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Abstract: Vegetation cover is important to the stability of regional ecosystems and is a focus of
research on the relationship between natural and human environments. Although some studies have
investigated the association between changes in vegetation cover and various influencing factors,
these have shortcomings in quantifying direct and indirect effects. In this study, MOD13Q1 enhanced
vegetation index (EVI) data for Anhui Province, China, were acquired between 2000 and 2020. The
univariate linear regression, coefficient of variation and Hurst index methods were used to analyze
spatial and temporal trends and fluctuations in the EVI between 2000 and 2020 and predict future
trends. The impact of land-use change on EVI change was explored using 2000 and 2020 land-use
data. Finally, a structural equation model (SEM) was used to quantify the effects of topography,
annual average temperature, annual precipitation and human activity changes on EVI variation in
Anhui Province. The results show that (1) from 2000 to 2020, the overall EVI in Anhui Province
showed a fluctuating trend that increased at a rate of 0.0181·10a−1, and 67.1% of the study area
showed a greening trend. The EVI was relatively stable in most regions, with regions of fluctuating
EVI being mostly affected by urbanization. For a period after 2020, the overall EVI change will
exhibit anti-sustainability and will likely decrease. (2) Among the regions of EVI increase, 72.2%
had no change in land-use type, while 10.8% and 6.6% changed to farmland and woodland land
uses, respectively. Among the regions where EVI decreased, 69.9% had no change in land-use type,
while 13.7% changed from farmland to construction land. (3) Overall, human activity change was the
main influence on EVI change, which was mainly reflected in the negative impacts of accelerated
urbanization. Topography had direct and indirect effects on EVI variations in Central and Southern
Anhui. Annual precipitation change had a stronger impact on EVI variation in Northern and Central
Anhui than in Southern Anhui, while annual average temperature change had a small impact in the
entire province. Compared with other study methods, SEM provides a new approach to quantifying
the influences of vegetation cover dynamics. In addition, the results of this study have important
implications for ecological environmental protection and sustainable development in Anhui Province.

Keywords: enhanced vegetation index; spatial and temporal variations; structural equation model;
driving factors; human activity; urbanization

1. Introduction

Vegetation is the main component of the terrestrial ecosystem and the center of its
material and energy cycles. It provides ecological functions such as soil improvement and
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air purification [1,2]. Therefore, it plays a significant role in maintaining regional ecosystem
stability and regulating the climate [3]. To a certain extent, vegetation dynamics can
respond to the natural environment and human activities. The general pattern of vegetation
distribution is determined by long-term climate change. Topography affects the spatial
distribution of vegetation by influencing the spatial distributions of light, temperature and
precipitation [4]. Human activities directly or indirectly affect the dynamic changes of local
vegetation [5,6]. Therefore, monitoring the dynamic evolution of regional vegetation and
studying its relationships with changes in the natural environment and human activities
are important in environmental protection and decision-making.

The development of remote sensing technology, especially high-spatial and -temporal-
resolution hyperspectral images, has facilitated the large-scale monitoring of vegetation
dynamics. Remote sensing images have been widely applied to study surface vegetation
changes as they have a wide monitoring range and labor- and material-saving features [7,8].
Vegetation indexes can measure vegetation growth under certain conditions, so they are
often used to monitor vegetation dynamics, such as the normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI), perpendicular vegetation index (PVI),
ratio vegetation index (RVI) and green vegetation index (GVI), etc. In addition, there were
also studies that generated a new index based on the combination of vegetation indexes
with other indicators (evapotranspiration (ET), potential Evapotranspiration (PET), land
surface temperature (LST), etc.) to study surface drought conditions [9,10], such as the
drought severity index (DSI), temperature vegetation drought index (TVDI) and normal-
ized vegetation supply water index (NVSWI), etc. By searching the status of vegetation
dynamic change studies in recent years, NDVI and EVI are the most widely studied [11–13].
The NDVI can eliminate most of the effects associated with instrument calibration, sun
angle, topography, clouds, shadows and changes in atmospheric conditions; however, it
is inherently susceptible to saturation. Therefore, it has been improved and optimized to
create the EVI, which can reflect vegetation growth changes more accurately in areas with
high vegetation cover [14,15].

In recent years, there have been numerous in-depth studies on the factors influencing
vegetation cover dynamics. Correlation analyses [16,17], multiple linear regression analy-
ses [18], residual analyses [19,20] and geographical detector models [21,22] are the most
widely used methods, while some studies have also used machine learning [23] (e.g., ran-
dom forest) methods. From the perspective of driving factors, the impact of climate change
on vegetation cover dynamics is the most widely studied [24,25]. It is commonly accepted
that the main climatic factors affecting vegetation cover dynamics are temperature and
precipitation [26,27]. With rapid economic development, human activities have intensified,
making their effects on vegetation cover dynamics of wide concern. The effects of human
activity factors, such as land-use change [28,29], population density [30], GDP (Gross Do-
mestic Product) [31] and nighttime light [32], have been studied. In addition, some studies
have focused on the effects of topographic factors, including elevation, slope and aspect,
on vegetation cover dynamics [4,33]. However, the mechanisms influencing vegetation
cover dynamics are intricate, and each influencing factor not only acts individually but
may also interact with other factors. Traditional analysis methods only consider the direct
effects of influencing factors on vegetation cover dynamics [34], which may sometimes
be unrealistic. Therefore, it is important to quantify the direct and indirect influences
on vegetation cover dynamics to determine the overall effect, which can inform regional
environmental protection and decision-making.

The structural equation model (SEM) is a multivariate statistical method based on
a covariance matrix, which is a multivariate analytical equation that includes a factor
analysis and path analysis [35]. Moreover, SEM can deal with multiple independent and
dependent variables at the same time [36] and, thus, identify the direct and indirect effects of
independent variables on the dependent variable, thus obtaining the total effect [37,38]. In
addition, SEM can also reflect the relationships between the effects of multiple variables [39].
Therefore, SEM may be a more effective method for impact factor analysis than traditional
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multivariate statistical methods (e.g., multiple linear regression). Shao et al. [40] explored
the effects of topography, climate and vegetation changes on soil available nutrients based
on SEM. Wang et al. [34] analyzed vegetation phenological characteristics based on NDVI
and used SEM to explore the potential mechanisms of climate and soil factors on vegetation
phenology in the Three-River Headwaters Region. However, few studies have applied
SEM to analyse the influences on vegetation cover dynamics [41].

Anhui Province is an important grain production base in China. Changes in its veg-
etation cover are closely related to grain production. Therefore, studying the vegetation
cover status of this region is crucial for China’s food security. However, due to the special
geographical location of Anhui Province, the topography and climate of southern, central
and northern Anhui differ greatly. This has resulted in a poor zonal distribution of vegeta-
tion that creates challenges for research [42]. Accordingly, few studies have quantitatively
analyzed the influences on vegetation cover dynamics in this region. As far as we know,
Yao et al. [43] studied the vegetation dynamics in Anhui Province; however, they only
considered the influence of topography on vegetation cover change and did not consider
the influence of climate and human activity changes on vegetation cover change.

As a result, the main tasks of this study were to (1) analyze the characteristics of
spatial and temporal variation in the EVI in Anhui Province from 2000 to 2020; (2) explore
a coupled model of changes in land use and the EVI and (3) quantify the effects of changes
in topography, climate (annual average temperature and annual precipitation) and human
activity on EVI changes and explore the driving mechanisms. The results of the study pro-
vide a scientific basis for vegetation conservation, ecological environmental management
and the sustainable development of Anhui Province.

2. Materials and Methods
2.1. Study Area

Anhui Province (29◦41′–34◦38′N, 114◦54′–119◦37′E; Figure 1) is located in East China
and is an important part of the Yangtze River Delta. The terrain is composed of plains, hills
and mountains and is generally high in the southwest and low in the northeast. Anhui
Province has three natural geographical areas, namely, North Anhui Plain, Central Anhui
(Central Anhui Hills) and South Anhui (South Anhui Mountains), and it spans three major
water systems, namely, the Huaihe, Yangtze and Xin’an Rivers. It is situated in a climatic
transition area where the Huaihe River forms a boundary between a warm, temperate,
semi-humid monsoon climate to the north and a subtropical, humid monsoon climate to
the south. The monsoon is obvious; there are four distinct seasons, and natural disasters
occur from time to time in the region. The annual average temperature is 15–18 ◦C.
The average annual precipitation is 800–1800 mm, which falls more in the south than
in the north and more on the mountains than on the plains and hills. Anhui Province
is an important agricultural production base. Farmland is the primary land-use type,
accounting for 55.38% of the province’s area in 2020, being mainly in the north and central
Anhui plain areas.
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2.2. Data Acquisition and Processing

For this study, due to the temporal limitations of population density, nighttime light
and land use data, the study period was 2000–2020. The data used include EVI as well as
topographic, human activity and climate factors. The data are described in Table 1.

Table 1. Basic information of the study data.

Dataset Temporal /Spatial
Resolution Period Data Sources

EVI 16 d/250 m 2000–2020
MOD13Q1.006 Terra Vegetation Indices 16-Day
Global 250 m (https://earthengine.google.com,
accessed on 26 January 2022)

Topographic factors
Elevation 30 m 2000 SRTM DEM (https://earthexplorer.usgs.gov,

accessed on 26 January 2022)

Slope
30 m 2000 Derived from SRTM DEMAspect

Human
activity
factors

Populationdensity 1 km 2000–2020
World population density map
(https://www.worldpop.org, accessed on 26
January 2022)

Nighttime light 500 m 2000–2018

An extended time series (2000–2018) of global
NPP-VIIRS-like nighttime light data
(https://doi.org/10.7910/DVN/YGIVCD
accessed on 26 January 2022)

Land use 1 km 2000/2020 Anhui land-use datasets (http://www.resdc.cn,
accessed on 26 January 2022)

Climate
factors

Annual average
temperature

Monthly
/1 km 2000–2020 Daily surface climate data for China (V3.0)

(http://data.cma.cn, accessed on 26 January 2022)
Annual
precipitation

Monthly
/1 km 2000–2020 Daily surface climate data for China (V3.0)

(http://data.cma.cn, accessed on 26 January 2022)

https://earthengine.google.com
https://earthexplorer.usgs.gov
https://www.worldpop.org
https://doi.org/10.7910/DVN/YGIVCD
http://www.resdc.cn
http://data.cma.cn
http://data.cma.cn
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2.2.1. EVI Data

In this study, MOD13Q1 EVI data acquired from 2000 to 2020 were used to study the
long-term dynamics of vegetation in Anhui Province. The dataset has a spatial resolution
of 250 m and a temporal resolution of 16 d. The data were obtained via online access to
the Google Earth Engine (GEE, a data processing platform developed by Google, Carnegie
Mellon University, and the United States Geological Survey) platform. The EVI annual
maximum images from 2000 to 2020 were composited by the maximum value composite
method, with Anhui Province clipped as the vector boundary.

2.2.2. Topographic Factors

The topographic factors used in this study include elevation, slope and aspect. They
were extracted from the SRTM DEM. The aspects were reclassified as (1) shady slopes (0◦ to
45◦ or 315◦ to 360◦), (2) semi-shady slopes (45◦ to 135◦), (3) flat slopes (−1), (4) semi-positive
slopes (225◦ to 315◦) and (5) positive slopes (135◦ to 225◦).

2.2.3. Human Activity Factors

The human activity factors used in this study include population density, nighttime
light and land use. Population density data were obtained from the World Population Den-
sity Map published by WorldPop, which is the most accurate and reliable long-time-series
dataset available. A comparative analysis of the long time series was not possible due to
the mismatch between the nighttime light datasets acquired from two sensors, DMSP-OLS
(1992–2013) and NPP-VIIRS (2012–present), which are published by the National Oceanic
and Atmospheric Administration (NOAA). Therefore, this study used Chen et al.’s [44]
extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data, which has
a good spatial pattern and temporal consistency that is similar to the composite NPP-VIIRS
nighttime light data. Land use data in 2000 and 2020 were obtained from the Resource and
Environment Science and Data Center. The slopes of the changes in population density
from 2000 to 2020 and nighttime light from 2000 to 2018 were calculated using univariate
linear regression. Land-use data were obtained for two years: 2000 and 2020. Pixels with
land-use-type changes between 2000 to 2020 were recorded as 0, and those without changes
were recorded as 1.

2.2.4. Climate Factors

The study used daily average temperature and daily precipitation data from 62 me-
teorological stations in and around Anhui Province. Daily data from each station were
combined into monthly data, and ANUSPLIN software was used for interpolation at a
spatial resolution of 1 km. The monthly raster data were further combined into annual
data, and the trends in the annual average temperature and annual precipitation from
2000 to 2020 were calculated using the univariate linear regression method.

2.2.5. Data Processing

All data used in the study were projected onto the WGS_1984_UTM_Zone_50N coor-
dinate system and resampled to 250 m (the same resolution as the EVI data) based on the
nearest-neighbor method in ArcGIS 10.7. A total of 5346 sampling points were extracted by
removing waterbodies, taking the center point of a 5 km × 5 km grid and removing the
missing values. There were 1666 sampling points in northern Anhui, 2012 in central Anhui
and 1668 in southern Anhui. Then, the values of each influencing factor at each sampling
point were extracted to generate an attribute table.
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2.3. Methods
2.3.1. Univariate Linear Regression

In this study, the spatial and temporal variations in EVI in Anhui Province were
analyzed using univariate linear regression. The interannual variation at each pixel was
calculated according to Equation (1):

slope =
n∑n

i=1 i fci − (∑n
i=1 i)(∑n

i=1 fci)

n∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where fci represents the EVI value of the pixel in year i, and n represents the study period. A
slope > 0 means that the EVI had an increasing trend during the study period, while values
< 0 indicate a decreasing trend. Finally, the significance of the EVI trend was tested by
F-tests. Based on the results of the univariate linear regression and F-tests, the EVI trends in
the study area were divided into five classes: Significant improvement (slope > 0, p ≤ 0.01),
improvement (slope > 0, 0.01 < p ≤ 0.05), basically stable (p > 0.05), degradation (slope < 0,
0.01 < p ≤ 0.05) and significant degradation (slope < 0, p ≤ 0.01).

2.3.2. Coefficient of Variation

The coefficient of variation (CV) reflects the dispersion and fluctuation in a data
distribution [45]. This study analyzed the stability of EVI changes in the study area based
on the CV. Its equation is:

CV =
1
F

√
∑n

i=1
(

Fi − F
)2

n
100% (2)

where n represents years, F represents the average EVI for n years, and Fi represents the EVI
in year i. The greater the CV value, the more scattered the data, the greater the fluctuation
and the lower the stability; conversely, a smaller CV means less dispersed data with lower
fluctuation and higher stability.

The CVs were divided into five classes according to the natural breakpoint method:
extremely low fluctuation (0.02 ≤ CV < 0.09), low fluctuation (0.09 ≤ CV < 0.14), moderate
fluctuation (0.14 ≤ CV < 0.23), high fluctuation (0.23 ≤ CV < 0.41) and extremely high
fluctuation (0.41 ≤ CV < 1.19).

2.3.3. Hurst Index

The Hurst index can effectively describe the sustainability of a time series and, thus,
predict its future trend. Therefore, it is frequently used in studies to predict vegetation
cover changes [46]. In this study, the Hurst index of EVI change was calculated using a
rescaled range (R/S) analysis according to the following process. For any time series EVI(t),
t = 1, 2, . . . , n, with any positive integer τ ≥ 1, the average value of the series is defined as:

EVI(τ) =
1
τ ∑τ

t=1 EVI(t) τ = 1, 2, . . . , n (3)

The cumulative deviation series EVI(t,τ) is defined as:

EVI(t,τ) = ∑t
u=1

(
EVI(u) − EVI(τ)

)
1 ≤ t ≤ τ (4)

The sequence of extreme differences R(τ) is defined as:

R(τ) = maxEVI(t, τ)
1≤t≤τ

−minEVI(t, τ)
1≤t≤τ

τ = 1, 2, . . . , n (5)
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The standard deviation series S(τ) is defined as:

S(τ) =

[
1
τ ∑τ

t=1

(
EVI(t) − EVI(τ)

)2
] 1

2
τ = 1, 2, . . . , n (6)

Calculation of the Hurst index:

R(τ)

S(τ)
= (cτ)H (7)

where H represents the Hurst index, c represents a constant and τ denotes the time series
length. The following regularity exists for the Hurst index: (1) 0 < H < 0.5, indicating that
this time series is an anti-sustainability series, which means that the future trend in EVI will
be opposite to the past trend. The smaller the H value, the stronger the anti-sustainability.
(2) H = 0.5, indicating that this time series is a random series, which means that the future
trend in EVI is independent of the past trend. (3) 0.5 < H < 1, indicating that this time series
is a positive sustainability series, which means that the future EVI trend will be consistent
with the past trend. Higher H-values indicate stronger positive sustainability.

Then, the Hurst index and EVI trend significance results were superimposed according
to the correspondence in Table 2 to obtain the classification results of EVI future trends.

Table 2. Classification of sustainability in EVI change.

Significance 0 < H < 0.5 H = 0.5 0.5 < H < 1

Significant degradation Significant improvement

Uncertain

Significant degradation
Degradation Improvement Degradation

Basically stable Basically stable Basically stable
Improvement Degradation Improvement

Significant improvement Significant degradation Significant improvement

2.3.4. Structural Equation Model

Structural equation modelling (SEM) first originated in the social sciences [47] and has
recently been applied to ecology [40,41]. In the following section, we will describe in detail
the construction steps and modification process of SEM.

A reasonable conceptual model is essential when constructing an SEM [48]. In general,
a number of assumptions about the relationships between variables are first made based on
a review of the literature or a priori knowledge. Then, based on the model’s fit optimality
index, it is determined whether the study data fit the established model well. When the
model fits poorly, it is necessary to reset it or remove and change insignificant paths based
on theoretical assumptions and statistical results to improve the fit of the SEM and, thus,
explain the relationships between the variables in the SEM.

In this study, topography and changes in human activity were defined as two classes
of variables. Elevation, slope and aspect were used as observed variables in the topogra-
phy. Population density change (Pd_change), nighttime light change (Ntl_change) and
land-use change (Lu_change) were used as observed variables in the changes in human ac-
tivity. Annual average temperature change (AaT_change) and annual precipitation change
(AP_change) were added to the model as independent variables (observed variables) to
construct an SEM of the factors influencing EVI change. We make the following assump-
tions: (1) Topography, annual average temperature change, annual precipitation change
and human activity change all directly affect EVI variation; (2) topography can affect the
changes in annual average temperature and annual precipitation; (3) topography can affect
human activity changes; for example, high-altitude areas hinder human activities and, thus,
the exploitation of natural resources. Based on the above assumptions, the conceptualized
SEM was constructed as shown in Figure 2.



Remote Sens. 2022, 14, 4203 8 of 24

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 25 
 

 

change and human activity change all directly affect EVI variation; (2) topography can 

affect the changes in annual average temperature and annual precipitation; (3) topogra-

phy can affect human activity changes; for example, high-altitude areas hinder human 

activities and, thus, the exploitation of natural resources. Based on the above assumptions, 

the conceptualized SEM was constructed as shown in Figure 2. 

Elevation

Topography

Slope

Pd_change

Human activity 

change

Ntl_changeLu_change

EVI change

AaT_change AP_change

Aspect

 

Figure 2. Conceptual structural equation model. Note: Rectangles represent observed variables, and 

ellipses represent latent variables. AaT_change = annual average temperature change; AP_change = 

annual precipitation change; Lu_change = land use change; Ntl_change = nighttime light change. 

To determine the best-fitting model, five indicators were selected: CFI (Comparative 

Fit Index), GFI (Goodness of Fit Index), IFI (Incremental Fit Index), RMSEA (Root Mean 

Square Error of Approximation) and SRMR (Standardized Residual Mean Root). It is gen-

erally considered that the closer the CFI, IFI and GFI are to 1 and the closer RMSEA and 

SRMR are to 0, the better the model fit. Model construction, evaluation and correction 

were performed in AMOS 21 software (a standalone product in the SPSS (Statistical Prod-

uct Service Solutions) Statistics package). 

When each goodness of fit index of the model meets the requirements, the final fitted 

SEM is obtained. The corresponding standardized regression coefficients will be provided 

on each path. The direct influence is the path coefficient of the independent variable point-

ing directly to the dependent variable; the larger the path coefficient, the greater the influ-

ence; the indirect influence is the multiplication of the path coefficient of the influence of 

the independent variable on the intermediate variable and the path coefficient of the in-

fluence of the intermediate variable on the dependent variable; if there is more than one 

intermediate variable from the independent variable to the dependent variable, the indi-

rect influence is the sum of each indirect influence path; the total influence is the sum of 

the direct influence and the indirect influence. 

3. Results 

3.1. Spatial and Temporal Variations in EVI in Anhui Province 

3.1.1. Interannual Variation in EVI 

The temporal trend in EVI in Anhui Province from 2000 to 2020 is shown in Figure 3. 

The average annual maximum EVI increased from 0.577 in 2000 to 0.621 in 2020, and the 

maximum and minimum EVIs occurred in 2011 (0.636) and 2003 (0.563). Overall, the in-

terannual variation had a fluctuating increasing trend (Figure 3a). The slopes during the 

study period were 0.018·10a-1, 0.0156·10a-1, 0.0202·10a-1 and 0.018·10a-1 for the entire An-

hui Province, northern Anhui, central Anhui, and southern Anhui, respectively (Figure 

3a–d). Among them, the trends in EVI in the central and entire regions of Anhui Province 

were similar, with R² = 0.32381 (Figure 3a) and 0.3377 (Figure 3c), respectively. The 

Figure 2. Conceptual structural equation model. Note: Rectangles represent observed vari-
ables, and ellipses represent latent variables. AaT_change = annual average temperature change;
AP_change = annual precipitation change; Lu_change = land use change; Ntl_change = nighttime
light change.

To determine the best-fitting model, five indicators were selected: CFI (Comparative
Fit Index), GFI (Goodness of Fit Index), IFI (Incremental Fit Index), RMSEA (Root Mean
Square Error of Approximation) and SRMR (Standardized Residual Mean Root). It is
generally considered that the closer the CFI, IFI and GFI are to 1 and the closer RMSEA and
SRMR are to 0, the better the model fit. Model construction, evaluation and correction were
performed in AMOS 21 software (a standalone product in the SPSS (Statistical Product
Service Solutions) Statistics package).

When each goodness of fit index of the model meets the requirements, the final fitted
SEM is obtained. The corresponding standardized regression coefficients will be provided
on each path. The direct influence is the path coefficient of the independent variable
pointing directly to the dependent variable; the larger the path coefficient, the greater the
influence; the indirect influence is the multiplication of the path coefficient of the influence
of the independent variable on the intermediate variable and the path coefficient of the
influence of the intermediate variable on the dependent variable; if there is more than one
intermediate variable from the independent variable to the dependent variable, the indirect
influence is the sum of each indirect influence path; the total influence is the sum of the
direct influence and the indirect influence.

3. Results
3.1. Spatial and Temporal Variations in EVI in Anhui Province
3.1.1. Interannual Variation in EVI

The temporal trend in EVI in Anhui Province from 2000 to 2020 is shown in Figure 3.
The average annual maximum EVI increased from 0.577 in 2000 to 0.621 in 2020, and the
maximum and minimum EVIs occurred in 2011 (0.636) and 2003 (0.563). Overall, the
interannual variation had a fluctuating increasing trend (Figure 3a). The slopes during
the study period were 0.018·10a−1, 0.0156·10a−1, 0.0202·10a−1 and 0.018·10a−1 for the
entire Anhui Province, northern Anhui, central Anhui, and southern Anhui, respectively
(Figure 3a–d). Among them, the trends in EVI in the central and entire regions of Anhui
Province were similar, with R2 = 0.32381 (Figure 3a) and 0.3377 (Figure 3c), respectively.
The increasing trend in EVI in northern Anhui was not significant (p = 0.138, Figure 3b),
while that in southern Anhui was the most significant (p = 0.000, Figure 3d).
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Figure 3. Temporal variations in annual maximum EVI mean during 2000–2020 in Anhui Province.
(a) The entire Anhui Province and (b) Northern, (c) Central and (d) Southern Anhui.

3.1.2. Spatial Distribution Characteristics of EVI and Areas of Transfer

Based on the equal interval method, the EVI of Anhui Province was classified into five
classes: 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8 and 0.8–1, representing extremely low, low, medium,
high and extremely high vegetation cover, respectively. The EVI in Anhui Province showed
a spatial distribution of being high in the north and south and low in the middle (Figure 4).
From 2000 to 2020, Anhui Province was dominated by moderate-to-high vegetation cover,
with EVIs≥ 0.4 covering 96.5% and 94.4% of the area in 2000 and 2020, respectively (Table 3).
Low and extremely low vegetation cover accounted for only 2.5% of Anhui Province, mainly
occurring in construction land. Notably, from 2000 to 2020, the area of moderate vegetation
cover decreased from 55.36% to 33.23%, while the low and extremely high vegetation
cover areas increased from 3.17% and 0.89% to 5.16% and 5.60%, respectively. Changes
in moderate and high vegetation cover represented the main forms of vegetation cover
transfer in Anhui Province. The increase in low vegetation cover mainly came from the
transfer of moderate vegetation cover, and the increase in extremely high vegetation cover
mainly came from the transfer of high vegetation cover (Table 3).
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Table 3. Area transfer matrix of EVI in Anhui Province during 2000–2020 (km2).

2000
2020

[0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8,1] Total

[0,0.2] 117.31
(0.09%)

270.88
(0.20%)

48.13
(0.03%)

11.5
(0.01%)

1
(~0.00%)

448.82
(0.33%)

[0.2,0.4] 166
(0.12%)

1785.38
(1.33%)

1982.44
(1.47%)

328.38
(0.24%)

16.25
(0.01%)

4278.45
(3.17%)

[0.4,0.6] 201
(0.15%)

3774.13
(2.80%)

33,035.88
(24.52%)

35,755.25
(26.54%)

1820.88
(1.35%)

74,587.14
(55.36%)

[0.6,0.8] 70.5
(0.05%)

1097.75
(0.81%)

9495.13
(7.05%)

38,039.44
(28.23%)

5529.44
(4.11%)

54,232.26
(40.25%)

[0.8,1] 4.44
(~0.00%)

32.13
(0.02%)

212.38
(0.16%)

774
(0.58%)

172.31
(0.13%)

1195.26
(0.89%)

Total 559.25
(0.41%)

6960.27
(5.16%)

44,773.96
(33.23%)

74,908.57
(55.60%)

7539.88
(5.60%)

134,741.93
(100%)

3.1.3. Spatial Trend in EVI

The trend in EVI from 2000 to 2020 was calculated at the pixel scale and tested for
significance (Figure 5). The results show that there was a decreasing EVI trend in 26.1% of
the regions in Anhui Province and an increasing trend in 73.9% of the regions (Figure 5a).
Among them, 64.2% of the regions had significant improvements in EVI, 19.4% of the regions
had significant degradation (Figure 5b) and 12% of the regions remained largely stable.

From 2000 to 2020, the area of improved vegetation in Anhui Province (67.1%) was
much larger than the area of degradation (20.9%); hence, the spatial trend in vegetation was
dominated by improvement (Figure 5b). Among them, the areas of significantly degraded
vegetation (19.4%) were mainly located in Fuyang, Bozhou and Huaibei cities in northern
Anhui, Lu’an and Hefei cities in central Anhui and the urban belt of Wanjiang River, while
areas with significantly improved vegetation (64.2%) were mainly located in the eastern
north, western central and southern mountainous areas of Anhui.
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3.1.4. Stability of EVI Variations

The stability of EVI variations in Anhui Province from 2000 to 2020 is shown in Figure 6.
The fluctuations in EVI variation in most regions (85.8% of the study area) were extremely
low and low. The average CV in Anhui Province was about 0.11, indicating that there was
little overall fluctuation in EVI over the past 21 years. Moderate and high fluctuations
accounted for 13.9% of Anhui Province, mainly in construction land in the Wanjiang and
Huaihe River basins and in Hefei city and other urban centers. The areas with extremely
low and low fluctuations in EVI variation occurred mainly in non-urban areas, mainly in
farmland and woodland.
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3.1.5. Sustainability of EVI Variations

The Hurst indexes of EVI variations in Anhui Province are shown in Figure 7a. Values
of H < 0.5 occurred in most areas (72.3%) of Anhui Province, with an average value of
0.448, indicating that the overall EVI variation showed anti-sustainability, i.e., the trend
in vegetation EVI variation in Anhui Province might be reversed in a period after 2020.
Figure 7b shows a superimposed analysis of the Hurst index and EVI trends. The results
show that the EVIs in Anhui Province would remain basically unchanged in 12% of the
province and change in 88% in a period after 2020. Among them, areas with significant
increases and decreases accounted for 29% and 54.5%, respectively.
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3.2. Superposition of EVI Variation and Land-Use Change in Anhui Province

We analyzed the spatial changes in land use types in Anhui Province using land-use
data for the two periods of 2000 and 2020 (Figure 8). The results show that farmland was the
dominant land-use type in Anhui Province, accounting for 57.8 and 55.4% of its area in 2000
and 2020, respectively, followed by woodland and construction land, with grassland and
waterbodies accounting for lower proportions of the area. In addition, it can be seen from
Figure 8 that the proportion of area occupied by construction land increased from 8% to
10.5% between 2000 and 2020, and there was a significant outward expansion. Combining
this with data on the area transfer of each land-use type in Anhui Province in the period
2000–2020 (Table 4), we found that the majority of regional land-use types were unchanged.
Unchanged areas occupied 96,889 km2 (69.36% of the province). Among them, the type
of land transferred from farmland was mainly construction land, accounting for an area
of 11,191 km2 (8.01%). A portion of construction land was also transferred to farmland,
accounting for an area of 8085 km2 (5.79%). This may be related to urban expansion and
the intensive use of farmland.
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Table 4. Area transfer matrix of land-use changes in Anhui Province during 2000–2020 (km2).

2000
2020

Farmland Woodland Grassland Waterbodies Construction Land Unused Land Total

Farmland 61,135
(43.76%)

5062
(3.62%)

1233
(0.88%)

2189
(1.57%)

11,191
(8.01%)

18
(0.01%)

80,828
(57.85%)

Woodland 4878
(3.49%)

24,193
(17.32%)

2350
(1.68%)

249
(0.18%)

441
(0.32%)

2
(~0.00%)

32,113
(22.99%)

Grassland 1238
(0.89%)

2306
(1.65%)

4478
(3.21%)

123
(0.09%)

173
(0.12%)

3
(~0.00%)

8321
(5.96%)

Waterbodies 2030
(1.45%)

225
(0.16%)

147
(0.11%)

4537
(3.25%)

306
(0.22%)

0
(0.00%)

7245
(5.19%)

Construction
land

8085
(5.79%)

209
(0.15%)

100
(0.07%)

252
(0.18%)

2546
(1.82%)

2
(~0.00%)

11,194
(8.01%)

Unused
land

3
(~0.00%)

2
(~0.00%)

0
(0.00%)

0
(0.00%)

0
(0.00%)

0
(0.00%)

5
(~0.00%)

Total 77,369
(55.38%)

31,997
(22.90%)

8308
(5.95%)

7350
(5.27%)

14657
(10.49%)

25
(0.01%)

139,706
(100%)

Figure 9 shows the superposition analysis of EVI trends and land-use change. In terms
of land-use change in areas of EVI increase (Figure 9a), 27.8% (20.5% of the total study area)
was related to changes in land-use type, while 72.2% (53.4% of the total study area) was
not. Of this 27.8%, the primary cause of EVI increase was transfer from “other” land use to
farmland and woodland. Transfer from “other” land use to farmland mainly occurred in
the plain areas of north and central Anhui, while transfer from “other” to woodland mainly
occurred in the western part of central Anhui and the mountainous areas of southern Anhui.

In terms of land-use change in areas of EVI decrease (Figure 9b), 30.1% (7.9% of the
total study area) was related to changes in land-use type, while 69.9% (18.2% of the total
study area) was not. Of this 30.1% area, the primary cause of EVI decrease was transfer from
farmland to construction land (13.7%), indicating that urban expansion in Anhui Province
was mainly related to decreases in farmland, mainly in Fuyang, Bozhou and Huaibei cities
in northern Anhui Province, and in Hefei City and the Wanjiang River urban belt.
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EVI changes of different land use types transferred was quantified at the pixel-scale
(Figure 10). It was obtained by subtracting the EVI data for 2000 from that for 2020 and
then calculating the EVI changes caused by changes in land-use type at the pixel-scale. The
results show that changes in land-use type increased the EVI, except for the transfers of
farmland, woodland, grassland and construction land to unused land, which resulted in
EVI decreases. Among the pixels where land-use type changed, the transfer of unused land
to farmland, of construction land to woodland, of grassland to farmland and woodland,
of woodland to farmland and grassland and of farmland to woodland and grassland
resulted in larger increases in the EVI compared to the transfer of other land use types,
corresponding to 0.08, 0.06, 0.06, 0.06, 0.06, 0.06, 0.06 and 0.06. The EVIs of farmland,
woodland and grassland also increased significantly in pixels where the land use type
did not transfer, by 0.04, 0.06 and 0.06, respectively. These areas were considered to be
related to projects that return farmland to forest. Furthermore, with the modernization of
agriculture, crop yields have increased.
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on pixel scale.
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3.3. SEM of EVI Variation in Anhui Province

The final constructed SEM of the factors influencing EVI variation in Anhui Province
is shown in Figure 11. All the fitting optimization indicators of the model met the require-
ments (CFI = 0.99, GFI = 0.99, IFI = 0.99, RMSEA = 0.05, SRMR = 0.02), indicating that the
SEM was a good fit to the data.
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effects; red lines represent negative effects. Solid lines represent significant paths. *** Significant at
the 99% level.

The SEM showed that annual average temperature (AaT_change), annual precipitation
(AP_change) and human activity changes only had direct effects on EVI variations, with
impact coefficients of 0.09, −0.13 and −0.53, respectively. Topography not only had direct
but also indirect effects on EVI variations, and their influence paths were (1) topography
directly affected EVI variations with an impact factor of 0.13; (2) topography indirectly
affected EVI variations by influencing annual average temperature changes, with an influ-
ence coefficient of about 0.06 (0.69 × 0.09 = 0.06); (3) topography indirectly affected EVI
variations by influencing annual precipitation changes, with an influence coefficient of
about −0.09 and (4) topography indirectly affected EVI variations by influencing human
activity changes, and the influence coefficient was about 0.1. Therefore, the total effect of
topography on EVI change was 0.2 (0.13 + 0.06 − 0.09 + 0.1 = 0.2). Among them, there
were significant interactions between elevation and annual average temperature change
and between annual average temperature change and annual precipitation change, with
coefficients of 0.56 and 0.39, respectively.

Statistics on the total effect of each driving factor on EVI variations showed that
human activity changes had the greatest effect, followed by topography, while annual
average temperature and annual precipitation changes had the least effects. Among the
human activity factors, nighttime light change could better measure the effect of human
activity change on EVI variation, indicating that accelerated urbanization was the primary
contributor to the decreases in the EVI in Anhui Province.

3.4. SEM of EVI Variations in Northern, Central and Southern Anhui

The final SEMs of the drivers of EVI variations in northern, central and southern
Anhui are shown in Figure 12. All the fitting optimization indicators of the models met the
requirements (Table 5), and the model fits were good.
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Figure 12. SEM of the relationship between EVI change and its drivers in (a) Northern, (b) Cen-
tral and (c) Southern Anhui Province. Note: AaT_change = annual average temperature change;
AP_change = annual precipitation change; Lu_change = Land use change; Ntl_change = nighttime
light change. Green lines represent positive effects; red lines represent negative effects. Solid lines
represent significant paths. *** Significant at the 99% level; ** Significant at the 95% level; * Significant
at the 90% level.
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Table 5. Structural equation model fitting results.

Fitting Optimization Index Adaptation Standard
Evaluation Values for Each Region
Northern

Anhui
Central
Anhui

Southern
Anhui

CFI >0.90 1.00 0.98 0.99
GFI >0.90 1.00 0.99 0.99
IFI >0.90 1.00 0.98 0.99

RMSEA <0.08 0.01 0.07 0.06
SRMR <0.05 0.01 0.02 0.03

Figure 12a shows the SEM of the factors driving EVI change in northern Anhui. The
model shows that EVI changes were basically unaffected by topography, while annual
average temperature, annual precipitation and human activity changes had direct effects,
with coefficients of −0.06, 0.21 and −0.62, respectively (Table 6). Figure 12b shows the SEM
for central Anhui. The relationship between EVI changes and its drivers in central Anhui
is most similar to that of the entire Anhui Province (Figure 11). The total influences of
topography, annual average temperature, annual precipitation and human activity changes
on EVI variations were 0.22, 0.05, −0.26 and −0.49, respectively (Table 6). Figure 12c shows
the SEM for southern Anhui. Of these, topography had basically no direct effect but would
have had an indirect negative effect by promoting warmer temperatures (−0.06), an indirect
positive effect by increasing precipitation (0.04), and an indirect positive effect by suppress-
ing increased human activities (0.29), resulting in a total effect of 0.27 (Table 6). Annual
average temperature, annual precipitation and human activity changes only had direct
effects on EVI variations, with coefficients of −0.08, 0.04 and −0.6, respectively (Table 6).

Table 6. The total impact of drivers on EVI variation in each district of Anhui Province.

Driving Factors Northern Anhui Central Anhui Southern Anhui

Topography 0 0.22 0.27
AaT_change −0.06 0.05 −0.08
AP_change 0.21 −0.26 0.04

Human activity change −0.62 −0.49 −0.60

Although the driving mechanisms of EVI changes in northern, central and southern
Anhui were different (for example, the effects of annual average temperature and annual
precipitation changes on EVI variations in northern and central Anhui were stronger than
those in southern Anhui (Table 6)), human activity change was the most important driving
factor on EVI variation in each district of Anhui Province.

4. Discussion
4.1. Spatial and Temporal Variations in the EVI

Temporally, the EVI of Anhui Province showed an overall fluctuating increasing trend
from 2000 to 2020 (0.0181·10a−1; Figure 3). The EVI in northern Anhui had a significant
decreasing trend from 2002 to 2003, while the trends in central and southern Anhui were
smaller. The EVIs in northern and central Anhui had significantly increasing trends from
2003 to 2004, while the trend in southern Anhui was smaller (Figure 3). China launched
a project for returning farmland to forest in 2002, in which 17 cities in Anhui Province
participated. The main construction period was 2002–2003, and by 2004, 2170.53 km2 of
farmland had been returned to forest, and 2581.67 km2 of barren hills and wastelands were
reforested. Poor-quality cultivated land that ceased to be cultivated might be the main
reason for the EVI decrease in northern Anhui in 2002–2003, while the return of farmland to
forest was the main reason for the EVI increase in northern and central Anhui in 2003–2004.
In addition, the EVIs in northern and central Anhui also increased significantly from 2013
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to 2014, which may be related to the “Ten Million Mu Forest Growth Project” implemented
in Anhui Province in October 2012.

Spatially, the EVIs in Anhui Province were highest in the north and Dabie mountainous
area of central Anhui and in the mountainous areas of southern Anhui and then, in the
central Anhui plain and in urban areas (Figure 4). This was related to the spatial distribution
of land-use types. The vegetation cover differed according to surface type and was ranked
from high to low as woodland > grassland > farmland > town [43]. The mountainous
area of south Anhui and the Dabie mountainous area of central Anhui were dominated by
woodland, while the plain of north Anhui was dominated by farmland.

4.2. Drivers of EVI Variation
4.2.1. Topographic Factors

Topography not only affected vegetation cover changes directly but also influenced
temperature, precipitation and human activities to various degrees, thus affecting vegeta-
tion changes [4]. However, most previous studies have only examined the direct effects
of topography on vegetation cover change [49,50], without considering indirect effects.
On the one hand, topography directly affected the spatial distribution of land-use types.
There were obvious differences in vegetation type according to altitude in Anhui Province;
below 200 m, the vegetation was dominated by farmland. With increases in altitude,
a higher-EVI vegetation type, such as woodland or grassland, dominated [43]. On the
other hand, topography could affect vegetation growth by changing the hydrothermal
conditions [4]. For example, the higher the altitude or slope, the faster the annual average
temperature and annual precipitation increases (Figures 11 and 12). In addition, slope
can affect vegetation growth by altering surface runoff and, usually, the steeper the slope,
the lower the vegetation cover [51]. However, in this study, steeper slopes had greater
increases in EVI, which was due to the fact that gentle slopes were more negatively affected
by human activities, while steep slopes were less affected by human activities, which is
consistent with the findings of Yi et al. [52] for the middle reaches of the Yangtze River.
From Figure 12, we can see that EVI variations in northern Anhui were basically uninflu-
enced by topography, while those in southern Anhui were highly influenced, which mainly
increased EVI by suppressing human activities. This is mainly because northern Anhui is a
plain area with flat topography, while southern Anhui is mostly mountainous with more
complex topography.

4.2.2. Climate Factors

In the context of global warming, it is widely believed that higher temperatures
will positively affect vegetation growth and enhance photosynthesis [53]; however, high
temperatures will also accelerate the evaporation of soil water, reducing soil water content
and leading to EVI losses [54]. In arid and semi-arid areas, water increases vegetation
growth, but in humid areas with sufficient precipitation, its effect on EVI is not obvious,
and excessive precipitation can even lead to soil erosion, inhibited vegetation growth and
lower EVI [55,56].

From 2000 to 2020, the annual average temperature change mainly affected EVI varia-
tions in Anhui Province via interaction with the elevation and annual precipitation change,
while its direct effect on EVI variations was small (Figures 11 and 12). The EVI variations
in northern and central Anhui were strongly influenced by precipitation (0.211 and −0.26),
while those in southern Anhui were basically unaffected by precipitation (0.04; Figure 12).
There are two main reasons for this. One is that northern Anhui is in a warm temperate
semi-humid climate zone, while central and southern Anhui are in a subtropical humid cli-
mate zone. Southern Anhui has the most precipitation, followed by central Anhui and then
northern Anhui. Thus, EVI variations in northern Anhui are more sensitive to precipitation
changes, and because precipitation in northern Anhui is relatively low, higher precipitation
would increase vegetation growth and EVI, while precipitation in central Anhui is sufficient,
so excessive precipitation would erode the soil and decrease vegetation growth and EVI.
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The other reason is that the main land-use type in northern and central Anhui is farmland,
while that in southern Anhui is mainly woodland, with farmland being more susceptible
to climate change [57]. Overall, this study shows that climate had a small influence on EVI
variations in Anhui Province, with human activities being the main influencing factor. This
is consistent with Yang et al.’s [42] study on the drivers of NPP (Net Primary Productivity)
in Anhui Province, and there have been similar findings in other regions [19].

4.2.3. Human Activity Factors

With rapid economic development, the impact of human activities on vegetation cover
dynamics has become increasingly significant [58,59]. This is mainly manifested in two
aspects: (1) unreasonable human farming and urban expansion will degrade vegetation,
while (2) the implementation of ecological engineering projects will improve vegetation [60].

We quantified the effects of topography, climate change and human activity change
on EVI variations in Anhui Province based on SEM, finding that human activity changes
(land-use and nighttime light) are the main controls on vegetation cover increases and
decreases (Figures 11 and 12), which is consistent with the findings of Yuan et al. [61]
and Qu et al. [62] for the Yangtze River Delta region. In general, human activity change
had a negative effect on EVI variations, which was mainly reflected in rapid urbanization
converting large amounts of farmland into construction land. This was confirmed by
Yang et al. [42] in their study of NPP variations in Anhui Province. This process mainly
occurred in Fuyang, Bozhou, Huaibei, Suzhou, Fuyang, Hefei and the Wanjiang River
urban belt (Figure 9b). As shown in Figure 6, areas of greater fluctuation largely coincided
with areas of urban expansion. In particular, Hefei, the capital city of Anhui Province,
officially joined the Yangtze River Delta region in 2010 and became a sub-center city of the
Yangtze River Delta city cluster. In 2013, Hefei city joined the “Middle Four Corners” to
the west and formed the Middle Yangtze River City Cluster with Wuhan, Changsha and
Nanchang, which led to rapid economic development and gradual expansion of the city.
On the other hand, human activity change had a positive impact on EVI variations. The
study by Qu et al. [63] on the Yangtze River Basin also found that land-use changes related
to ecological restoration projects were the main driver of vegetation improvement in the
Yangtze River Basin. From 2000 to 2020, a series of ecological projects were implemented in
Anhui Province; for example, an ecological project for returning farmland to forests was
launched in 2002, while the “Ten Million Mu of Forest Growth Project” was launched in
2012 in Anhui Province. From 2000 to 2020, areas that changed from the “other” land-use
type to woodland and caused an increase in EVI accounted for 4.9% of Anhui Province
(Figures 5a and 9a). These mainly occurred in southern Lu’an, northern Anqing, Chuzhou,
Chizhou, Huangshan and Xuancheng. In particular, from 2000 to 2020, the afforestation
areas of Anqing, Chuzhou, Chizhou and Huangshan increased from 124.78 km2, 56.87 km2,
88.26 km2 and 76.36 km2 to 294.08 km2, 200.38 km2, 164.24 km2 and 256.41 km2, respectively,
which largely contributed to the increase in EVI in the region.

4.3. Advantages of SEM

In this study, the effects of topography, annual average temperature change, annual
precipitation change and human activity change on EVI change were quantitatively ana-
lyzed based on SEM. Compared with other study methods, SEM quantitatively identifies
the interactions among variables and the direct and indirect effects on EVI variations,
providing a clearer understanding of the driving mechanisms.

Figure 13 shows a correlation analysis between the EVI variations and each influencing
factor for the entire Anhui Province and for northern, central and southern Anhui. The
highest correlation coefficient with EVI change was nighttime light change. Followed by
elevation, slope and annual average temperature changes in central and southern Anhui.
However, SEM showed that the annual average temperature change had a small effect on
EVI change in all regions of Anhui Province. This is mainly because the correlation analysis
only estimates the correlation between two variables and does not consider the interaction
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between other variables. In contrast, SEM can consider complex interactions between
multiple variables and estimate the relationship between two variables by excluding
the effects of other variables. In this study, there were significant interactions between
elevation, annual average temperature change and annual precipitation change. In addition,
SEM allowed quantitative estimation of the direct and indirect effects of each driving
factor (topography, annual average temperature, annual precipitation and human activity
changes) on EVI variation, thus obtaining the total effect of each one. In conclusion, this
study differs from existing studies on the drivers on vegetation cover dynamics. It analyzed
the drivers of vegetation cover change in Anhui Province from a new perspective, proposing
an innovative research framework and making up for the shortcomings in the quantitative
analyses used in existing studies. The results of the study have important implications for
ecological environmental protection and sustainable development in Anhui Province.
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Figure 13. Pearson correlations of EVI variation and its potential drivers in (a) Anhui Province
and (b) Northern, (c) Central and (d) Southern Anhui. Note: AaT_change = annual average
temperature change; AP_change = annual precipitation change; Lu_change = Land use change;
Ntl_change = nighttime light change.

4.4. Limitations of This Study

This study also has some limitations. First, both the NDVI and EVI are influenced by
atmospheric and soil backgrounds, etc. However, compared to the NDVI, the EVI further
reduces the influence of soil background and atmosphere on the basis of maintaining
the advantages of the NDVI, and it has higher sensitivity and superiority for monitoring
vegetation dynamics in areas with high vegetation cover [14]. Particularly, the EVI reduces
the atmospheric influence on the vegetation index by introducing a blue band, which is
more sensitive to atmospheric influence, to correct the red band, which is influenced by
aerosol [15,64]. Meanwhile, this study used land use data with a spatial resolution of 1 km
to analyze the effect of land-use change on vegetation-cover change. This resolution may be
a bit low for the analysis of construction land; however, our study period spanned 21 years,
and the expansion of construction land was much larger than 1 km; therefore, we believe
that the resolution of this data does not affect the analysis results of this study. It should
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also be noted that the effect of climate change on vegetation change is lagged [65,66] but to
different extents depending on the geographical environment and vegetation types. Hence,
there is no uniform selection standard for the lag interval. The geographical location of
Anhui Province is special, and the differences in vegetation types between southern and
northern Anhui are obvious. Therefore, to prevent errors due to the unreasonable selection
of time lag intervals, the lagged effect of climate change on vegetation change was not
considered in this paper. In addition, the selection of the potential influences on vegetation
cover change was not comprehensive enough, and the quantification of human activity
factors is challenging because of a lack of available data, especially in areas with strong
human activity [4]. Therefore, high resolution data will be considered for use in future
studies, and the study area will be further refined to fully consider the effects of multiple
factors on vegetation cover change and obtain a clearer understanding of the mechanisms
driving vegetation cover change.

5. Conclusions

This study analyzed the characteristics of spatial and temporal variations in EVI in
Anhui Province using MOD13Q1 EVI data acquired from 2000 to 2020. It explored the
influences on EVI variations using land-use data from 2000 and 2020 and, finally, quantified
the effects of topography (elevation, slope and aspect), annual average temperature change,
annual precipitation change and human activity change (population density change, night-
time light change and land-use change) on EVI variations based on SEM. The following
main conclusions were obtained:

(1) Temporally, the EVI of Anhui Province showed a trend of a fluctuating increase at a
rate of 0.0181·10a−1 between 2000 and 2020.

(2) The EVI in Anhui Province showed a spatial distribution pattern of being high in
the north and south and low in the middle. The spatial trend in EVI was dominated
by improvement, with 64.2% of the regions having significant improvements in EVI.
The fluctuation in EVI variation in most regions of the province was extremely low
and low. High fluctuations occurred in urban areas. After 2020, the EVI is likely
to decrease, so the government should strengthen relevant vegetation greening and
protection measures.

(3) Among the areas where EVI increased, 10.8% of the areas was transferred from “other”
land use to farmland, mainly in the northern and central Anhui plain areas. Some
6.6% were transferred from “other” land use to woodland, mainly in the mountainous
area of central and southern Anhui. Among the regions with reduced EVI, 13.7% was
transferred from farmland to construction land, mainly in Hefei, Fuyang, Bozhou,
Huaibei, and the Wanjiang River urban belt. Therefore, the government needs to pay
special attention to the coordinated development of accelerated urbanization and
ecological environmental protection.

(4) The SEM showed that human activity changes (mainly nighttime light change) were
the main cause of EVI decreases in Anhui Province. Except for northern Anhui,
central and southern Anhui were affected by the complexity of the topography. In
addition, the EVI variations in Anhui Province were less influenced by annual average
temperature change, and the influence of annual precipitation change showed that
northern and central Anhui were higher than southern Anhui.
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