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Abstract: In recent years, transformer has been widely used in natural language processing (NLP)
and computer vision (CV). Comparatively, forecasting image time sequences using transformer
has received less attention. In this paper, we propose the conv-attentional image time sequence
transformer (CAiTST), a transformer-based image time sequences prediction model equipped with
convolutional networks and an attentional mechanism. Specifically, we employ CAiTST to forecast the
International GNSS Service (IGS) global total electron content (TEC) maps. The IGS TEC maps from
2005 to 2017 (except 2014) are divided into the training dataset (90% of total) and validation dataset
(10% of total), and TEC maps in 2014 (high solar activity year) and 2018 (low solar activity year)
are used to test the performance of CAiTST. The input of CAiTST is presented as one day’s 12 TEC
maps (time resolution is 2 h), and the output is the next day’s 12 TEC maps. We compare the results
of CAiTST with those of the 1-day Center for Orbit Determination in Europe (CODE) prediction
model. The root mean square errors (RMSEs) from CAiTST with respect to the IGS TEC maps are
4.29 and 1.41 TECU in 2014 and 2018, respectively, while the RMSEs of the 1-day CODE prediction
model are 4.71 and 1.57 TECU. The results illustrate CAiTST performs better than the 1-day CODE
prediction model both in high and low solar activity years. The CAiTST model has less accuracy in
the equatorial ionization anomaly (EIA) region but can roughly predict the features and locations of
EIA. Additionally, due to the input only including past TEC maps, CAiTST performs poorly during
magnetic storms. Our study shows that the transformer model and its unique attention mechanism
are very suitable for images of a time sequence forecast, such as the prediction of ionospheric TEC
map sequences.

Keywords: transformer; ionospheric TEC maps; global prediction

1. Introduction

The slant total electron content, STEC, refers to the total number of electrons along
a path between a radio transmitter and a receiver (unit: TECU, 1016 electrons/m2). Iono-
spheric TEC is significant, among others, for Global Navigation Satellite Service (GNSS),
GPS signal propagation and applications; 1 TECU corresponds to a 0.163 m range delay of
an L1 frequency [1]. As a result, TEC prediction is of great significance for satellite–ground
link radio wave propagation, such as satellite navigation [2], precise point positioning
(PPP) [3–5] and time-frequency transmission [6,7]. Therefore, developing accurate global
models to predict the spatiotemporal variations in TEC is crucial [8].

Since 1998, the Ionosphere Associate Analysis Centers (IAACs) of the International
GNSS Service (IGS) have started generating reliable global ionospheric maps (GIMs) based
on global measured observational data [9]. These vertical TEC maps (for simplicity, called
TEC maps) are able to reproduce the spatial and temporal variations of the global iono-
sphere as well as seasonal variations [10]. In addition, the TEC maps are important data
sources for analyzing ionospheric anomalies [11] and ionospheric responses to storms [12].
Further, the TEC maps have been widely used in practical applications [13]. However, the
final GIM product release of IGS has an approximate latency of 11 days, while the rapid
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GIM product release of IGS is delayed by one day [14,15]. It is necessary to make up for
their lack of timeliness through prediction.

To meet the data requirements of ionospheric theoretical research and applications of
satellite navigation, PPP and time-frequency transmission, many approaches have been
developed to forecast global TEC values. For example, the Center for Orbit Determination
in Europe (CODE) proposed a global TEC prediction model based on the spherical harmonic
(SH) expansion extrapolation theory of the reference solar-geomagnetic framework [16].
The Polytechnic University of Catalonia (UPC) developed a global TEC prediction model
by using the DCT of the TEC maps and then applying a linear regression module to forecast
the time evolution of each of the DCT coefficients [17]. The Space Weather Application
Center Ionosphere (SWACI) forecasts the European and global TEC maps 1 h in advance
by using the Neustrelitz TEC model. The model approximates typical TEC variations
according to the location, time, and level of solar activity with only a few coefficients [18].

In recent years, there is mainly two methods for predicting the global TEC maps. One
is to predict the SH coefficients and then expand the predicted SH coefficients to construct
the global TEC maps. Specifically, Wang et al. [19] proposed an adaptive autoregressive
model to predict the SH coefficients for 1-day global TEC maps forecast. Liu et al. [20]
forecasted the global TEC maps 1 and 2 h in advance by using the long short-term memory
(LSTM) network to forecast the SH coefficients. Tang et al. [21] used the Prophet model to
predict the SH coefficients to generate the global ionospheric TEC maps 2 days in advance.

The other is to directly output the predicted global TEC maps by inputting the TEC
map of a certain period of time in the past. For example, Lee et al. [22] made global TEC
maps forecasting using conditional generative adversarial networks (GANs). Daily IGS
TEC maps and 1-day difference maps are used as input data for their model, and the
output is 1-day future TEC maps. Lin et al. [23] developed a spatiotemporal network to
forecast the TEC maps of the next day by inputting the TEC maps of the previous three
days. Chen et al. [24] established several LSTM-based algorithms for TEC maps forecast.
The past 48 h TEC values are used as the history data and input to the networks, and the
output is the future 48 h TEC values. Xia et al. [25] developed the ED-ConvLSTM model
consisting of a ConvLSTM network and convolutional neural networks (CNNs). Taking
24 global TEC maps of the past day as input, the ED-ConvLSTM model can predict the
global TEC maps 1 to 7 days in advance.

In fact, forecasting the global TEC maps could be described as an image time sequence
prediction problem, where the elements of the series are 2D images (global TEC maps)
rather than traditional numbers or words (can be embedded into 1D matrices). Due to its
unique and effective attention mechanism, which can draw global dependencies between
input and output [26], the transformer model has shown great potential in natural language
processing (NLP) fields since it was first proposed in 2017. However, its applications
to computer vision (CV) remained limited until Dosovitskiy et al. [27] proposed Vision
Transformer (ViT) in 2020. They successfully proved that CNNs are not necessary for vision,
and a pure transformer applied directly to sequences of image patches can perform very
well in image classification tasks [27]. Inspired by Dosovitskiy et al. [27], in this paper, we
proposed a conv-attentional image time sequence transformer (CAiTST), a transformer-
based image time sequence forecast model equipped with convolutional networks and
attentional mechanism, and we successfully used it to forecast the global TEC maps. The
input of CAiTST is one day’s 12 TEC maps (time resolution is 2 h), and the output is the
next day’s 12 TEC maps. Then, we evaluate the forecasting products of CAiTST (named
CTPG) in high and low solar activity and compare them with the predicted products by
the 1-day CODE prediction model (named C1PG).

The paper is organized as follows. The data are described in Section 2. The method is
explained in Section 3. The experimental results are demonstrated in Section 4. In addition,
Section 5 contains the discussion. Finally, conclusions are given in Section 5.
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2. Data

The CODE final TEC maps (named CODG) are used as reference data to train and eval-
uate the model, which is obtained from NASA’s Crustal Dynamics Data Information System
(CDDIS) website (https://cddis.nasa.gov/archive/gnss/products/ionex/, accessed on
20 December 2021). The spatial longitude ranges from 180◦W to 180◦E, with a resolution
of 5◦, and the latitude ranges from 87.5◦S to 87.5◦N, with a resolution of 2.5◦. Therefore,
the scale of the global TEC map grid points is 73 by 71. The TEC maps from 2005 to 2017
(except 2014) constitute the training and validation sets, of which 90% are used to train the
model, and 10% are used to validate the model. In addition, the TEC maps in 2014 (high
solar activity year) and 2018 (low solar activity year) are applied for testing.

Furthermore, due to the periodic diurnal changes of TEC [28], the TEC maps are
processed into a spatiotemporal sequence every two days. The TEC maps of the previous
day form the historical observations that are used to predict the TEC maps of the next
day. As the time resolution of CODE TEC maps is 2 h, each sequence contains a total of
24 TEC maps. Therefore the dimension of the input or output of the model is (12, 71, 73, 1),
where 12 represents that each sample contains one day’s 12 TEC maps, 71 and 73 are the
dimensions of the TEC map, 1 represents the number of channels in the TEC maps.

3. Method

An overview of the model is shown in Figure 1. It can be seen that the CAiTST model
adopts the classic sequence-to-sequence and encoder–decoder structure. The CAiTST
model first flattens and linearly projects the 12 input TEC maps of the day to obtain
image embeddings. Then, the position embeddings are added to obtain a 1D sequence of
token embeddings, which is input into the transformer encoder. The transformer encoder
mainly consists of layer normalization, multi-head attention mechanism, MLP and residual
connections. After the sequence is encoded by the transformer encoder, it is input into the
convolutional decoder to restore 12 TEC maps of the next day. It is worth noting that the
12 output TEC maps are independent, and the TEC maps at the end of the sequence do
not depend on the TEC map in the first hours. The convolutional decoder mainly consists
of dimension expansion, 3D CNN, batch normalization and up sampling. Below we will
describe each of these operations in detail.

3.1. Linear Projection of Flatten Images Sequence

The standard transformer receives an input of a 1D sequence of token embeddings.
To handle a 3D image sequence, we reshape the image sequence x ∈ RN×H×W×C into a
sequence of flattened 2D images x f ∈ RN×(H×W×C), where (H, W) is the resolution of
the original image, C is the number of channels, and N is the number of images. The
transformer uses constant latent vector size D through all of its layers, so we flatten the
images and map them to D dimensions with a trainable linear projection (Equation (1)).
We refer to the output of this projection as the image embeddings. In this work, for the TEC
map sequence, as described in Section 2, N, H, W, C are 12, 71, 73, 1, respectively, and D is
set to 324.

xemb = x f E, E ∈ R(H×W×C)×D (1)

Then, position embeddings [26] are added to the image embeddings to retain positional
information, which is given as follows:

PE(pos,2i) = sin
(

pos/10, 0002i/D
)

PE(pos,2i+1) = cos
(

pos/10, 0002i/D
) (2)

where pos is the position and i is the dimension. That is, each dimension of the posi-
tional encoding corresponds to a sinusoid. Moreover, we can get the input of transformer
encoder z0.

z0 = xemb + PE = x f E + PE, PE ∈ RN×D (3)

https://cddis.nasa.gov/archive/gnss/products/ionex/
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Figure 1. Model overview. We flatten the TEC maps into 1D matrices, linearly embed each of
them, add position embeddings and feed the embedding image sequence of vectors to a standard
transformer encoder. Then, a decoder consisting of convolutional neural networks and an up
sampling layer is responsible for outputting the prediction results.

3.2. Transformer Encoder

The transformer encoder [26] consists of alternating layers of multiheaded self-attention
(MSA) and multilayer perceptron (MLP) blocks. Layer normalization (LN) is applied before
every block [29], and residual connections after every block [30,31].

3.2.1. Layer Normalization (LN)

We normalize the activities of the neurons is an effective way to address the com-
putationally high cost of training state-of-the-art deep neural networks. LN [29] solves
the problem that it is not obvious how to apply batch normalization (BN) to recurrent
neural networks (RNNs). BN is converted into LN by calculating the normalized mean
and variance from summing all inputs of one layer of neurons in a single training case. By
calculating the normalized statistical data at each time step, it can also be directly applied
to RNNs. In addition, computing the LN statistics over all the hidden neurons in the same
layer is performed as follows:

µl =
1
H

H

∑
i=1

al
i σl =

√√√√ 1
H

H

∑
i=1

(
al

i − µl
)2 (4)

where al is the vector representation of the input sum of neurons in this layer and H denotes
the number of hidden units in a layer.

3.2.2. Multiheaded Self-Attention (MSA)

In the standard self-attention (SA) mechanism, each element has three different vectors,
which are the query vector (Q), the key vector (K) and the value vector (V). They are
obtained by multiplying the embedding vector xemb by three different weight matrices W Q,
WK and WV , which can be represented by the following formula:

[Q, K, V ] = LN(z)Uqkv, Uqkv =
[
W Q, WK, WV

]
∈ RD×3Dh (5)
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Then, the attention weights Ai
j are based on the scaled inner product computed by the

qi and kj of the two elements in the sequence.

A = softmax
(

QKT/
√

D
)

, A ∈ RN×N (6)

Moreover, we multiply the attention weight matrix A by value vector V to get the
output of SA.

SA(LN(z)) = AV (7)

MSA is an extension of SA in which we run k SA operations in parallel and project
their concatenated outputs, and here, k is set to 9. To compute and keep the number of
parameters the same when changing k, Dh is typically set to D/k, so it is 36 here.

MSA(LN(z)) = [SA1(LN(z)); SA2(LN(z)); . . . ; SAk(LN(z))]Umsa, Umsa ∈ RD×D (8)

To assist understanding, Figure 2 shows the specific operation of MSA when N = 3,
D = 4, Dh = 2 and k = 2.

Step 1

𝑾𝑸

𝐷

𝑁
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𝑲

𝑽
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𝑼𝑴𝑺𝑨

Step 3 Step 4

𝑴𝑺𝑨(𝒛)𝒛

Figure 2. The specific operation of the MSA, taking N = 3, D = 4, Dh = 2 and k = 2 as an example.

3.2.3. Multilayer Perceptron (MLP)

The MLP block consists of a hidden layer and an output layer, the number of neurons in
each is 3D and D, respectively, and the activation function is an ELU function. Furthermore,
to facilitate the description of input and output of the MLP, in the `th module, let the output
of the first residual connection be z′`, and the output of the second residual connection be
z`. Hence we have the following formulas:

z′` = MSA(LN(z`−1)) + z`−1, ` = 1 . . . L (9)

z` = MLP
(
LN
(
z′`
))

+ z′`, ` = 1 . . . L (10)

where L is the number of repetitions of the transformer encoder module. In this work, we
employ L = 6 encoder modules.

3.3. Convolutional Decoder

The convolutional decoder consists of dimension expansion, three CNN blocks and
an up sampling layer. In the CNN bocks, batch normalization (BN) [32] is used before
every CNN.

3.3.1. Dimension Expansion

The output zL ∈ RN×D of the transformer encoder is 2D in keeping with the dimen-
sions of its input. In order to restore the original 3D image sequence, we first expand
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the output dimension from N × D to N ×
√

D ×
√

D × 1; therefore, D needs to be a
square number.

s0 = reshape(zL), s0 ∈ RN×
√

D×
√

D×1 (11)

Therefore, in this work, after the dimension expansion, we get the input s0 ∈ R12×18×18×1

of the convolutional network block.

3.3.2. Batch Normalization (BN)

BN is proposed to address the internal covariate shift, which slows down the training
by requiring lower learning rates and careful parameter initialization [32]. Therefore, in
the CNN block, BN is used before every CNN layer, which allows us to use much higher
learning rates and be less careful about initialization. For the values of x over a mini-batch
(B = {x1...m}), BN first calculates it’s mean and variance with the following formulas:

µB =
1
m

m

∑
i=1

xi (12)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (13)

The values are then normalized using the obtained mean and variance to obtain values
of x̂ that conform to the (0, 1) normal distribution, where ε is a tiny positive number used
to avoid divisors by 0.

x̂i =
xi − µB√

σ2
B + ε

(14)

Finally, we multiply xi by γ to adjust the value and add β to increase the offset to get
yi, where γ is the scale factor, and β is the translation factor. This step is the essence of BN.
Since the normalized xi will basically be limited to a normal distribution, the expression
ability of the network will decrease. Two new parameters γ and β are introduced to solve
this difficulty, which is learned by the network itself during training.

BNγ,β(xi) = yi = γx̂i + β (15)

3.3.3. Convolutional Neural Network (CNN)

Since CNN was proposed, it has been widely used in the image field, such as image
classification [33], image generation [34], image semantic segmentation [35] and image
sequence prediction [36]. The core idea of CNN is that the local area is multiplied by a fixed
operation matrix (called convolution kernel filter), and the operation matrix will be reused
in different local areas until all pixels participate in the operation. This way of weight
sharing and local connectivity will reduce the number of network parameters, making
the operation concise and efficient. They also made strong and mostly correct assump-
tions about the stationarity of image statistical data and the locality of pixel dependence.
Therefore, compared with the standard feedforward NN with a similar layer size, CNN
has much fewer connections and parameters, so they need less time to converge under the
same training conditions, although this will lead to a slightly worse theoretical optimal
performance [33].

In this paper, there are three 3D CNNs to decode the TEC maps. The number of
convolution kernels of the three convolutional neural networks is 40, 40 and 1, respectively.
The sizes of the convolution kernels are all (5, 5, 5), and the activation functions are all the
ELU functions. Thus, this progress can be expressed by the following formula:

sm = Conv 3D(BN(sm−1)), m = 1 . . . M (16)

where M is the number of repetitions of the CNN module. In this paper, M = 3, and
s1, s2 ∈ R12×18×18×40 and s3 ∈ R12×18×18×1.
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3.3.4. Up Sampling

In order to restore the final output size of CNN to the size of the IGS TEC maps,
bilinear interpolation is used for up sampling. This step can be expressed as:

output = Upsampling(s3), output ∈ R12×71×73×1 (17)

Thus far, we have the 12 TEC maps output with a time resolution of two hours for the
next day.

4. Results

As the architecture shown in Figure 1, we used the PyTorch framework to build the
CAiTST model, and the hyperparameters of the model are determined by manual tuning.
We also used the adaptive moment estimation (ADAM) optimizer with the learning rate
set to 0.001. Additionally, the loss function was chosen as the mean square error (MSE)
function. Furthermore, a total of 1000 iterations were carried out, and the batch size was
set to 32.

4.1. Evaluation Metrics

Here, the root mean square error (RMSE) and mean absolute error (MAE) are used to
evaluate the performance of the model. Their formulas are as follows:

RMSE =

√
∑N

j=1
(
TECIGS,j − TECPre,j

)2

N
(18)

MAE =
∑N

j=1
∣∣TECIGS,j − TECPre,j

∣∣
N

(19)

where, TECIGS,j and TECPre,j are observations and predictions, respectively, j = 1, 2, . . . , N,
and N represents the total number of data samples.

4.2. Training Set and Validation Set Results Analysis

As we stated in Section 2, we use data from 2005–2013 and 2015–2017 (90% as the
training set and 10% as the validation set) to train the model with the architecture shown in
Figure 1. Table 1 shows the loss values of the training set and the test set after the model
is trained for 1000 epochs when L = 3, 4, 5, 6, 7, 8. As seen in Table 1, as the number of
repetitions L increases, the training loss decreases gradually, which illustrates that more
network layers could better fit TEC maps on the previous day and those on the future day.
However, starting from L = 7 , as the number of repetitions increases, the validation loss
also increases, indicating that the model is overfitting. Therefore, we set L = 6 in this work.
The tuning of other hyperparameters is similar.

Table 1. Training and validation set loss values (TECU) when L = 3, 4, 5, 6, 7, 8.

Repetition Number of the Transformer
Encoder Module Training Loss Validation Loss

3 8.01 10.69
4 6.24 9.11
5 4.91 8.32
6 4.54 6.01
7 4.38 6.55
8 4.22 6.79

After all the hyperparameters are tuned, Figure 3 shows the variation of the training
loss and validation loss during the training process. It can be seen that with the increase in
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training epochs, the training loss and validation loss continue to decrease, and the model
successfully converges.
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Figure 3. Variation curve of training set loss and validation set loss error with epoch.

4.3. Test Sets Results Analysis

Data from 2014 (high solar activity year) and 2018 (low solar activity year) are used as
the test set. The TEC maps predicted by our CAiTST model and 1-day CODE prediction
model are named CTPG and C1PG, respectively. The C1PG has been proven to have
better forecasting performance than E1PG and U2PG [37], which are predicted ionospheric
products produced by the European Space Operations Center (ESOC) and UPC, respectively.
In addition, the superiority of our CAiTST model is assessed by comparing the differences
between CTPG and C1PG with respect to CODG. The robustness of the CAiTST model
under severe geomagnetic storm disturbance conditions is also investigated.

4.3.1. Comparison of Predicted TEC Maps

Figure 4 shows the monthly averaged RMSE and MAE values between the forecasting
TEC maps (C1PG and CTPG) and the IGS TEC maps (CODG) in 2014 and 2018. The RMSEs
and MAEs shown in Figure 4 indicate that there is better consistency between CTPG and
CODG, especially in January, November, and December of 2014. Additionally, it is worth
noting that the performance of the model varies in different seasons. As shown in Figure 4,
the RMSE and MAE values in the northern hemisphere’s summer are smaller than those
in the northern hemisphere’s spring and winter, both in 2014 and 2018. Moreover, Table 2
presents the annual mean values of RMSE and MAE values between the predicted TEC
maps (CTPG and C1PG) and the IGS TEC maps (CODG) in 2014 and 2018. As shown in
Table 2, CTPG performs slightly better than C1PG both in 2014 and 2018. Compared to
C1PG in 2014, the annual mean RMSE of the CTPG is approximately 0.4 TECU lower, a
decrease of 8.9%, while in 2018, the same value is about 0.2 TECU lower, a decrease of
10.2%. As for MAE, in 2014, the annual mean MAE of CTPG decreased by 9.3% compared
to that of C1PG, and in 2018, it decreased by 10.8%. However, the prediction RMSE and
MAE values of the same model in 2014 are larger than those in 2018 due to more frequent
solar activities and higher background electron density.
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Figure 4. The monthly averaged differences between the forecasting TEC maps (C1PG and CTPG)
and IGS TEC maps (CODG) during high and low solar activity periods.

Table 2. The annual mean RMSE and MAE values (TECU) between forecasting TEC maps (CTPG
and C1PG) and IGS TEC maps (CODG) during high and low solar activity periods.

C1PG CTPG

RMSE MAE RMSE MAE

All test data 3.14 2.27 2.85 2.06
Solar maximum 4.71 3.44 4.29 3.12
Solar minimum 1.57 1.11 1.41 0.99

Figure 5 below shows the histogram of the error distribution of C1PG and CTPG in
2014 and 2018, with the dotted line marking the 10% position. Taking the RMSE distribution
in 2014 as an example, it can be seen that the RMSE of the top 10% and the bottom 10% of
CTPG are 2.73 and 5.97 TECU, respectively, which are smaller than the 2.91 and 6.20 TECU
of C1PG. Overall, the orange dotted line (CTPG) is always to the left of the blue dotted line
(C1PG), which shows that the prediction performance of CTPG is better than that of C1PG.

4.3.2. Latitudinal and Longitudinal Behavior

The latitudinal distribution of CTPG and C1PG prediction performance in 2014 and
2018 is first investigated. The latitudinal behavior of the predicted TEC maps is analyzed
by comparing the predicted TEC values with the IGS TEC values at the same latitude. As
shown in Figure 6, the changing trends of RMSE and MAE values in the same year are
almost the same; it can be seen that the RMSE and MAE curves of CTPG and C1PG in
2018 are very close. However, in 2014, between the two latitude ranges of 87.5◦S–45◦S and
30◦N to 75◦N, the RMSE and MAE curves of C1PG are significantly above the RMSE and
MAE curves of CTPG. In other words, between these two latitude ranges, the prediction
performance of CTPG is significantly better than the performance of C1PG in 2014. Further,
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note in the low latitude region (30◦S–30◦N), the RMSE and MAE curves of the CTPG and
C1PG show a double-peak structure, which is similar to the structure of TEC values in the
equatorial ionospheric anomaly (EIA) region; this structure is more obvious in the high
solar activity year than in the low solar activity year. Hence, TEC values in the EIA area are
more difficult to predict accurately than those in other areas. The RMSE values in 2018 are
within 1–2 TECU, much lower than the 3–7 TECU in 2014.
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Figure 5. The errors distribution of C1PG and CTPG in 2014 and 2018.

Table 3 demonstrates the mean RMSE and MAE values of CTPG and C1PG in
high latitude (87.5◦S(N)–60◦S(N)), middle latitude (57.5◦S(N)–30◦S(N)) and low latitude
(27.5◦S–27.5◦N) regions in 2014 and 2018. It can be seen that the RMSE and MAE values
of CTPG are smaller than those of C1PG in all three regions, and the difference is more
pronounced in the high and middle latitude regions. Taking the RMSE values in 2014 as an
example, the RMSE of CTPG decreased by 16.6% and 15.4% in the high and middle latitude
regions, respectively, compared with the RMSE of C1PG, but only decreased by 1.8% in
the low latitude region. This illustrates that CAiTST performs better at middle and high
latitudes than at low latitudes.
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Figure 6. RMSE and MAE values between forecasting TEC maps (CTPG and C1PG) and IGS TEC
maps (CODG) at different latitudes in 2014 and 2018.

Table 3. RMSE and MAE values between the predicted TEC maps (CTPG and C1PG) and IGS TEC
maps (CODG) in different latitude regions in 2014 and 2018.

2014 2018

High
Latitudes

Middle
Latitudes

Low
Latitudes

High
Latitudes

Middle
Latitudes

Low
Latitudes

RMSE(TECU)
CTPG 3.41 3.63 5.81 0.92 1.20 1.95
C1PG 4.09 4.29 5.92 1.12 1.37 2.12

MAE(TECU)
CTPG 2.52 2.64 4.18 0.71 0.88 1.38
C1PG 2.95 3.12 4.23 0.82 1.00 1.50

In addition, we also investigate the geographic distribution of the performance of
predicted TEC maps at the level of a grid point. Figures 7 and 8 demonstrate the maps
showing the RMSE and MAE of CTPG and C1PG with respect to CODG in 2014 and 2018.
As shown in Figure 7, in 2014, the largest RMSE value is about 9 TECU in the EIA region,
while in 2018, it is less than 3 TECU. This result may be explained by the more frequent
solar activity in 2014. In addition, the RMSE and MAE values in the EIA area are higher
than those in other areas, particularly in 2014. However, the CTPG evidently outperforms
C1PG in the EIA region. Furthermore, due to the sparse distribution of GNSS stations in the
marine area, the accuracy of the marine area is usually lower than that of the continental
area on the GIMs [38]. It may explain that the RMSE and MAE values between C1PG and
CODG in the continental area are obviously smaller than those in the ocean area. The
performance of CTPG in the marine area is obviously better than that of C1PG. In summary,
Figures 7 and 8 present that CTPG has better consistency with the CODG than C1PG.
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Figure 7. RMSE values between predicted TEC maps (CTPG and C1PG) and the IGS TEC maps
(CODG) in 2014 and 2018. (a) RMSE of CTPG in 2014. (b) RMSE of C1PG in 2014. (c) RMSE of CTPG
in 2018. (d) RMSE of C1PG in 2018.
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Figure 8. MAE values between predicted TEC maps (CTPG and C1PG) and the IGS TEC maps
(CODG) in 2014 and 2018. (a) MAE of CTPG in 2014. (b) MAE of C1PG in 2014. (c) MAE of CTPG in
2018. (d) MAE of C1PG in 2018.

In order to visually observe the differences between CTPG and CODG, the TEC maps
of CTPG and CODG at 00:00, 06:00, 12:00 and 18:00 UT on the spring equinox, summer
solstice, autumn equinox and winter solstice in 2014 and 2018 are shown in Figures 9 and 10.
In each panel of these two figures, the maps in the first and second rows are CODE TEC
maps and CTPG TEC maps, respectively, and the maps in the third row are the difference
maps between CODG and CTPG TEC maps, which are defined as:

DTEC = TECPre − TECIGS (20)
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where TECPre is the predicted global TEC maps (CTPG), and TECIGS is the IGS global TEC
maps (CODE).

In panel a of Figure 9, at 00:00 UT, although CAiTST predicts the location of EIA well,
the TEC values in the EIA region are obviously underestimated, and this underestimation
is mitigated in the following predicted TEC maps. It can be seen from these two figures that
although CTPG has the largest error in the EIA area, it still predicts the characteristics and
location of the EIA well, and the predicted EIA region has a good similarity with the CODG.
It is worth noting that in panel d of Figure 9, it can be seen from the DTEC maps that the
performance of CTPG decreased because a magnetic storm occurred on 22 December 2014.
This is exactly what will be discussed in detail in the next subsection. Since the CAiTST
only contains the past TEC maps as the input and the information related to magnetic
storms cannot be obtained only from the past TEC maps, the performance of the CTPG will
decline during magnetic storms.

4.3.3. Performance for Different TEC Maps Sources

To evaluate the performance of the CAiTST for different TEC maps sources, the TEC
maps released by six other IAACs (Chinese Academy of Sciences (CAS), European Space
Agency (ESA), IGS, Jet Propulsion Laboratory (JPL), UPC and Wuhan University (WHU))
are forecasted by CAiTST in 2014 and 2018. Table 4 shows the RMSE and MAE values
between the predicted TEC maps (using the TEC maps of the corresponding source as
input) and the different TEC maps. As shown in Table 4, CASG, ESAG, JPLG, UPCG,
WHUG and IGSG represent the final TEC maps provided by CAS, ESA, JPL, UPC, WHU
and IGS, respectively. As seen in Table 4, in 2014, the performance of the model for the
IGSG is the best, with an RMSE and MAE of 4.10 and 3.03 TECU, respectively, which are
both smaller than 4.29 and 3.12 TECU for CODG. Additionally, the performance of the
model for CASG is also slightly better than that for CODG, although the training of the
model is implemented on the CODG. However, in 2018, the performance for CODG TEC
maps is the best, and that for JPLG is the worst, with an RMSE exceeding 2 TECU.

Table 4. RMSE and MAE values between the predicted TEC maps (using the TEC maps of the corre-
sponding source as input) and the different TEC maps released by different IAACs in 2014 and 2018.

GIMs ID
RMSE MAE

Solar
Maximum

Solar
Minimum Overall Solar

Maximum
Solar

Minimum Overall

CASG 4.27 1.45 2.86 3.12 1.02 2.07
CODG 4.29 1.41 2.85 3.12 0.99 2.06
ESAG 4.65 1.58 3.12 3.47 1.16 2.32
IGSG 4.10 1.56 2.83 3.03 1.13 2.08
JPLG 4.58 2.06 3.32 3.47 1.58 2.53

UPCG 4.54 1.68 3.11 3.45 1.21 2.33
WHUG 4.61 1.73 3.17 3.37 1.24 2.31

4.3.4. Performance during Magnetic Storm

It is difficult for the ionospheric prediction model to work effectively for geomagnetic
storm days [39]. To evaluate the performance of CTPG during a geomagnetic storm
period, we analyze the differences between the predicted TEC maps and CODG during
the magnetic storm period (Dst < −30 nT [40,41]) and calm period, which are shown in
Table 5. It can be seen from the table that when a magnetic storm occurs, the forecasting
performance of CTPG decreases significantly, which is the same as that of C1PG. However,
in both 2014 and 2018, CTPG still outperforms C1PG, with or without a magnetic storm.
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Figure 9. Comparison between the CTPG TEC maps and the CODE TEC maps at 00:00,
06:00, 12:00 and 18:00 UT on (a) 21 March 2014, (b) 20 June 2014, (c) 23 September 2014 and
(d) 22 December 2014.
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Figure 10. Comparison between the CTPG TEC maps and the CODE TEC maps at 00:00, 06:00, 12:00
and 18:00 UT on (a) 21 March 2018, (b) 20 June 2018, (c) 23 September 2018 and (d) 22 December 2018.
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Table 5. RMSE and MAE values between the predicted TEC maps (CTPG and C1PG) and the IGS
TEC maps (CODG) during a magnetic storm and a calm period in 2014 and 2018.

Period Dst Metric
2014 2018

CTPG C1PG CTPG C1PG

Storm <−30 nT RMSE 5.38 6.02 2.09 2.20
MAE 4.01 4.52 1.36 1.55

Calm >−30 nT RMSE 4.12 4.48 1.47 1.52
MAE 3.01 3.31 0.97 1.09

Given two intense magnetic storm events that occurred on 28 February 2014 and
26 August 2018. Similar to Figures 9 and 10, Figure 11 shows the comparison between the
CODG and CTPG for these two days. As shown in Figure 11, when the magnetic storm
occurs on 28 February 2014, the prediction error of the model in the EIA region is the largest,
and the CAiTST under-predicts in most of the EIA region. Moreover, the prediction error
of the model in the southern hemisphere is larger than that in the northern hemisphere,
and there is an over-prediction. In Figure 9, the model still under-predicts in the EIA area
at 00:00, 06:00, and 12:00 on 26 August 2018, but over-predicts at 18:00. The above results
shows that CAiTST fails to capture such complex and rapid changes in the EIA region
during magnetic storms with only past TEC maps as input.
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Figure 11. Comparison between the CTPG TEC maps and the CODE TEC maps at 00:00, 06:00, 12:00
and 18:00 UT on (a) 28 February 2014 and (b) 26 August 2018.
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5. Discussion

In this paper, forecasting the TEC maps is regarded as an image time sequence predic-
tion problem. Each TEC map contains not only the TEC value of each grid point but also
rich spatial information (longitude and latitude information). The chronological sequence
of TEC maps also contains temporal information. Therefore, a forecasting model of the TEC
map sequence needs to have the ability to process both spatial and temporal features. As
transformer has incomparable advantages in time series prediction because of its unique
self-attention mechanism, we develop a transformer-based TEC map sequence prediction
model named CAiTST. By dividing an image into a certain number of subgraphs and
then performing linear projection on them, transformer can also replace the traditional
convolution operation to process the image. Inspired by this, the 2D TEC map is linearly
projected into the 1D embedding so that the transformer can be used as an encoder to
encode a 12 TEC map sequence in a day, and then the 3D CNN is added as a decoder.
To accelerate the training speed of the CAiTST, LN and BN are used in the encoder and
decoder, respectively. The training, verification and testing of the model are all completed
by the CODE final TEC map products (CODG). The data from 2005 to 2018 constitute the
training set (90% of total) and verification set (10% of total), and the test set consists of the
data from the high solar activity year (2014) and low solar activity year (2018). In the test
stage, RMSE and MAE are selected as evaluation metrics to investigate the performance of
the model. Compared with the results of the CODE one-day prediction product (C1PG),
the superiority of the CAiTST model is verified.

The results show that CTPG (TEC map products predicted by CAiTST) performs
better than C1PG in both 2014 and 2018. The RMSE values of CTPG with respect to CODG
decreased by 8.9% and 10.2% compared with those of C1PG in 2014 and 2018, respectively,
while the MAE values decreased by 9.3% and 10.8%. The results also illustrate that the
prediction performance depends on the season. The two predicted products both perform
better in summer than in spring and winter. In addition, by the analysis of latitudinal
behavior, it can be concluded that the errors of the two predicted products in the low
latitudes are greater than those in the high and middle latitudes due to anomalies in the low
latitudes such as EIA and the high background electron density. Furthermore, through the
analysis of the geographic distribution of the performance, the results show that the EIA
region is the most difficult to predict. It may be explained by the inaccuracy of the IGS TEC
maps representing well-known ionospheric structures such as the EIA [10]. Because GNSS
stations are sparsely distributed in marine areas, C1PG has obvious errors in marine areas,
where CTPG is not significantly impacted. This shows that our model is not affected by
the lower accuracy of the IGS TEC maps in the southern hemisphere than in the northern
hemisphere [42].

It is worth noting that in most of the TEC prediction research, the past TEC values,
which are highly correlated with the future TEC values [43], are often used as the input of
the forecasting model. Table 6 shows the annual mean RMSE and MAE values between
12 TEC maps in the past day and 12 TEC maps in the future day during high and low
solar activity periods. The reason why we compare the copy of 12 TEC maps from the
past day rather than the average of TEC maps from the past two or three days is because
that is the input for our model. According to Tables 2 and 6, in 2014, the RMSE values
between the predicted TEC maps (C1PG and CTPG) and CODG are 1.57 and 1.41 TECU,
and the RMSE between CODG maps of the previous day and CODG maps of the future
day is 1.61 TECU. In addition, it can be seen that in the whole test dataset, the RMSE values
between predicted TEC maps and future TEC maps decrease by 11.8% compared to those
between past TEC maps and future TEC maps, and the MAE values decrease by 8.9%. This
illustrates that our CAiTST model has indeed learned the relationship between the past
TEC maps and future TEC maps and successfully made predictions. Furthermore, in order
to prove the effectiveness of the prediction model, we suggest that in future TEC prediction
work, if the prediction model uses the past TEC value as input, the copy or average of the
past TEC values should also be included in the evaluation.
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Table 6. Annual mean RMSE and MAE values (TECU) between 12 TEC maps for the past day and
12 TEC maps for the future day during high and low solar activity periods.

RMSE MAE

All test data 3.23 2.26
Solar maximum 4.84 3.45
Solar minimum 1.61 1.07

We also evaluate the performance of CAiTST for different TEC map sources. Although
the CAiTST model is trained by CODG, in 2014, the performance for IGSG is the best,
and the performance for ESAG is the worst. In 2018, the model performs best for CODG
and performs worst for JPLG. The results illustrate that our model could be applied to the
prediction of different TEC maps sources.

The performance of CAiTST during a magnetic storm is also investigated. However,
the results suggest that when a storm occurs, CAiTST fails to capture the complex and
rapid changes of TEC, especially in the EIA region. This is mainly because our model only
includes past TEC maps as the input, no information relating to a prior storm is considered
in the model. When the TEC maps are used as the input for the neural network, it is hard
to add other additional parameters as input at the same time, which prevents us from
adding other parameters, such as Dst or Kp index, to represent the information relating to
prior storms.

Therefore, in future work, how to use the TEC maps and some individual parameters,
including storm information, as inputs to the transformer model at the same time is the next
focus to be studied. Only then does the model have the possibility to work properly during
a storm period. Moreover, the performance degradation of the model in the EIA region
also needs further research to be solved, and developing a regional prediction model can
alleviate it. Other deep learning models, such as GRU [36] and deep generative models [44],
may address these above challenges, which will be our follow-up work.

6. Conclusions

In this work, we solve the problem that the traditional transformer model can only
be applied to the prediction of the 1D matrix sequence. The proposed transformer model
is successfully used to predict the 2D global TEC maps sequence, which is a whole new
potential model in the ionosphere model research community utilizing deep learning
techniques. The results show that our CAiTST model has good accuracy in both high and
low solar activity years, and its performance is better than the 1-day CODE prediction
model. These results also demonstrate that the transformer model models the relationship
between past TEC values and future TEC values well. In general, our model is competitive
in short-term global TEC map forecasting, and it is instructive for the study of transformer
models in space and weather. Furthermore, our model can also provide new ideas for other
fields of image sequence prediction, such as precipitation nowcasting using radar.
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Abbreviations

The following abbreviations are used in this manuscript:

ADAM Adaptive moment estimation
BN Batch Normalization
BP Backpropagation
C1PG Global TEC maps predicted by 1-day CODE model
CAiTST Conv-attentional image time sequence transformer
CAS Chinese Academy of Sciences
CDDIS Crustal Dynamics Data Information System
CNN Convolutional neural network
CODE Center for Orbit Determination in Europe
CTPG Global TEC maps predicted by CAiTST
CV Computer Vision
DCGAN Deep Convolutional Generative Adversarial Network
DCT Discrete cosine transform
EIA Equatorial ionization anomaly
ESA European Space Agency
ESOC European Space Operations Center
GIM Global ionospheric map
GLGAN Global and Local Generative Adversarial Network
GNSS Global Navigation Satellite Service
IAAC Ionosphere Associate Analysis Center
IGS International GNSS Service
JPL Jet Propulsion Laboratory
LN Layer Normalization
MAE Mean absolute error
MLP Multilayer perceptron
MSA Multiheaded self-attention
MSE Mean square error
NLP Natural Language Processing
NN Neural network
PPP Precise point positioning
RMSE Root mean square error
RNN Recurent neural network
SA Self-attention
SH Spherical harmonic
SWACI Space Weather Application Center Ionosphere
TEC Total electron content
ViT Vision Transformer
UPC Polytechnic University of Catalonia
VTEC Vertical total electron content
WHU Wuhan University
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