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Abstract: In the context of global sustainable development, solar energy is very widely used. The
installed capacity of photovoltaic panels in countries around the world, especially in China, is
increasing steadily and rapidly. In order to obtain accurate information about photovoltaic panels
and provide data support for the macro-control of the photovoltaic industry, this paper proposed a
hierarchical information extraction method, including positioning information and shape information,
and carried out photovoltaic panel distribution mapping. This method is suitable for large-scale
centralized photovoltaic power plants based on multi-source satellite remote sensing images. This
experiment takes the three northwest provinces of China as the research area. First, a deep learning
scene classification model, the EfficientNet-B5 model, is used to locate the photovoltaic power plants
on 16-m spatial resolution images. This step obtains the area that contains or may contain photovoltaic
panels, greatly reducing the study area with an accuracy of 99.97%. Second, a deep learning semantic
segmentation model, the U2-Net model, is used to precisely locate photovoltaic panels on 2-m
spatial resolution images. This step achieves the exact extraction results of the photovoltaic panels
from the area obtained in the previous step, with an accuracy of 97.686%. This paper verifies the
superiority of a hierarchical information extraction method in terms of accuracy and efficiency
through comparative experiments with DeepLabV3+, U-Net, SegNet, and FCN8s. This meaningful
work identified 180 centralized photovoltaic power plants in the study area. Additionally, this
method makes full use of the characteristics of different remote sensing data sources. This method
can be applied to the rapid extraction of global photovoltaic panels.

Keywords: hierarchical information extraction; centralized photovoltaic power plants; large-scale;
multi-source remote sensing images

1. Introduction

Against the international background of global sustainable development and countries
committed to building a community with a shared future for humankind, solar energy has
unique advantages, such as inexhaustibility, no transportation, and no pollution [1]. As an
important energy source to alleviate the future world energy crisis, solar energy has become
a major research interest, and the photovoltaic power generation industry is in full swing.
Under the guidance of various countries’ photovoltaic policies [2–7] and the promotion of
the market, the global photovoltaic installed capacity has grown steadily and rapidly. By
the end of 2020, the global photovoltaic installed capacity exceeded 760.4 GW [8]. By the
end of 2021, China’s photovoltaic grid-connected installed capacity reached 306 GW [9].
How to supervise the large-scale and fast-growing photovoltaic power plants from a macro
perspective is an urgent problem to be solved in the fields of land survey and resource and
environmental monitoring [10]. Satellite remote sensing images have the advantages of
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a large detection range, fast data acquisition, high update frequency, and freedom from
ground conditions [11]. It is worth mentioning that photovoltaic power plants have an
obvious texture, geometry, spectrum, and other characteristics in remote sensing images.
Therefore, it is of great significance to propose a hierarchical information extraction method
for centralized photovoltaic power plants based on multi-source satellite remote sensing
images. This section mainly describes the research status from the aspects of traditional
photovoltaic power plant identification methods, photovoltaic power plant identification
methods based on deep learning, and small-target identification methods [12].

This paragraph describes traditional methods used for photovoltaic panels extraction.
Zhang et al. extracted photovoltaic power plants from a Landsat-8 image using a random
forest model on the Google Earth Engine platform [13]. The input of the model is the
texture features calculated by the grayscale co-occurrence matrix, the normalized difference
vegetation index (NDVI), the normalized difference building index (NDBI), the modified
normalized difference water index (MNDWI), the reflectivity, and the thermal spectrum
features. Experiments verified that the texture features of the gray-scale co-occurrence
matrix can significantly improve the accuracy of the model to identify photovoltaics.
However, the gray-scale co-occurrence matrix is complexly calculated pixel by pixel, based
on the neighborhood around the pixel, and the calculation amount is very large, which will
greatly reduce the efficiency of the model and increase the time cost. It is not suitable for
large-scale extraction of photovoltaic panels. Li et al. used the spectral-information-rich
Landsat-8 Operational Land Imager (OLI) data to calculate the normalized building index
and brightness, two spectral characteristics, to separate the solar cell array, construction
land, road, and fallow land. For high-resolution remote sensing images such as the GaoFen-
1 image, the authors distinguish solar photovoltaic arrays from other ground objects
based on geometric and texture features [14]. Wang et al. used a one-class support vector
machine (OC-SVM) method to extract photovoltaic power stations along the coast of Jiangsu
Province and used the modified optimum index factor (MOIF) for extracting photovoltaic
power stations. Compared with the traditional optimal index factor (OIF) band combination
method, the MOIF improves the extraction accuracy of photovoltaic panels [15]. Therefore,
it is not an optimal method to extract photovoltaic panels from GaoFen satellite images that
are not so rich in spectral information, relying on geometric and texture features to identify
photovoltaic panels in a large range.

This paragraph describes deep learning methods used for photovoltaic panel extraction.
Costa et al. used deep learning methods to select 24 study areas in Brazil to identify and monitor
photovoltaic power plants in Sentinel-2 images [16]. The research compares the effects of four
common frameworks, U-Net [17], DeepLabv3+ [18], Feature pyramid networks (FPN) [19], and
Pyramid Scene Parsing Network (PSPNet) [20], in photovoltaic panel recognition. Although the
U-Net architecture presented the best results in the photovoltaic identification process, it did not
show much difference from other architectures. Therefore, when using deep learning methods
for ground object information recognition, although the recognition accuracy is closely related
to the structure of the model, the recognition effect is more dependent on the construction of
the dataset. Using deep learning methods [21] to directly perform semantic segmentation of
photovoltaic panels on high-resolution remote sensing images is not an optimal method as it
may bring unnecessary computational consumption when photovoltaic panel pixels are much
lower in number than non-photovoltaic panels.

This paragraph describes scene-oriented photovoltaic panel positioning methods. Wang
et al. selected seven pre-trained convolutional neural network models for the scene classifi-
cation of photovoltaic power plants in Landsat 8 OLI images [10]. The sample set contains
120 positive and negative sample images of 56 × 56 pixels in RGB bands, including as many
photovoltaic panels of different forms as possible. After adopting the strategies of transfer
learning and model fine-tuning, the scene recognition of photovoltaic panels was carried out.
The results show that it is feasible to use the convolutional neural network model to perform
scene recognition of photovoltaic panels on medium-resolution remote sensing images. How-



Remote Sens. 2022, 14, 4211 3 of 20

ever, scene classification cannot obtain fine photovoltaic boundary information, so it is far
from sufficient to only perform scene recognition on photovoltaic panels.

Therefore, this paper proposes a hierarchical information extraction method of cen-
tralized photovoltaic power plants based on multi-source remote sensing images and
conducts large-scale photovoltaic power plant distribution mapping [22]. The method
firstly performs scene classification of photovoltaic panels in medium-resolution remote
sensing image, and obtains the area containing photovoltaic panels or suspected photo-
voltaic panels, which greatly reduces the background area without photovoltaic panels
and balances the number of positive and negative targets. We use this as a mask to accu-
rately identify photovoltaic panels in high-resolution remote sensing images. This method
not only avoids the problem of unbalanced positive and negative targets faced by using
deep learning methods to directly perform semantic segmentation on photovoltaic panels,
but also improves the speed of photovoltaic panel identification on a large scale, greatly
improves recognition efficiency and saves computing resources.

2. Materials
2.1. Study Area

In this experiment, three provinces in northwest China were selected as the study area,
as shown in Figure 1, namely, Xinjiang Uygur Autonomous Region, Qinghai Province, and
Gansu Province. The three provinces account for about 30% of the Chinese land area [23].
The study area is vast and has sufficient sunlight, making it an ideal location for large-scale
photovoltaic power plants. In recent years, the study area has vigorously developed the
photovoltaic industry. By the end of 2021, the cumulative installed capacity of photovoltaics
in the three provinces had far exceeded 10 million kilowatts [24]. However, the typical terrain
of Xinjiang Uygur Autonomous Region is mostly desert, and the typical terrain of Qinghai
Province and Gansu Province is mostly alpine and Gobi. It is difficult to count the construction
of centralized photovoltaic power plants in a timely manner using manpower. Therefore,
three provinces in northwestern China were selected as the study area in this experiment.

Figure 1. Geographical location of the study area.

2.2. Data

Chinese satellite images were used in this study, including 16-m medium-resolution
images and 2-m high-resolution images. The medium-resolution remote sensing images
used in this experiment were GaoFen-6 Wide Field Vision (WFV) images. The high-
resolution remote sensing images used in this experiment were GaoFen-6 Panchromatic
Multi-Spectral (PMS) and GaoFen-1/1B/1C/1D PMS images.

The GaoFen-6 satellite is equipped with a 2-m panchromatic/8-m multispectral high-
resolution camera that can shoot PMS images and a 16-m multispectral medium-resolution
camera that can shoot WFV images. GaoFen-6 PMS image contains 4 bands with a spatial
resolution of 2 m; the WFV image of GaoFen-6 contains 8 bands with a spatial resolution of
16 m. The spectral parameters of GaoFen-6 are shown in Table 1.
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Table 1. GaoFen-6 spectral parameters.

GaoFen-6 PMS GaoFen-6 WFV

Spectral
range

PAN 0.45–0.90 µm

Spectral
range

B1 0.45–0.52 µm

MS

0.45–0.52 µm
B2 0.52–0.59 µm
B3 0.63–0.69 µm

0.52–0.59 µm B4 0.77–0.89 µm

0.63–0.69 µm B5 0.69–0.73 µm
B6 0.73–0.77 µm

0.76–0.89 µm B7 0.40–0.45 µm
B8 0.59–0.63 µm

Spatial
resolution

PAN 2 m Spatial
resolution

16 mMS 8 m

The GaoFen-1 satellite is equipped with two 2-m resolution panchromatic/8-m resolu-
tion multispectral cameras that can shoot PMS images and four 16-m resolution multispec-
tral cameras that can shoot WFV images. The GaoFen-1 PMS image contains 4 bands with
a spatial resolution of 2 m; the WFV image of GaoFen-1 contains 4 bands with a spatial
resolution of 16 m. The spectral parameters of GaoFen-1 are shown in Table 2.

Table 2. GaoFen-1 spectral parameters.

GaoFen-1 PMS GaoFen-1 WFV

Spectral
range

PAN 0.45–0.90 µm

Spectral
rangeMS

0.45–0.52 µm B1 0.45–0.52 µm
0.52–0.59 µm B2 0.52–0.59 µm
0.63–0.69 µm B3 0.63–0.69 µm
0.77–0.89 µm B4 0.77–0.89 µm

Spatial
resolution

PAN 2 m Spatial
resolution

16 mMS 8 m

2.3. Dataset Construction

This experiment constructs two types of datasets for scene classification and for
semantic segmentation.

2.3.1. Sixteen-Meter Resolution Dataset for Scene Classification

The data source of the scene classification dataset is the GaoFen-6 WFV image with
a spatial resolution of 16 m. The dataset includes two categories: one is the scene area
that does not contain photovoltaic panels, and the other is scene areas that contain or
are suspected to contain photovoltaic panels. The purpose of the spatial information
positioning of photovoltaic panels based on medium-resolution remote sensing images is
to find the locations of as many photovoltaic panels as possible. On the basis of ensuring
that the photovoltaic panels are not missed, the false positives of the photovoltaic panels
are reduced. Additionally, in the process of visually interpreting remote sensing images
with a spatial resolution of 16 m, there are ground objects that are easily confused with
photovoltaic panels, such as greenhouses. Therefore, in the process of constructing the
scene classification dataset, the ground objects suspected of being photovoltaic panels are
also divided into categories including photovoltaic panels. Figure 2 shows part of the scene
classification dataset.

The distribution of the scene classification dataset is shown in Figure 3. Red dots
represent scene samples that contain photovoltaic panels, and green dots represent scene
samples that do not contain photovoltaic panels. After image flipping, image mirroring,
color adjustment and other sample enhancement [25–27] operations, a total of 22,025 sam-
ples with a size of 128 × 128 pixels were obtained. There are 5590 samples containing
photovoltaics and 16,435 samples not containing photovoltaics.
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Figure 2. Scene classification dataset display: (a) PV; (b) non-PV.

Figure 3. Sample distribution map for scene classification dataset.

2.3.2. Two-Meter Resolution Dataset for Semantic Segmentation

The data source of the semantic segmentation dataset consists of GaoFen-6 and GaoFen-
1/1B/1C/1D PMS images with a spatial resolution of 2 m. The pixels in the dataset
are divided into two categories: One is photovoltaic panel pixels, and the other is non-
photovoltaic panel pixels. Figure 4 shows part of the semantic segmentation dataset.
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Figure 4. Semantic segmentation dataset display.

The semantic segmentation dataset contains a total of 2671 samples with a size of 512 × 512 pixels.

3. Methods

In order to make full use of the characteristics of remote sensing images with different
spatial resolutions, improve the accuracy and efficiency of extracting photovoltaic panels,
and save computing resources, this paper proposes a hierarchical information extraction
method for large-scale centralized photovoltaic power plants based on multi-source remote
sensing images.

This method is divided into two main parts: in the first part, the deep learning scene
classification model is used to locate the photovoltaic power plants on the 16-m spatial
resolution image; in the second part, the semantic segmentation model is used to extract
photovoltaic panels precisely on the 2-m spatial resolution image.

The technical framework of this method is shown in Figure 5:

Figure 5. Framework for hierarchical information extraction of large-scale centralized photovoltaic
power plants.
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The first step is remote sensing image preprocessing. For remote sensing images with
a spatial resolution of 16 m, the original images were subjected to orthorectification, bit-
depth adjustment, image mosaicking, and cropping of the study area; for remote sensing
images with a spatial resolution of 2 m, the original images were subjected to orthographic
correction, sharpening fusion, bit-depth adjustment, image mosaicking, and cropping of
the study area.

The second step is dataset construction, as mentioned in Section 2. Based on images
with a spatial resolution of 16 m, a scene classification dataset is constructed. The dataset
includes two types of areas, including photovoltaic samples and areas without photovoltaic
samples; based on images with a spatial resolution of 2 m, a semantic segmentation dataset
is constructed. The pixels in the dataset are divided into photovoltaic pixels and non-
photovoltaic pixels.

The third step is to classify scenes with or without photovoltaic panels based on 16-m
spatial resolution remote sensing images. In order to quickly locate the spatial information
of the centralized photovoltaic panels and greatly reduce the scope of the study area,
a scene classification model, such as the EfficientNet-b5 model, is trained based on the
scene classification dataset. The model is based on a model trained on tens of millions
of ImageNet datasets. The input to the model is a 16-m spatial resolution image, and the
output of the model is the geographical range of the area that contains or may contain
photovoltaic panels. The output geographic range is saved as a shape file through a script
file written in advance.

The fourth step is to accurately identify photovoltaic panels based on 2-m spatial
resolution remote sensing images. A semantic segmentation model such as the U2-Net
model is trained based on the semantic segmentation dataset. According to the geographic
range output in step three, we directly read the high-resolution remote sensing image of
the corresponding area. The input to the model is two-meter resolution images of the area
that contains or may contain photovoltaic panels, and the output of the model is the exact
extraction result of the photovoltaic panels.

This framework enables fast and precise extraction of centralized photovoltaic panels
in a large-scale area.

3.1. EfficientNet

EfficientNet is a new network model proposed by Tan et al. in 2019 [28]. The main
innovation of EfficientNet is to improve the accuracy of the model through model scaling.
The backbone network of the model uses MBCConv in MobileNet V2 [29] and uses the
squeeze and excitation method in SENet [30] to optimize the network structure. The model
uses grid search to balance the scaling ratios of the three dimensions of network width,
depth, and resolution to obtain higher accuracy and efficiency. Tan et al. obtained the B1-B7
network by extending the baseline network, and applied the series network of EfficientNet
to ImageNet dataset. Comparing the series of EfficientNet networks with classic networks
such as ResNet [31], DenseNet [32], etc., EfficientNet rapidly improves accuracy without a
significant increase in the number of parameters. Therefore, the effect of the EfficientNet
model is far better than other classical models. Considering the influencing factors such as
model accuracy, efficiency, computing power, etc., the EfficientNet-B5 model with relatively
high accuracy and relatively few parameters is used in this experiment to locate the spatial
information of photovoltaic panels. Its network structure is shown in Figure 6.

3.2. U2-Net

The U2-Net is a simple and powerful deep network architecture for salient object
detection proposed by Qin et al. in 2020 [33]. The model structure is a two-layer nested U-
shaped structure, which is upgraded and improved on the basis of the U-Net network [17].
The Residual U-shaped module (RSU) included in the U2-Net network is able to capture
multi-scale deep features.
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The double-nested U-shaped structure of U2-Net has two significant advantages: First,
the RSU module included in the model mixes receptive fields of different sizes, which can
capture more and richer contextual information at different scales; Second, although the
model increases the depth of the network, the entire model architecture does not significantly
increase the computational cost due to the pooling operation used in the RSU module.

Figure 6. The network structure of EfficientNet-B5.

Considering the influencing factors such as model accuracy and calculation cost, the
U2-Net model is used in this experiment to accurately identify photovoltaic panels, and its
network structure is shown in Figure 7.

3.3. Accuracy Evaluation Method

The rapid identification method for large-scale centralized photovoltaic power plants
proposed in this paper is divided into two steps: photovoltaic power plant spatial infor-
mation positioning and photovoltaic panel accurate identification. Therefore, the accuracy
evaluation method of this experiment is also divided into two parts.

Figure 7. The network structure of U2-Net.

For the spatial information positioning process of photovoltaic power plants based
on medium-resolution remote sensing images, two indicators, Precision1 and Recall1, are
used to evaluate the accuracy. This process is concerned with whether the scenes involving
photovoltaics are correctly predicted. Therefore, these two evaluation indicators are aimed
at scenes including photovoltaics.

Precision1 represents the proportion of a category that is correctly classified in the
classification results.

Recall1 represents the proportion of a category that is correctly predicted in reality.
The evaluation process selects part of the study area as the test area. The three result

parameters in Table 3 were obtained by manual interpretation.
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Table 3. Scene classification prediction result parameters.

Number of scenes:
Reality: PV
Result: PV

Number of scenes:
Reality: non-PV

Result: PV

Number of scenes:
Reality: PV

Result: non-PV

N1 N2 N3

The parameter N1 represents the number of scenes that include photovoltaics both in
reality and in the predicted result; the parameter N2 represents the number of scenes which
that do not include photovoltaics in reality but include photovoltaics in the predicted result;
and the parameter N3 represents the number of scenes that include photovoltaics in reality
but do not include photovoltaics in the predicted result.

Precision1 =
N1

N1 + N2
× 100% (1)

Recall1 =
N1

N1 + N3
× 100% (2)

The evaluation indicator Precision1 can evaluate the prediction accuracy of the model
for photovoltaic category. The evaluation index Recall1 can measure the impact of scene
classification on the extraction of photovoltaic panels.

For the accurate identification process of photovoltaic panels based on high-resolution
remote sensing images, several evaluation indicators commonly used in semantic segmen-
tation are used to evaluate the accuracy, including Accuracy, Precision2, Recall2, F1, and
Intersection over Union (IoU). The above evaluation indicators are all calculated based on
the confusion matrix [34], as shown in Table 4.

Table 4. Schematic diagram of confusion matrix.

Confusion Matrix
Prediction Result

Positive Sample Negative Sample

Ground truth
PositivesSample TP FN
Negative sample FP TN

Accuracy indicates the percentage of correctly predicted samples in the total samples.
The value ranges from 0 to 1. The larger the value, the better the prediction effect:

Accuracy =
TP + TN

TP + FP + FN + TN
(3)

Precision2 indicates the proportion of all the samples predicted to be positive samples,
the true label is a positive sample, the value range is 0 to 1, and the larger the value, the
better the prediction effect:

Precision2 =
TP

TP + FP
(4)

Recall2 indicates the proportion of all samples whose true labels are positive samples
that are predicted to be positive samples. The value ranges from 0 to 1. The larger the value,
the better the prediction effect:

Recall2 =
TP

TP + FN
(5)

F1 is the harmonic mean of Precision2 and Recall2, ranging from 0 to 1. The larger the
value, the better the prediction effect:

F1 =
2 × Precision2 × Recall2

Precision2 + Recall2
(6)
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IoU represents the ratio of the intersection and union between the prediction result of
a certain category and the real label. The value ranges from 0 to 1. The larger the value, the
better the prediction effect:

IoU =
TP

TP + FP + FN
(7)

4. Experimental Process and Result Analysis
4.1. Parameter Setting of Scene Classification Experiment

The first layer of the hierarchical information extraction method is to use the deep
learning scene classification EfficientNet-B5 model to locate the photovoltaic power plants
on medium-resolution remote sensing images.

We implemented our network on the PyTorch [35] framework and executed it on a
64-bit Ubuntu 20.04 computer with 12 GB memory NVIDIA TITAN V. This experiment uses
the EfficientNet-B5 model pre-trained on the tens of millions of ImageNet datasets [36].
The input and output layers of the model are modified to make the model suitable for
eight-band image input and binary classification output. A total of 22,025 samples with
a 128 × 128 pixel size are randomly divided into the train set, validation set and test set
input model in a ratio of 7:1:2. In this work, we use the stochastic gradient descent (SGD)
optimizer with an initial learning rate of 0.005, a momentum of 0.9, and a weight decay of
0.0001. The experiment adopts a fixed-step size-decay strategy [37] for the learning rate
parameter; the learning rate is changed to 0.1 times the original every 30 epochs, and a total
of 100 epochs are trained. During the model training process, the accuracy of the validation
set reached a maximum of 99.97%, and the model was saved for prediction. A large-scale
image is input into the model in the form of a fixed window sliding, and finally the areas
containing the photovoltaic panels are obtained.

4.2. Scene Classification Results and Analysis

The spatial information positioning results of the photovoltaic power plants in Qinghai
Province, Gansu Province and Xinjiang Uygur Autonomous Region are shown in Figure 8a,
Figure 8b, and Figure 8c, respectively.

The red vector range is the provincial administrative boundary of each province, the
blue vector range is the visually interpreted area containing photovoltaic panels and only
represents a rough positioning, and the green vector range is the area predicted by the
model or suspected to contain photovoltaic panels. The purpose of this step is to locate
the spatial information of the photovoltaic panels and to reduce the false negatives of the
photovoltaic panels on the basis of ensuring that the photovoltaic panels are not missed.

In Qinghai Province, a total of 18 photovoltaic power plants were input into the model
as the training dataset, and the model detected a total of 22 photovoltaic power plants, of
which the number of undetected photovoltaic power plants in the training dataset was 0.
In Gansu Province, a total of 36 photovoltaic power plants were input into the model as the
training dataset, and the model detected a total of 44 photovoltaic power plants, of which
the number of undetected photovoltaic power plants in the training dataset was 0. Finally,
in Xinjiang Uygur Autonomous Region, a total of 88 photovoltaic power plants were input
into the model as the training dataset, and the model detected a total of 118 photovoltaic
power plants, of which the number of undetected photovoltaic power plants in the training
dataset was 0.
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Figure 8. Spatial information positioning results of photovoltaic power plants in the study area.
(a) Spatial information positioning results of photovoltaic power plants in Qinghai Province. (b) Spa-
tial information positioning results of photovoltaic power plants in Gansu Province. (c) Spatial
information positioning results of photovoltaic power plants in Xinjiang Uygur Autonomous Region.

Gansu Province was selected as the test area in this experiment, and the scene classifi-
cation results in Gansu Province were visually interpreted. Through manual interpretation,
there are 1029 scenes predicted by the model to include photovoltaics in Gansu Province.
There are 549 scenes that actually contain photovoltaics in the prediction results and 480
scenes that do not contain photovoltaics. It is worth mentioning that the forecast results
include all photovoltaics in Gansu Province.

Precision1 =
N1

N1 + N2
× 100% =

549
549 + 480

× 100% = 53.4% (8)

Recall1 =
N1

N1 + N3
× 100% =

549
549 + 0

× 100% = 100% (9)

The evaluation index Recall1 is 100%, indicating that all photovoltaic power plants in
Gansu Province have been detected, and there is no effect on the precise identification steps
of photovoltaic panels; the evaluation index Precision1 is 54.3%, indicating that under the
premise of excluding non-PV scenes to a large extent, the accuracy rate of the prediction
results is still more than half.

This paper demonstrates the feasibility of the method through experiments. This
method largely eliminates areas without photovoltaic panels and largely preserves areas
where photovoltaic panels are present. Therefore, this method can be used for practical
promotion and application.

4.3. Parameter Setting of Semantic Segmentation Experiment

The second layer of the hierarchical information extraction method is to use the deep
learning semantic segmentation U2-Net model to extract the photovoltaic panels precisely
on high-resolution remote sensing images.

We implemented our network on the PyTorch [35] framework and executed it on a 64-bit
Ubuntu 20.04 computer with a 12 GB-memory NVIDIA TITAN V. This experiment uses the
double-nested U2-Net model. In total, 10,000 pairs of 512 × 512 pixel size samples with a
spatial resolution of 2 m were randomly divided into a training set, validation set and test
set input model in a ratio of 16:5:5. In this work, we use the stochastic gradient descent
(SGD) optimizer with an initial learning rate of 0.001, a momentum of 0.9 and a weight decay
of 0.0001. The experiment adopts a fixed-step-size decay strategy [37] for the learning rate
parameter; the learning rate is changed to 0.5 times the original every 20 epochs, and a total
of 100 epochs are trained. During model training, the highest accuracy on the validation set
was 97.415%, and the model was saved for prediction. The small-scale two-meter spatial
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resolution image including the photovoltaic panel area is input into the model, and the precise
distribution of the photovoltaic panels is finally obtained.

4.4. Semantic Segmentation Results and Analysis

The precise extraction result of the photovoltaic panels in Qinghai Province, Gansu
Province and Xinjiang Uygur Autonomous Region are shown in Figure 10a, Figure 10b,
and Figure 10c, respectively:

The red vector range is the provincial administrative boundary of each province,
and the red grid range is the result of the precise extraction of photovoltaic panels. The
performance of the model on the test set is shown in Table 5. The extraction results of the
centralized photovoltaic power plants in this experiment can provide data support for
the estimation of photovoltaic power generation, the macro-control of the photovoltaic
industry, and national decision-making.

Table 5. Performance of the model on the test set.

Accuracy Precision2 Recall2 F1 IoU

97.686% 0.937 0.964 0.950 0.906

The overall accuracy of the model on the test set is 97.686%. This method realizes
high-precision and rapid extraction of photovoltaic panels in a large area.

In the process of scene classification based on remote sensing images with a spatial
resolution of 16 m, there are some confusion classes, including regularly shaped farmland,
shaded and regularly textured bare ground, and regular shaped water. However, these
confusion classes are almost eliminated in the second step, semantic segmentation, of the
proposed method.

Figure 9. Cont.
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Figure 10. Precise extraction results in the study area. (a) Precise extraction results of the photovoltaic
panels in Qinghai Province. (b) Precise extraction results of the photovoltaic panels in Gansu Province.
(c) Precise extraction results of the photovoltaic panels in Xinjiang Uygur Autonomous Region.

Three main classes that are easily misclassified as scenes containing photovoltaic
panels are shown in Figure 11. The first row of images are scenes that were mistaken for
containing photovoltaic panels in the 16-m spatial resolution remote sensing image; the
second row of images are the 2-m spatial resolution remote sensing images corresponding
to the first row of images; the third row of images are extraction results.
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Figure 11. Scene classes that are easily confused during scene classification.

Additionally, Section 4.5 of this paper will verify the superiority of the method proposed
in this paper in terms of accuracy and efficiency through two sets of comparative experiments.

4.5. Comparative Experiments

In order to prove the superiority of the method proposed in this paper, two sets of
comparative experiments are designed.

First, in order to demonstrate the superiority of the method proposed in this paper
in terms of accuracy, the method proposed in this paper is compared with four classical
methods including DeepLabV3+, U-Net, SegNet, and FCN8s to conduct comparative
experiments on the same dataset. The dataset is divided into a training set, validation set,
and test set according to the ratio of 16:5:5. The quantitative results of the five methods on
the test set are shown in Table 6.

Table 6. The quantitative results of different methods.

Method Accuracy Precision2 Recall2 F1 IoU

FCN8s 97.589% 0.952 0.946 0.949 0.903
SegNet 97.199% 0.915 0.965 0.939 0.886
U-Net 96.756% 0.900 0.961 0.929 0.868

DeepLabV3+ 87.269% 0.926 0.667 0.776 0.633
Our method 97.686% 0.937 0.964 0.950 0.906

It can be seen from the data in Table 6 that the hierarchical information extraction
method proposed in this paper has the highest accuracy. F1 is the index for comprehen-
sive evaluation of Precision2 and Recall2, and the method proposed in this paper also
has the highest F1. IoU is typically reported as the top-level performance of a semantic
segmentation model, and the method proposed in this paper still has the highest IoU.

Therefore, the hierarchical information extraction method has superiority in accuracy
in large-scale photovoltaic identification tasks.

Second, in order to demonstrate the superiority of the method proposed in this paper
in terms of efficiency, Gansu Province was selected as the test area for comparative experi-
ments. Five methods, including the method proposed in this paper, FCN8s, SegNet, U-Net,
and DeepLabV3+, were used to identify photovoltaic panels in Gansu Province. The time
taken by each method is shown in Table 7.

Table 7. Time spent for PV panel extraction on the test area by different methods.

Method Our Method FCN8s SegNet U-Net DeepLabV3+

Time 7.317 h 12.333 h 12.917 h 12.767 h 28.733 h

It can be seen from Table 7 that the method proposed in this paper takes the shortest time
of 7.317 h and has the highest efficiency. The shortest time of the other four methods is 12.333 h
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for FCN8s; the longest time of the other four methods is 28.733 h for DeepLabV3+. Compared
with the FCN8s, the method proposed in this paper improves the efficiency by 40.7%.

Therefore, the hierarchical information extraction method has superiority in time in
large-scale photovoltaic identification tasks.

5. Conclusions

This study proposed a hierarchical information extraction method for large-scale cen-
tralized photovoltaic power plants based on multi-source remote sensing images. This
method takes full advantage of the characteristics of remote sensing images with different
spatial resolutions. Firstly, the spatial information positioning of photovoltaic panels is
quickly realized in the remote sensing image with a spatial resolution of 16 m. The ad-
vantages of this step are as follows: (1) The area that does not contain photovoltaic power
plants is greatly reduced, the number of positive and negative targets is balanced, and the
impact of the imbalance of positive and negative samples on the precise extraction of pho-
tovoltaic panels is reduced. (2) The input range of high-resolution remote sensing images
is greatly reduced, the waste of resources is avoided, and the efficiency and accuracy of the
identification of photovoltaic panels are improved. Secondly, the accurate identification
of photovoltaic panels is realized in remote sensing images with a spatial resolution of
2 m. This step can assist the refined management of large photovoltaic power plants and
provide data and information support for the country to make relevant decisions and global
sustainable development.

This study realizes the distribution mapping of large-scale and high-resolution cen-
tralized photovoltaic power panels based on experiments in three northwestern Chinese
provinces.

In summary, clean energy such as solar energy plays an important role in the era of
sustainable development. Accurately obtaining the location, spatial distribution, and area
information of photovoltaic power plants is of great significance for optimizing the energy
structure and rationally exploiting non-renewable energy. Remote sensing provides a new
way to objectively and impartially obtain the production capacity of photovoltaic power
plants through non-contact, long-distance, and large-scale measurements. The hierarchical
information extraction method for centralized photovoltaic power plants based on multi-
source remote sensing images is effective in large-scale range. Finally, it will definitely
provide technical support for related industries and can be popularized and applied.
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