
information as possible. Then, a cascaded cross-scale fusion strategy employs the fine-
scale fusion information as a priori knowledge for coarse-scale fusion, compensating for
information lost during downsampling and preserving high-frequency details, making
full use of the multiscale information extracted in the first stage. Finally, a multiscale
skip connection block reconstructs the injected details, and the details lost due to resam-
pling are supplemented by a multiscale detail compensation mechanism to increase the
spatial details.

3. Proposed Network

In this section, we describe the specific structure of the DFS-Net model proposed in
this paper. The network follows the traditional idea of detail injection into the context by
injecting extracted information into the resampled LRMS images. Thus, this network has
good physical interpretability. The network structure must only learn detail information,
making network training easier and effectively alleviating any gradient disappearance and
explosion that may occur during the network learning process.

Most deep-learning-based methods directly upsample LRMS images by a factor of
four as network input. However, the image upsampling process can affect the quality of
the original image. To retain and extract the information lost during the resampling of
LRMS images and fully employ the information from the source PAN and LRMS images
at different scales, we upsampled and downsampled LRMS images and PAN images,
respectively, to form three pairs of input images at different scales and constructed three
network layers.

For each layer of the input, a two-stem network was used to extract the features of the
PAN and LRMS images. After overlaying the features extracted by the two-stem network
on the channels, a powerful DSFAM fully extracts and uses the features at different levels.
The extracted features are downsampled and upsampled in a three-scale network, and
the feature information extracted at different scales is fused using a fully connected dense
fusion network. Then, the reconstruction module reconstructs the features to match the
dimensions of the LRMS images. Finally, the extracted detail information is injected into
the LRMS images to obtain the fused images.

The structure of each network scale primarily consists of a two-stem network, DSFAM,
fully dense fusion block, feature-travel route, and reconstruction module. Loss functions
are attached to all three network scales, forcing each scale to extract the correct feature
information. The fused image obtained at the PAN scale is the desired result. Figure 1
illustrates the main structure of DFS-Net.
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Figure 1. Detailed structure of the proposed double-stack aggregation network using the feature-
travel strategy. Gold colour represents the input images (PAN and LRMS images).

3.1. Two-Stem Structure

Previous CNN-based pansharpening algorithms used only the PAN image as a carrier
of spatial information and injected the information extracted from the PAN image into
the LRMS image. However, in recent years, many studies [29,41] have revealed that both
PAN and LRMS images contain certain spatial and spectral information. The PAN image
contains rich spatial and spectral information unavailable in the LRMS image. For the
backbone network to fully use the information from PAN and LRMS images, we set up
two identical stem blocks for feature extraction of PAN and LRMS images and realised
the fusion reconstruction and image recovery work of spatial and spectral information
in the feature domain. In each network scale, one stem block takes the multiband LRMS
image (size H ×W × N) as input, and the other stem block duplicates the PAN image and
concatenates it on the channels to take the multichannel PAN image (size H × W × N)
as input.

Although the traditional method can achieve superior image resampling, we believe
resampling the source image using the deep learning method is more consistent with the
overall network architecture and retains the required detail information. Therefore, we used
transpose and two-stride convolution to accomplish upsampling and downsampling of the
LRMS and PAN images. To maintain the relative relationship between the ground-truth
(GT) image and the PAN image, we used two-stride convolution with shared parameters
for each layer for downsampling.

The detailed structure of the stem block is presented in Figure 2. Inspired by PanNet’s
use of high-pass filtering, we designed a depthwise convolutional layer similar to high-pass
filtering in the first layer and did not add a nonlinear activation layer. Using high-pass
filtering allows the network training to move from the image domain to the high-pass
filtering domain. However, the parameter design of the high-pass filter significantly affects
the final result. To take full advantage of the parametric learning capability of deep learning,
we used deep convolution to simulate the role of high-pass filtering with good results.
After the high-pass-like filter layer, we extracted features using a convolutional layer with
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a convolutional kernel size of 3 × 3 and boosted the number of channels to three. Then, we
used deep convolution again to extract features channel by channel. In the stem block, we
used parametric rectified linear units (PReLUs) after each convolutional layer, except for
the high-pass-like filtering layer.

Figure 2. Detailed structure of the stem block; d denotes depthwise convolution.

The two-stem structure consists of two stem blocks, each consisting of a layer, a
Conv3,32(·) layer, and a DWConv3,32(·) layer. DWConv f ,n(·) denotes a depthwise convolu-
tional layer with a size f × f convolutional kernel and n channels, Conv f ,n(·) denotes a nor-
mal convolutional layer with a size f × f convolutional kernel and n channels, and δ(·) de-
notes the PReLU activation function. In addition, fMS and fPAN denote the extracted LRMS
image and PAN image features, respectively; and ⊗ denotes the concatenate operation.

fMS = δ(DWConv3,32(δ(Conv3,32(DWConv3,4(ILRMS))))) (1)

fPAN = δ(DWConv3,32(δ(Conv3,32(DWConv3,4(IPAN))))) (2)

fP+M = fPAN ⊗ fMS (3)

3.2. Double-Stack Feature Aggregation Module

In deep learning, VGG [31] has demonstrated that depth is important for the network
to extract features from images. Moreover, with the emergence of ResNet [32], the network
is difficult to train due to the increased depth. In addition, ResNet effectively solves the
problems of gradient disappearance, gradient explosion, and network degradation by
adding residual connections so that the gradient can be updated more directly. Network
degradation indicates that model performance temporarily bottlenecks when the network
reaches a certain depth, making it difficult to increase. When the network continues
to deepen, model performance on the testing set instead declines. By adding residual
connections, network training becomes easier, the network depth is considerably increased,
and many deeper networks are developed, opening up a new phase of deep learning.

Although network layers have become deeper, recent research has tended to ignore
the features extracted at each layer, which contains important information. The features
extracted by shallow-layer networks are closer to the input and contain more informa-
tion about pixel points, primarily fine-grained information, such as colour, texture, edge,
and corner information. A shallow network has a smaller receptive field and a smaller
receptive field overlap area, so the network is guaranteed to capture more details. The
features extracted by deeper networks are closer to the output. They contain more abstract
information (i.e., semantic information), primarily coarse-grained information, because the
receptive field increases, the overlapping area between receptive fields increases, the image
information is compressed, and information about the totality of the image is obtained. In
pansharpening, a shallow network extracts more pixel-level information, containing colour
and edge information, and deep networks extract additional semantic information. The
flexible use of each level of information helps to preserving spectral and spatial information.
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Inspired by the above ideas, we propose a DSFAM that can fully employ the features at
each level. As depicted in Figure 3, DSFAM consists of four continuous residual aggregation
blocks (CRABs), and each CRAB contains four MLRBs, forming a double-stack aggregation
structure. Finally, a 1 × 1 convolutional layer is used to weight the aggregated features and
maintain the dimensionality, similar to the attention mechanism. In DSFAM, the double-
stack aggregation structure is designed so that all parts of the deep network can be used
effectively, and the final extracted features are very powerful. We believe that the increase
in computation and number of parameters by properly adding skip connections would be
less than by redesigning a new module, a classic example of which is U-Net [20]. That is, a
high-performance network structure design does not always require additional modules,
and fully employing the original structure of the network may be a better approach, which
is one of the manifestations of high efficiency.

Figure 3. Detailed structure diagram of a double-stack feature aggregation module (DSFAM).

The CRAB structure is presented in Figure 4. We borrowed the aggregated design
of classical residual blocks from RFANet [34] and repositioned the skip connections by
combining the overall idea of DSFAM. In many networks, residual blocks are stacked
together to form the network backbone. However, in multiple consecutive residual blocks,
the features extracted from the first residual block must pass through long paths with
repeated convolution and addition operations to reach the last residual block. As a result,
the residual features at different levels are difficult to apply fully and play a very local role in
the learning process of the whole network, which fits in with the idea of the DSFAM design.

Figure 4. Detailed structure diagram of continuous residual aggregation block (CRAB).

Unlike RFANet, instead of aggregating multiple residual blocks within a residual
range, we aggregated continuous residual blocks. The RFANet approach is to aggregate
residual features within residual features rather than directly aggregate residual features,
as displayed in Figure 5. The advantage of the continuous residual aggregation used in the
CRAB is that the residual features at each level can be used more directly, whereas the skip
connection at each level makes the gradient update more easily. In addition, the CRAB
results from a special optimisation based on DSFAM design ideas.
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Figure 5. Detailed structure diagram of the residual feature aggregation framework (RFANet).

In the CRAB, to enhance the receptive field of the ordinary residual block and extract
features on multiple scales, we designed an MLRB instead of an ordinary convolutional
block; the structure of the MLRB is depicted in Figure 6. We used four parallel branches
for feature extraction to separately obtain features on different scales while maintaining
computational volume. Inspired by DMDNet [40] and related studies [37], we extended
the receptive field of small-scale convolutional kernels using dilated convolution to achieve
feature extraction at multiple scales with different expansion coefficients.

Figure 6. Detailed structure diagram of multiscale large-kernel residual convolution block (MLRB).

However, some studies [38,42] have demonstrated that dilation convolution may
have grid effects. Although this drawback can be overcome by mixing convolutions with
different expansion coefficients, information loss still occurs on edges, and some pixels
in the image are not used. Some approaches propose using a compensation mechanism
to compensate for the disadvantages of dilated convolution to address this problem. The
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compensation mechanism generally works by extracting features using a new module,
concatenating them with the features extracted by the dilated convolution on the channel,
and feeding them to the next part.

However, the problem with this approach is that although the compensation mecha-
nism compensates for drawbacks, this is achieved by increasing the number of parameters
and computational effort. The idea of large-kernel networks proposed by RepLKNet [38]
provides new inspiration. RepLKNet reviews the design of large kernels in CNNs. Large-
kernel convolutions mostly appeared in early CNNs, such as AlexNet [43], but in most
networks after VGG, the strategy of stacking multiple 3 × 3 convolutional layers was used.
Large-kernel convolution is a way to increase the receptive field, which is more sensitive
to shape bias compared to multiple small convolutions. Both dilated and large-kernel
convolution can increase the receptive field, and whether their combination is superior is
the motivation to design the MLRB.

In the MLRB, we again set up two small branches within each parallel branch to
combine large-kernel and dilated convolution, solving the possible lattice effect of dilated
convolution. The inputs of these two small branches are the same in the large-kernel
convolutional layer (the dilated convolutional kernel can be regarded as a large kernel)
and the 3 × 3 basic convolutional layer. Next, the features extracted from the two small
branches are numerically summed to obtain the composite features. Finally, the composite
features extracted from all parallel branches are concatenated and fused using a 1 × 1
convolutional layer.

The numerical superposition of the features extracted on the two small branches is
equivalent to the convolutional operation of the input image with a composite convolutional
kernel. The structure of the composite convolutional kernel in the MLRB is depicted in
Figure 7, whereby we set a basic 3 × 3 convolution in each parallel branch, and each
parallel branch is paired with a large-kernel convolution of varying sizes, with a 9 × 9
convolution on the leftmost side and an expansion on the right side, representing a dilated
convolution with factors of 2, 3, and 4. Yellow indicates the composite part of the two
convolutional kernels.

Figure 7. Composite convolutional kernel structure diagram: (a) construction in the multiscale
large-kernel residual convolution block (MLRB) (orange indicates the composite part of the two
convolutional kernels) and (b) the regular dilated structure.

The entire DSFAM can be defined as:

fMLRB = δ(Conv1,64(δ(( f9×9 + f3×3)⊗ ( f3×3 + f5×5,d)⊗ ( f3×3 + f7×7,d)⊗ ( f3×3 + f9×9,d)))) (4)

fMLRB,l =

{
fMLRB(x),

fMLRB( fMLRB,1 + fMLRB,2 + . . . + fMLRB,l + x),

l = 1

l = 2, 3, 4
(5)

fCRAB = Conv1,64( fMLRB,1 ⊗ fMLRB,2 ⊗ . . .⊗ fMLRB,4) + fMLRB,1 + fMLRB,2 + . . . + fMLRB,3 + x (6)
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fCRAB,l =

{
fCRAB( fP+M),

fCRAB( fCRAB,1 + fCRAB,2 + . . . + fCRAB,l + x),

l = 1

l = 2, 3, 4
(7)

fDSFAM = Conv1,64( fCRAB,1 ⊗ fCRAB,2 ⊗ . . .⊗ fCRAB,4) (8)

where Conv f ,n(·) denotes the convolutional layer with a convolutional kernel size of f × f ,
n is the number of channels, δ(·) is the PReLU activation function, fMLRB,l denotes the
MLRB blocks of the four levels in CRAB, fCRAB,l denotes the CRAB blocks of the four
levels in DSFAM, x denotes the input image of each level of CRAB, and ⊗ denotes the
concatenate operation.

3.3. Fully Dense Fusion Block

To fully retain the feature information extracted from each layer and effectively fuse
the features on different scales, we adopted a fully dense fusion (FDF) block. The specific
structure of FDF is presented in Figure 8. DenseNet was the first to employ the concept
of dense connection, connecting each layer to all other layers in a feedforward manner,
alleviating the gradient disappearance problem and enhancing feature propagation while
reusing features. Many studies have employed the concept of dense connectivity, and
pansharpening methods, such as TPNwFB and CPNet, have used dense connectivity and
achieved good results.

Figure 8. Fully dense fusion (FDF) block structure diagram; numbers in parentheses indicate the
number of channels output by FDF at the PAN, middle, and MS scales.

We set up a 1 × 1 convolution at the beginning and end of the FDF to maintain the
dimensionality. The basic component is a combination of 1 × 1 and 3 × 3 convolution.
Considering the computational cost and experimental results, we set the number of basic
components of the FDF to six. All convolutional layers of the FDF are followed by PReLU
activation functions. In the framework design, the number of feature fusions at different
levels is high, so the size of the FDF should not be too large. The main task of FDF is to
perform the initial fusion of feature maps at different scales at the feature level to obtain
improved and powerful features.

3.4. Feature-Travel Route

Fu et al. [25] proposed a new pansharpening algorithm, TPNwFB, by combining the
feedback connections in SR tasks. The TPNwFB implements the feedback mechanism by
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passing the deep features extracted in the previous time step to the same feature extraction
block in the next time step. The deep features provide more information to the shallow
features and continuously refine the shallow features to obtain powerful deep features.

Xu et al. [27] extracted information from the LRMS image scale to make more use of
the information on multiple scales of the input image. This method continuously passes
the low-scale image information to the PAN image scale to progressively fuse PAN and
MS images.

The feature-travel strategy is derived from feedback connections and progressive
fusion. We also used images on three scales as input (PAN, middle, and MS scale) for
the sake of description. The features first extracted at the PAN scale are cyclically fused
with features extracted at other scales to enrich the missing multiscale feature information
at the PAN scale. Specifically, the features extracted at the PAN scale are downsampled
to the next scale for fusion as the prior information of the middle-scale features, and the
process is cycled until the MS scale. After reaching the MS scale, the fused information
is upsampled as a complement to the coarse-scale information in the previous layer and
returns to the PAN scale. For each downsampling, the number of channels is twice as
many as the original quantity. For each upsampling, the number of channels is half the
original amount. The feature-travel strategy supplements the information on the three
scales, reduces the details lost in the input image due to resampling, and improves the final
reconstruction results.

3.5. Reconstruction Block

For fused features, we used a three-layer reconstruction block for the final reconstruc-
tion task. The structure of the reconstruction block is presented in Figure 9. We adopted a
three-step strategy to consider the possible information loss problem of an excessively dras-
tic channel dimension change during the reconstruction process. The number of channels
output by each convolutional layer is half the input, and the number of channels output
by the third convolutional layer is four, consistent with the number of channels of the
LRMS image. Moreover, the activation function of the third convolutional layer is replaced
with the tanh function to eliminate the effect of outliers. Combining the residual feature
map and LRMS output from the reconstruction block provides required high-resolution
multispectral (HRMS) image.

Figure 9. Detailed structure of the reconstruction block.

This process can be defined as:

Iout = ILRMS + σ(Conv3,4(δ(Conv3,In_channel/2(δ(Conv3,In_channel/2( fFDF(·))))))) (9)

The notation ⊗ denotes the concatenate operation; Conv f ,n(·) denotes the convolu-
tional layer; and f and n denote the convolutional kernel size and the number of channels,
respectively. In Equation (9), In_channel represents the number of input channels; y repre-
sents the input image of the reconstruction block at each level; and σ(·) and δ(·) denote the
tanh activation function and the PReLU activation function, respectively.
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3.6. Loss Function

We chose the l1 loss function to optimise the network parameters. Because it squares
the difference, the l2 function expands the influence of the outliers on network optimisation
and obtains images that are usually smoother and have the potential for local minimisation
problems. The l1 loss function is less sensitive to outliers and can obtain more edge
information. Many studies and experimental results [24,41,44] have demonstrated the
superiority of the l1 function. We attached l1 loss functions to the network at each scale to
ensure that feature travel is supplemented with valid multiscale feature information. We
included three networks on the scales in one iteration, resulting in three sharpened images.
The mathematical expression of the total loss function is as follows:

loss =
1
N

N

∑
i=1

(
∥∥∥Ipan

g − Ipan
out

∥∥∥
1
+
∥∥∥Imid

g − Imid
out

∥∥∥
1
+
∥∥∥Ims

g − Ims
out

∥∥∥
1
) (10)

where Ipan
g and Ipan

out denote the ground truth images on the PAN scale and HRMS images
output by the network on the PAN scale, respectively; Imid

g and Imid
g denote the ground-

truth images on the middle scale and HRMS images output by the network on the middle
scale, respectively; Ims

g and Ims
g denote the ground-truth images on the MS scale and HRMS

images output by the network on the MS scale, respectively; and N represents the number
of samples in each training batch.

4. Experiments and Analysis

In this section, we demonstrate the effectiveness and superiority of the proposed
method through experiments on the QuickBird, WorldView-2, and WorldView-3 datasets.
In the early experiments, the best model was selected by comparing and evaluating the
training and testing results of various network parameter models. Finally, we compared
the best model built using several existing algorithms to demonstrate the superiority of the
proposed method.

4.1. Dataset

To evaluate the performance of the proposed double-stack aggregation network based
on the feature-travel strategy, we trained and tested the model on datasets collected from
three satellite sensors (Quickbird, WorldView-2, and WorldView-3). The number of bands
and the spatial and radiometric resolution (RR) of the different satellite sensors are pre-
sented in Table 1.

Table 1. Spatial and radiometric resolution (RR) and number of bands for the satellite datasets.

Sensors Bands PAN MS RR

QuickBird 4 0.61 m 2.44 m 11 bit
WorldView-2 8 0.46 m 1.84 m 11 bit
WorldView-3 8 0.31 m 1.24 m 11 bit

We followed Wald’s protocol [45] to generate the reduced-resolution image dataset.
The process of simulating the training dataset according to Wald’s protocol is illustrated in
Figure 10. In brief, Wald’s protocol downsamples the original PAN and LRMS images by
a resolution factor of four. The downsampled PAN and LRMS images are treated as the
input images for the simulation experiment, whereas the original LRMS images are used as
the GT images in the simulation experiment.
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Figure 10. The process of generating a training dataset according to Wald’s protocol. The data
represented by the red text are used for simulated experiments, whereas the data represented by the
black text are used for real experiments.

The dataset for each satellite was divided into training and testing sets with a different
subset of the source images. The training set was used for network training, and the testing
set was used to evaluate the network performance. The number of training and testing sets
in different satellite datasets is listed in Table 2.

Table 2. Size of the training and testing sets for the satellite datasets.

Dataset Total Numbers Train Set Validation Set

QuickBird 950 750 200
WorldView-2 750 600 150
WorldView-3 1300 1000 300

The LMS (a reduced-resolution form of MS images), MS, and PL (reduced-resolution
form of PAN images) image sizes of the training data were 16 × 16 × 4, 64 × 64 × 4, and
64 × 64 × 1, respectively. The full-resolution MS and PAN image sizes of the testing data
were 64 × 64 × 4 and 256 × 256 × 4, respectively.

4.2. Experimental Setup

The network architecture for this study was implemented using the PyTorch deep
learning framework and trained on an NVIDIA RTX 3090 graphics processing unit (GPU).
The training time for the whole project was about 4 hours. We used the Adam [46]
optimisation algorithm to minimise the loss function and optimise the model. We set the
learning rate size to 0.001, the weight decay to 10−8, and the total number of iterations to
4 × 104. The image patch size was set to 64 × 64, and the batch size was set to 16. The
red, green, and blue bands of the multispectral image were used as the imaging bands
of the RGB image to form a colour image to facilitate visualisation, and the visualisation
results were given using ENVI. All image bands were simultaneously used to calculate
the image evaluation index. The CNN-based experiments were completed on a GPU, and
CS/MRA-based experiments were completed on a central processing unit (CPU) using
MATLAB to compare the pansharpening effect.

4.3. Evaluation Indicators

We compared the performance of different algorithms using two types of experiments:
a simulated experiment concerning HRMS images and a real experiment without reference
to HRMS images because they often lack actual application scenarios for remote sensing
images. To more objectively evaluate and analyse the performance of algorithms according
to various aspects of different datasets, we selected the following objective evaluation
metrics based on the characteristics of simulated and real experiments:

• Spectral angle mapper (SAM) [47]: The SAM measures the spectral aberration of the
pansharpened image and reference image, defined as the angle between the spectral



Remote Sens. 2022, 14, 4224 15 of 29

vector after pansharpening and the reference image within the same pixel, which is
calculated as follows:

SAM(x1, x2) = arccos
(

x1 · x2

‖x1‖ · ‖x2‖

)
(11)

where x1 and x2 are two spectral vectors. In addition, the SAM averages over all
images to generate a global measure of spectral distortion. For an ideal pansharpened
image, the SAM should be set to 0.

• Correlation coefficient (CC) [41]: The CC is another widely used measure of the
spectral quality of pansharpened images. The CC between the pansharpened image
(X) and the corresponding reference image (Y) is calculated as follows:

CC =

w
∑

i=1

h
∑

j=1
(Xi,j − uX)(Yi,j − uY)√

w
∑

i=1

h
∑

j=1
(Xi,j − uX)

2 w
∑

i=1

h
∑

j=1
(Yi,j − uY)

2
(12)

where w and h are the width and height of the image, and µ∗ denotes the average
value of the image. The CC value ranges from −1 to +1, with an ideal value of +1.

• Quality index (Q4) [48]: The Q4 is a four-band extension of the Q index and is defined
as follows:

Q4 =
4|σz1z2 | ·

∣∣µz1

∣∣ · ∣∣µz2

∣∣
(σ2

z1
+ σ2

z2
) · (µ2

z1
+ µ2

z1
)

(13)

where z1 and z2 are two quaternions consisting of the spectral vector of the MS image
(i.e., z = a + ib + jc + kd), where µz1 and µz2 are the means of z1 and z2, respectively;
σz1z2 is the covariance of z1 and z2; and σ2

z1
and σ2

z2
are the variances of z1 and z2,

respectively. The ideal value of Q4 is 1.
• Relative average spectral error (RASE): The RASE estimates the overall spectral quality

of the PAN sharpened image, where RMSE(Bi) is the root mean square error of the i
band of the pansharpened image and the reference image, and M is the mean value of
the N bands:

RASE =
100
M

√√√√ 1
N

N

∑
i=1

RMSE(Bi)
2 (14)

• Erreur relative globale adimensionnelle de synthèse (ERGAS) [49]: The ERGAS, also known
as the relative global dimensional synthesis error, is a commonly used global quality
index expressed as:

ERGAS = 100
h
l

√√√√ 1
N

N

∑
i=1

(
RMSE(Bi)

M(Bi)

)2

(15)

where h and l are the spatial resolutions of PAN and MS images, respectively; RMSE(Bi)
is the root mean square error of the ith band of the fused image and reference image;
and M(Bi) is the average of the original MS band (Bi). The ideal value of ERGAS is 0.

• Structural similarity index measure (SSIM) [50]: The SSIM is the similarity measure
between two images, defined as follows:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(16)

where x and y are the pansharpened and reference images, respectively; µ∗ and σ∗ are
the mean and variance of the corresponding images, respectively; σxy is the covariance
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between the fused and reference images; and c1 and c2 are constants used to maintain
stability. The ideal value of SSIM is 1.

• Quality with no reference (QNR) [51]: The QNR is an evaluation index used to evaluate
the reference-free image and consists of Dλ and DS, where Dλ represents the degree
of spectral distortion, mathematically expressed as:

Dλ =
p

√√√√√√√
1

N(N − 1)

N

∑
b=1

N

∑
c = 1
c 6= b

∣∣∣UIQI(m̃b, m̃c)−UIQI( f̂b, f̂c)
∣∣∣p (17)

where UIQI represents the universal image quality evaluation index; m̃b and m̃c are
b-band and c-band low-spatial-resolution MS images, respectively; f̂b and f̂c are b-
band and c-band pansharpened images, respectively; and p is a positive integer of the
magnification difference. The representation of UIQI is:

UIQI =
4σxy · x · y

(σ2
x + σ2

y )[(x)2 + (y)2]
(18)

where x and y indicate the original and test images, respectively; σxy denotes the co-
variance between x and y images; x and σx are the mean and variance of x, respectively;
and y and σy are the mean and variance of y, respectively.

Furthermore, DS denotes the degree of spatial distortion, mathematically expressed as:

DS = q

√√√√ 1
N

N

∑
b=1

∣∣∣UIQI(m̃b, p̃)−UIQI( f̂b, p̂)
∣∣∣q (19)

where p̂ and p̃ denote the PAN image and reduced-resolution version of the PAN im-
age, respectively; and q is a positive integer of the amplification difference. The QNR is
expressed as:

QNR = (1− Dλ)
α(1− DS)

β (20)

where α and β are constants. The optimal value of QNR is 1, and the ideal value for Dλ

and DS is 0.

4.4. Simulated and Real Experiments

Simulated and real experiments were conducted on different datasets to verify the
effectiveness and reliability of the network. Representative traditional and deep-learning-
based algorithms were selected from three datasets to compare the performance of various
methods using subjective visual and objective metrics. The selected traditional algorithms
are CS-based methods, such as PRACS [8] and GS [7]. Among the MRA-based methods,
DWT [52], HPF [53], GLP [13], SFIM [9], and IND [54] were considered. We selected four
deep-learning-based methods for comparison: DMDNet [40], CPNet [27], TPNwFB [25],
and TDPNet [28].

4.4.1. Experiment with the Quickbird Dataset

The fusion results using the QuickBird dataset are presented in Figure 11. Figure 11a–c
depicts the reference, PAN, and LRMS images, respectively, Figure 11d–j presents the fusion
results of the conventional algorithm, and Figure 11k–o represents the fusion results of the
deep learning methods.
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Figure 11. Results for four bands using the QuickBird dataset (resolution, 256 × 256 pixels): (a) ref-
erence image; (b) PAN; (c) LRMS; (d) DWT; (e) HPF; (f) GS; (g) GLP; (h) SFIM; (i) IND; (j) PRACS;
(k) DMDNet; (l) CPNet; (m) TPNwFB; (n) TDPNet; (o) ours algorithm.

Subjective analysis of all fused images and comparison of methods shows that the
fused images of non-deep learning methods differ significantly in terms of colour and detail
compared to the reference images, which is a typical physical distortion phenomenon in
traditional methods (i.e., spectral distortion and spatial distortion). Among these methods,
the fused image of DWT is the worst, with severe spectral and spatial distortion and
obvious artefacts. The fused image of IND also suffers from spectral distortion, although
the spatial detail is better preserved than for DWT. The fused image of PRACS is relatively
better in terms of spatial detail, but there is obvious spectral distortion, and the overall tone
does not match the original image. The fused images of HPF, GLP, and SFIM present with
the same physical distortion. Moreover, GLP and SFIM do not differ significantly in terms
of the subjective effect of the fused images, which are better than the previous methods but
with obvious artefacts on the edges. The subjective effect of the GS-fused images is the best
among the traditional methods.

All selected deep learning methods have good fidelity in spectral and spatial terms.
A closer examination reveals that DFS-Net performs better in terms of spectral details
than other deep learning algorithms. The selected deep learning methods are all relatively
representative and high-quality algorithms; thus, it is difficult to determine differences in
texture details from a subjective perspective. We used evaluation metrics to compare the
differences between the algorithms to further assess the strengths and weaknesses of each
method from an objective perspective. Table 3 presents the objective results of each method
according to various evaluation metrics.
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Table 3. Evaluation results on the QuickBird dataset. The mean and deviation values are shown in
this table and in the following tables (best results in bold).

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM

DWT 13.97 ± 1.17 43.90 ± 3.34 0.533 ± 0.047 10.96 ± 0.69 0.758 ± 0.028 0.701 ± 0.057 0.495 ± 0.041
HPF 10.35 ± 1.31 41.38 ± 2.34 0.638 ± 0.035 10.53 ± 0.41 0.831 ± 0.013 0.762 ± 0.034 0.613 ± 0.035
GS 8.88 ± 1.46 31.13 ± 3.06 0.686 ± 0.062 7.86 ± 0.43 0.888 ± 0.019 0.819 ± 0.048 0.662 ± 0.061

GLP 11.06 ± 1.47 41.83 ± 2.51 0.644 ± 0.037 10.65 ± 0.44 0.838 ± 0.013 0.768 ± 0.036 0.616 ± 0.037
SFIM 8.36 ± 0.99 43.45 ± 1.92 0.639 ± 0.022 11.33 ± 0.48 0.821 ± 0.009 0.745 ± 0.027 0.619 ± 0.021
IND 14.07 ± 1.79 51.59 ± 2.99 0.539 ± 0.038 13.13 ± 0.58 0.756 ± 0.013 0.665 ± 0.048 0.517 ± 0.036

PRACS 10.06 ± 1.25 37.99 ± 3.07 0.658 ± 0.04 9.39 ± 0.29 0.839 ± 0.032 0.794 ± 0.038 0.629 ± 0.038
DMDNet 4.25 ± 0.26 15.41 ± 0.79 0.877 ± 0.027 4.06 ± 0.17 0.976 ± 0.003 0.955 ± 0.014 0.863 ± 0.027

CPNet 4.03 ± 0.28 15.45 ± 1.36 0.888 ± 0.027 3.98 ± 0.19 0.975 ± 0.004 0.957 ± 0.014 0.877 ± 0.027
TPNwFB 2.63 ± 0.16 10.64 ± 0.79 0.939 ± 0.015 2.79 ± 0.15 0.988 ± 0.002 0.978 ± 0.007 0.934 ± 0.013
TDPNet 3.70 ± 0.25 14.14 ± 0.85 0.897 ± 0.023 3.65 ± 0.17 0.979 ± 0.003 0.962 ± 0.011 0.885 ± 0.022

Proposed 2.32 ± 0.13 9.29 ± 0.66 0.949 ± 0.013 2.41 ± 0.11 0.991 ± 0.001 0.983 ± 0.006 0.945 ± 0.012

Ideal value 0 0 1 0 1 1 1

DMDNet uses 10 convolutional layers to extract the detail information. Although
the performance is improved using null convolution, the use of null convolution is very
limited, and the overall number of parameters is small, which is the worst among all deep
learning methods.

CPNet, through the innovation of the framework, is the most effective algorithm
in terms of volume, and TDPNet strengthens the application of deep learning, further
increasing the volume and improving the overall performance relative to CPNet. The
spatial details and spectral information are closer to the reference image.

TPNwFB uses feedback connections to achieve pansharpening, with the highest vol-
ume among the listed methods. It outperforms all methods except DFS-Net in terms
of metrics.

The proposed method achieves significantly better performance than all methods in
terms of spectral difference, global error, and SSIM. This outcome proves the effectiveness
of the proposed method.

4.4.2. Experiments with the Worldview-2 Dataset

The fusion results using the WorldView-2 dataset are presented in Figure 12. In
Figure 12a–c illustrates the reference, PAN, and LRMS images, respectively, Figure 12d–j
displays the fusion results of traditional algorithms, and Figure 12k–o provides the fusion
results of deep learning methods.

The figure visualises the significant colour differences of the conventional method
compared to the reference image, suffering from more severe spatial blurring than the deep
learning method. The LRMS images used in the simulation experiments contain spectral
information not present in the reference image (i.e., blue pixel points in the zoomed-in
region), which is caused by multiple resamplings of the images. All fused images generated
by the traditional methods exhibit spectral distortion at the corresponding positions. In
contrast, the deep learning methods do exhibit spectral distortion, indicating that they are
more robust than the traditional methods. Among the deep-learning-based methods, the
fusion results of DFS-Net have indicate a significant advantage relative to other methods in
terms of spectral preservation compared with the reference image, and some edge details
in buildings are more obvious than in the other methods.
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Figure 12. Results for four bands using the WorldView-2 dataset (resolution, 256 × 256 pixels):
(a) reference image; (b) PAN; (c) LRMS; (d) DWT; (e) HPF; (f) GS; (g) GLP; (h) SFIM; (i) IND;
(j) PRACS; (k) DMDNet; (l) CPNet; (m) TPNwFB; (n) TDPNet; (o) our algorithm.

The results of each method according to different objective evaluation metrics are
listed in Table 4. The difference in metric values between the methods on the WorldView-2
dataset is not as considerable as on the QuickBird dataset, but the fused images generated
by the deep learning methods still perform considerably better than those generated by the
traditional methods according to all metrics.

Table 4. Evaluation results on the WorldView-2 dataset (best results in bold).

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM

DWT 8.86 ± 0.64 31.86 ± 3.65 0.576 ± 0.016 7.98 ± 0.89 0.808 ± 0.029 0.734 ± 0.012 0.525 ± 0.013
HPF 7.76 ± 0.86 32.39 ± 4.26 0.649 ± 0.013 7.99 ± 1.07 0.838 ± 0.029 0.777 ± 0.012 0.616 ± 0.014
GS 6.17 ± 0.74 23.37 ± 3.92 0.723 ± 0.017 5.76 ± 0.98 0.899 ± 0.027 0.848 ± 0.017 0.686 ± 0.019

GLP 8.14 ± 0.94 32.19 ± 4.19 0.664 ± 0.015 7.94 ± 1.05 0.849 ± 0.028 0.788 ± 0.012 0.630 ± 0.015
SFIM 6.37 ± 0.78 33.62 ± 4.53 0.641 ± 0.014 8.29 ± 1.14 0.828 ± 0.033 0.764 ± 0.015 0.609 ± 0.014
IND 10.28 ± 1.48 40.05 ± 5.46 0.578 ± 0.011 9.88 ± 1.37 0.765 ± 0.041 0.698 ± 0.016 0.549 ± 0.013

PRACS 6.99 ± 0.82 26.29 ± 4.24 0.716 ± 0.013 6.45 ± 1.06 0.897 ± 0.027 0.839 ± 0.009 0.678 ± 0.016
DMDNet 5.05 ± 0.59 22.09 ± 3.29 0.783 ± 0.023 5.44 ± 0.82 0.923 ± 0.019 0.881 ± 0.015 0.751 ± 0.026

CPNet 4.59 ± 0.54 20.09 ± 2.82 0.807 ± 0.019 4.95 ± 0.69 0.931 ± 0.017 0.898 ± 0.011 0.777 ± 0.024
TPNwFB 4.24 ± 0.75 18.19 ± 2.98 0.826 ± 0.036 4.48 ± 0.74 0.944 ± 0.018 0.913 ± 0.017 0.796 ± 0.043
TDPNet 4.72 ± 0.68 18.66 ± 2.88 0.813 ± 0.031 4.59 ± 0.71 0.941 ± 0.018 0.907 ± 0.016 0.782 ± 0.036

Proposed 4.19 ± 0.71 17.74 ± 2.94 0.834 ± 0.029 4.36 ± 0.73 0.947 ± 0.017 0.918 ± 0.015 0.805 ± 0.036

Ideal value 0 0 1 0 1 1 1
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As previously observed, the GS method is the best performer among the traditional
methods, followed by the PRACS method. The GS method with the best performance
among the traditional methods still has a small gap compared to the method with the worst
metric values among the deep learning methods.

Regarding the deep learning methods, DMDNet extracts the detail information in
the high-pass image domain, which is likely to lose more details; thus, it is somewhat
inferior to the other methods in terms of the SSIM and global error. The advantage of the
deep learning method on the WorldView-2 dataset is not as obvious due to the dataset’s
characteristics, whereby the convergence of the network model is difficult. However, the
proposed method still presents the best results for all metrics, and the model performance
is the best for spatial details and spectral information fidelity.

4.4.3. Experiment with the WorldView-3 Dataset

The fusion results using the WorldView-3 dataset are presented in Figure 13. Figure 13a–c
displays the reference, PAN, and LRMS images, respectively, Figure 13d–j presents the
fusion results of the traditional algorithm, and Figure 13k–o provides the fusion results of
the deep learning method.

Figure 13. Results for four bands using the WorldView-3 dataset (resolution, 256 × 256 pixels):
(a) reference image; (b) PAN; (c) LRMS; (d) DWT; (e) HPF; (f) GS; (g) GLP; (h) SFIM; (i) IND;
(j) PRACS; (k) DMDNet; (l) CPNet; (m) TPNwFB; (n) TDPNet; (o) ours algorithm.

In the traditional method, the fusion image generated by DWT still suffers from
spectral distortion, with numerous obvious artefacts, making the whole image appear
blurry. The fusion image generated by IND has better spatial details than DWT but still
exhibits obvious spectral distortion. The best performers are still the GS and PRACS
methods, with distinct spatial edges, especially for buildings, but they suffer from the same
spectral distortion visible to the naked eye. The differences between the deep learning
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methods become are reduced but still exhibit better spatial and spectral fidelity than the
traditional methods.

To further compare the performance of each method, we analysed the networks using
an objective evaluation method. The results for each method according to the objective
evaluation metrics are listed in Table 5. All methods perform better on the WorldView-3
dataset according to the metrics.

Table 5. Evaluation results on the WorldView-3 dataset (best results in bold).

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM

DWT 7.81 ± 0.59 30.43 ± 3.29 0.647 ± 0.033 7.75 ± 0.83 0.885 ± 0.006 0.791 ± 0.029 0.609 ± 0.029
HPF 4.29 ± 0.49 27.83 ± 3.92 0.735 ± 0.035 7.11 ± 1.04 0.912 ± 0.007 0.865 ± 0.021 0.715 ± 0.035
GS 3.79 ± 0.49 19.29 ± 2.88 0.804 ± 0.044 4.93 ± 0.77 0.951 ± 0.008 0.906 ± 0.022 0.786 ± 0.043

GLP 4.47 ± 0.52 27.44 ± 3.89 0.749 ± 0.037 7.02 ± 1.04 0.924 ± 0.007 0.873 ± 0.021 0.731 ± 0.036
SFIM 3.82 ± 0.44 43.85 ± 29.08 0.737 ± 0.034 12.83 ± 10.69 0.827 ± 0.154 0.848 ± 0.029 0.719 ± 0.032
IND 6.48 ± 0.99 36.23 ± 5.07 0.648 ± 0.039 9.23 ± 1.32 0.857 ± 0.009 0.795 ± 0.029 0.628 ± 0.038

PRACS 4.05 ± 0.42 20.54 ± 2.99 0.817 ± 0.034 5.13 ± 0.78 0.958 ± 0.007 0.917 ± 0.015 0.799 ± 0.031
DMDNet 2.93 ± 0.31 12.84 ± 1.92 0.899 ± 0.014 3.19 ± 0.48 0.978 ± 0.004 0.963 ± 0.006 0.895 ± 0.009

CPNet 3.05 ± 0.47 13.86 ± 2.31 0.897 ± 0.016 3.38 ± 0.54 0.974 ± 0.005 0.952 ± 0.012 0.895 ± 0.012
TPNwFB 2.87 ± 0.28 12.58 ± 1.96 0.894 ± 0.016 3.14 ± 0.49 0.979 ± 0.004 0.961 ± 0.007 0.888 ± 0.012
TDPNet 3.06 ± 0.34 12.61 ± 1.74 0.888 ± 0.021 3.15 ± 0.44 0.979 ± 0.004 0.956 ± 0.011 0.883 ± 0.016

Proposed 2.76 ± 0.28 12.16 ± 1.88 0.903 ± 0.019 3.03 ± 0.47 0.981 ± 0.004 0.963 ± 0.009 0.899 ± 0.015

Ideal value 0 0 1 0 1 1 1

Among the traditional methods, GS and PRACS are very close to the deep learning
methods in terms of SAM, CC, and Q4 metrics, implying good results from the perspective
of spectral information preservation. However, a large gap exists between these two
methods and the deep learning methods in SSIM and ERGAS metrics, indicating that some
problems still occur in preserving spatial detail information in the traditional methods.

Among the CNN-based methods, CPNet exhibits outstanding performance in terms of
the Q_AVE and SSIM metrics, indicating the significance of using the multiscale information
of the input image for spatial information preservation. In addition, TPNwFB achieves the
best performance in terms of the SAM, ERGAS, and CC metrics, indicating the advantage
of a feedback connection with respect to the overall image quality and the preservation
of spectral information. The performance of TDPNet is the same as that of TPNwFB. The
proposed network obtained the most competitive results in preserving spectral information
and spatial information mining compared to all selected comparison methods. Based on
all objective evaluation metrics, the proposed method significantly outperforms existing
fusion methods, proving the effectiveness of the method.

4.4.4. Experiments with Quickbird Real Datasets

We used the trained model from the simulation experiments and original images as
input to generate the fused images in real experiments. The real experiments directly input
the original MS and PAN images into the model without image resampling to ensure ideal
full-resolution experimental results, and the other models followed a similar approach.

The fusion results using the QuickBird real dataset are illustrated in Figure 14. Figure 14a,b
shows the upsampled LRMS and PAN images, respectively (resolution, 256 × 256 pixels),
Figure 14c–i presents the fusion results of the conventional algorithm, and Figure 14j–n
depicts the fusion results of the deep learning methods. Table 6 lists the results of the
objective analysis of each method according to the index values.

The fused images generated by DWT and GS present with obvious spectral distortion.
The DWT images are duller, and the GS images are more vivid than images generated
with other methods. The PRACS method achieves the most balanced performance of all
traditional methods, with no obvious spatial distortion of the buildings and backgrounds
and a more realistic colour perception relative to other traditional methods. No significant
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difference in terms of perception was observed between the deep learning methods. The
proposed method is more sensitive to small areas, such as the white dots on the top of the
house in the zoomed-in area. The proposed method is the clearest and brightest, and the
image content is smoother than other methods.

Figure 14. Results for four bands using the QuickBird real dataset (resolution, 256 × 256 pixels):
(a) upsampled LRMS; (b) PAN; (c) DWT; (d) HPF; (e) GS; (f) GLP; (g) SFIM; (h) IND; (i) PRACS;
(j) DMDNet; (k) CPNet; (l) TPNwFB; (m) TDPNet; (n) ours algorithm.

Table 6. Evaluation results of the QuickBird real dataset (best results in bold).

Method QNR Dλ DS

DWT 0.583 ± 0.011 0.325 ± 0.024 0.136 ± 0.015
HPF 0.672 ± 0.006 0.129 ± 0.013 0.228 ± 0.019
GS 0.690 ± 0.032 0.076 ± 0.005 0.253 ± 0.030

GLP 0.670 ± 0.006 0.127 ± 0.014 0.233 ± 0.005
SFIM 0.686 ± 0.004 0.124 ± 0.016 0.217 ± 0.018
IND 0.728 ± 0.008 0.099 ± 0.010 0.192 ± 0.001

PRACS 0.805 ± 0.028 0.046 ± 0.002 0.156 ± 0.027
DMDNet 0.857 ± 0.022 0.063 ± 0.020 0.085 ± 0.010

CPNet 0.872 ± 0.022 0.053 ± 0.011 0.079 ± 0.014
TPNwFB 0.895 ± 0.012 0.048 ± 0.019 0.060 ± 0.008
TDPNet 0.902 ± 0.012 0.033 ± 0.005 0.067 ± 0.010

Proposed 0.914 ± 0.005 0.027 ± 0.008 0.061 ± 0.007

Ideal value 1 0 0

The GS method has the worst Ds metrics due to its frequency domain conversion,
which means most spatial information is lost. As PRACS is an MRA-based method, its
Dλ metrics are superior. Its Ds metrics are also better than all other traditional methods,
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indicating that PRACS maintains the advantages of the MRA method (i.e., improved
preservation of spectral and spatial information).

The metrics are also close for the deep learning methods. The TDPNet and TPNwFB
achieve similar results, and TPNwFB is slightly better than TDPNet in terms of the Ds
metrics, whereas TDPNet is better in terms of the Dλ metrics. In addition, TPNwFB
achieves a global optimum in spatial preservation (i.e., the Ds metric) due to the feedback
connections. The proposed method is also very close to TPNeFB in terms of the Ds metric
and ranks second globally. Because the proposed method uses a more powerful feature
reuse and feature extraction module, it achieves the best result in terms of the Dλ metric,
which fully illustrates that the spectral information is derived from LRMS images and
contained in PAN images. Considering these three metrics, the proposed network achieves
better results in the full-resolution experiments, proving that the ideas and innovations
presented herein positively contribute to the field of pansharpening.

4.4.5. Generalization to New Satellites

Our network, although trained on a relatively small number of datasets, still performs
well across satellite data sources and with generalisability. To demonstrate this, we trained
our model and other DL methods on the Quickbird satellite dataset and tested it on the
WorldView-3 satellite dataset. The visual results are shown in Figure 15. CPNet and
TPNwFB show relatively poor detail, whereas DMDNet and our model are better at
preserving edge detail. The objective metric results are shown in Table 7, and as in the
previous judgement, DMDNet outperforms the other methods in most categories, whereas
our model achieves superior results relative to DMDNet in terms of the objective metrics.
This indicates that our model is robust on new satellite images and that the proposed
multiscale module can cope with intersatellite differences better than DMDNet. Based
on the experiments conducted across satellite datasets, we are very confident that our
approach is not only generalisable but also that the test results on the same satellite dataset
are very reliable.

Figure 15. Network generalisation capabilities tested on WorldView3 ((d–h) are trained on QuickBird).
(a) Reference image; (b) PAN; (c) LRMS; (d) DMDNet; (e) CPNet; (f) TPNwFB; (g) TDPNet; (h) our
algorithm.
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Table 7. Evaluation results of deep learning methods trained on QuickBird and tested on WorldView-3
(best results is in bold).

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM

DMDNet 4.99 ± 0.58 23.41 ± 3.91 0.799 ± 0.021 5.87 ± 1.00 0.938 ± 0.003 0.901 ± 0.012 0.778 ± 0.020
CPNet 5.79 ± 0.55 26.50 ± 3.81 0.749 ± 0.032 6.38 ± 0.95 0.918 ± 0.002 0.852 ± 0.028 0.728 ± 0.031

TPNwFB 5.93 ± 0.54 22.85 ± 3.07 0.716 ± 0.016 5.65 ± 0.77 0.931 ± 0.001 0.872 ± 0.022 0.670 ± 0.014
TDPNet 5.55 ± 0.45 22.19 ± 2.84 0.774 ± 0.021 5.41 ± 0.72 0.946 ± 0.001 0.879 ± 0.025 0.747 ± 0.017

Proposed 4.44 ± 0.45 19.47 ± 3.01 0.800 ± 0.022 4.83 ± 0.75 0.950 ± 0.002 0.907 ± 0.020 0.779 ± 0.020

Ideal value 0 0 1 0 1 1 1

4.4.6. Model Efficiency Evaluation

We used the performance time, model size, number of parameters, and floating-point
operations per second (FLOPs) to comprehensively evaluate the selected deep learning
model. Table 8 shows that this approach is smaller than TPNwFB and TDPNet in terms
of model size and number of parameters. The proposed model employs a feature-travel
strategy on three scales; thus, the FLOPs are slightly higher, and the running time is longer
than for TDPNet; however, the FLOPs and performance time are much smaller than for
TPNwFB, which uses feedback connections, resulting in FLOPs several times higher than
for other methods. In other words, the proposed method performs best and exhibits a
degree of improvement in metrics, such as execution time and the number of parameters,
compared to other high-performance methods, proving that this method is very efficient.

Table 8. Comparison of different deep learning methods in terms of perform time, model size,
number of parameters, and floating-point operations per second.

Method Performance
Time (S)

Model Size
(MB) Parameters (M) FLOPs (G)

DMDNet 0.3776 2.06 0.53 2.19
CPNet 0.1921 2.87 0.75 2.29

TPNwFB 1.6638 52.41 13.71 33.24
TDPNet 0.6529 47.31 12.36 5.03

Proposed 1.3364 38.53 9.97 7.34

5. Discussion

In this section, we investigate the role of each model part through ablation experiments
to demonstrate the effectiveness of each module. Here, we focus on the influence of
the DSFAM and feature-travel strategy, and the following discussion is based on the
experimental results with the QuickBird data.

5.1. Discussion of DSFAM

The DSFAM is designed to extract feature information in a comprehensive and detailed
manner, primarily consisting of double-stack aggregated skip connections, CRAB, and
MLRB. The MLRB extracts information at different scales by expanding the receptive
field, and the CRAB and double-stack aggregated skip connections fully obtain features
extracted at different levels by reusing features. To verify the effectiveness of DSFAM, we
conducted experiments on the QuickBird dataset, comparing the double-stack aggregated
skip connections, CRAB, and MLRB included in DSFAM.

First, we conducted ablation experiments on the large-kernel convolutional part of the
MLRB. We added large-kernel convolution to the 3×3 convolution and dilated convolution
for feature compounding; thus, the size design for the large-kernel convolution must be
verified. We also added the original dilated convolutional combination without multiscale
convolution as a supplementary comparison.

Table 9 details the performance of the model under various combinations. The base
part is a 3 × 3 convolution. The experiments reveal that the best performance can be
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obtained when the size of the large-kernel and dilated convolutions are the same. The effect
of using the dilated convolution alone is much worse than that of the MLRB, proving that
the overall design is very effective. We also tested a 31 × 31 size convolution recommended
in RepLKNet; it significantly improved the pansharpening task but reduced the effect,
possibly as a result of the difference between the classification and fusion tasks.

Table 9. Quantitative evaluation results of MLRB under different combinations, where “ms_” denotes
multiscale, the numbers to the right of “ms” denote the large-kernel convolution size on each of
the four branches, and “single_9 + 3” denotes only one feature composite without using dilated
convolution, where the large-kernel convolutional size is 9 × 9 (best results in bold).

Combination SAM RASE Q_AVE ERGAS CC Q4 SSIM

Single_9 + 3 2.50 ± 0.13 9.91 ± 0.64 0.943 ± 0.014 2.56 ± 0.10 0.990 ± 0.001 0.981 ± 0.006 0.938 ± 0.012
Dilate_3579 2.61 ± 0.16 10.08 ± 0.61 0.942 ± 0.014 2.61 ± 0.06 0.989 ± 0.002 0.980 ± 0.006 0.936 ± 0.012

Ms_1579 2.41 ± 0.14 9.95 ± 0.67 0.945 ± 0.012 2.57 ± 0.10 0.989 ± 0.002 0.981 ± 0.006 0.939 ± 0.012
Ms_3579 2.49 ± 0.16 9.97 ± 0.7 0.944 ± 0.013 2.57 ± 0.12 0.990 ± 0.001 0.981 ± 0.006 0.939 ± 0.013
Ms_5579 2.56 ± 0.14 10.01 ± 0.64 0.942 ± 0.014 2.59 ± 0.09 0.989 ± 0.001 0.980 ± 0.006 0.937 ± 0.013
Ms_7579 2.37 ± 0.14 9.39 ± 0.71 0.949 ± 0.013 2.44 ± 0.11 0.991 ± 0.001 0.983 ± 0.006 0.944 ± 0.012
Proposed
(ms_9579) 2.32 ± 0.13 9.29 ± 0.66 0.949 ± 0.013 2.41 ± 0.11 0.991 ± 0.001 0.983 ± 0.006 0.945 ± 0.012

Ms_13-579 2.45 ± 0.16 10.08 ± 0.77 0.944 ± 0.013 2.60 ± 0.13 0.990 ± 0.002 0.981 ± 0.006 0.939 ± 0.013
Ms_31-579 3.70 ± 0.27 14.1 ± 1.07 0.900 ± 0.023 3.62 ± 0.21 0.979 ± 0.003 0.963 ± 0.010 0.890 ± 0.023

Ideal value 0 0 1 0 1 1 1

To verify the effectiveness of the double-stack aggregated skip connections and CRAB,
we individually compared each layer of skip connections and added the original RFANet
architecture as a supplementary comparison. The objective evaluation metrics are listed in
Table 10. The “no_first_layer” method indicates the elimination of the outermost aggregated
skip connections. “Origin_Resnet” indicates the replacement of the CRAB with the original
ResNet structure (i.e., the elimination of the inner aggregated jump connection), and
“using_RFA” indicates the replacement of the structure of the CRAB with the structure used
by RFANet. The metrics reveal that the modified continuous residual aggregation block
significantly improved relative to the RFANet structure, indicating that the proposed design
is more efficient than RFANet. Tests on each layer of aggregated skip connections reveal
that all connections are essential, and the outermost connection is even more important
than the inner connection. The comparative experimental results for each DSFAM module
prove that the entire proposed DSFAM module is very effective in improving the overall
performance of the network.

Table 10. Results of the quantitative evaluation of double-stack aggregated skip connections and
CRAB (best results in bold).

Method SAM RASE Q_AVE ERGAS CC Q4 SSIM

No_first_layer 2.61 ± 0.18 11.10 ± 0.76 0.937 ± 0.014 2.85 ± 0.13 0.987 ± 0.002 0.977 ± 0.007 0.931 ± 0.013
Origin_Resnet 2.69 ± 0.16 10.53 ± 0.91 0.940 ± 0.017 2.72 ± 0.20 0.988 ± 0.002 0.977 ± 0.007 0.932 ± 0.015
Using_RFA 2.52 ± 0.17 10.22 ± 0.87 0.943 ± 0.014 2.64 ± 0.12 0.989 ± 0.002 0.980 ± 0.007 0.937 ± 0.014
Proposed 2.32 ± 0.13 9.29 ± 0.66 0.949 ± 0.013 2.41 ± 0.11 0.991 ± 0.001 0.983 ± 0.006 0.945 ± 0.012

Ideal value 0 0 1 0 1 1 1

5.2. Discussion of the Feature-Travel Strategy

To effectively acquire and supplement the feature information at each scale, we de-
signed a feature-travel strategy to enhance the already extracted feature details. We set up
two sets of comparison experiments for demonstration. “Only_pan_scale” indicates that
no three-pair multiscale input is used, and only the PAN and MS images are used as input
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(i.e., only the PAN-scale construction in the original structure). “Progressive” indicates that
the features are only fed from the low scale to the high scale without a loop process. A
comparison of the objective evaluation indices is provided in Figure 16.

Figure 16. The effect of the feature-travel route on the result of pansharpening fusion.

The objective evaluation metrics reveal the effect of using the feature-travel strategy.
Both SAM and SSIM metrics achieved encouraging results compared to the other two
comparison experiments, indicating that the feature-travel strategy has a positive effect
on the preservation of spectral and spatial information and proving its effectiveness and
rationality. Further analysis of these two comparison experiments revealed a surprising
fact. The network using the progressive fusion structure is less effective than the PAN-scale
network, which is more concise, whereas the number of parameters and computational
effort of the former network are far greater than the latter. This outcome demonstrates that
blindly stacking convolutional layers or adding convolutional blocks can affect the final
fusion results, also motivating the pursuit of high efficiency. Correct a priori knowledge
can help to avoid problems and build new efficient algorithms, in line with the original
intention of the design of DFS-Net.

6. Conclusions

To efficiently preserve the spectral and spatial information of the input images, we
propose a double-stack aggregation network using a feature-travel strategy for pansharp-
ening. The method incorporates the concept of detail injection into the design of the overall
framework to reduce the difficulty of network training using three pairs of source images at
different scales as inputs to complement the information of the input images at these scales.

We designed a DSFAM to fully employ the features extracted at different levels and
introduced a new multiscale large-kernel convolution block to expand the convolutional
field of perception and extract effective features from finer levels. We propose a novel
feature circulation strategy to circularly complement the features extracted at the three
scales to more effectively use and complement the information from different image scales.
The features at various levels are upsampled and downsampled for the initial fusion in
the network at various scales, effectively linking the three scales and generating powerful
fused features that improve the final image reconstruction results.

Extensive experiments and analyses on the WorldVIew-2, WorldVIew-3, and Quick-
Bird datasets demonstrate that DFS-Net preserves the spectral and spatial information and
obtains more detailed fusion results better than other methods, especially for the sections
with a large amount of edge information, such as buildings, traffic paths, and vegetation.
With respect to model efficiency, DFS-Net achieves better performance with lower cost than
other comparative methods, improving the efficiency of existing algorithms and proving
the potential value of the method.
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The relatively small number of images used for training is one of the limitations of
the present study due to the publicly available data used in our dataset. Furthermore, the
number of parameters of our model, although less than some more recent methods, is still
relatively large and has the potential impact the fusion performance. We will address these
limitations in future research.
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