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Abstract: This study proposes using Satellite-Based Precipitation (SBP) products and local rain
gauge data to generate information on the daily precipitation product over Bolivia. The selected
SBP products used were the Global Satellite Mapping of Precipitation Gauge, v6 (GSMaP_Gauge
v6) and the Climate Hazards Group Infrared Precipitations with Stations (CHIRPS). The Gridded
Meteorological Ensemble Tool (GMET) is a generated precipitation product that was used as a control
for the newly generated products. The correlation coefficients for raw data from SBP products were
found to be between 0.58 and 0.60 when using a daily temporal scale. The applied methodology
iterates correction factors for each sub-basin, taking advantage of surface measurements from the
national rain gauge network. Five iterations showed stability in the convergence of data values. The
generated daily products showed correlation coefficients between 0.87 and 0.98 when using rain
gauge data as a control, while GMET showed correlation coefficients of around 0.89 and 0.95. The
best results were found in the Altiplano and La Plata sub-basins. The database generated in this
study can be used for several daily hydrological applications for Bolivia, including storm analysis
and extreme event analysis. Finally, a case study in the Rocha River basin was carried out using
the daily generated precipitation product. This was used to force a hydrological model to establish
the outcome of simulated daily river discharge. Finally, we recommend the usage of these daily
generated precipitation products for a wide spectrum of hydrological applications, using different
models to support decision-making.

Keywords: combined precipitation; products; Bolivia; GSMaP; CHIRPS; GMET; Rocha River basin

1. Introduction

One of the most important variables in hydrological models is precipitation data,
which allows models to be grouped according to their manner of using data. Models can be
classified as either semi-distributed [1] or distributed [2], and the precipitation data used as
the input for the hydrological models can be monthly, daily and hourly. Monthly data is
utilized in historical analyses of precipitation [3,4] and climate change analyses [5]. Hourly
data can be used for extreme event analysis [6–8] and storm analysis. Daily precipitation
data can be employed in all these applications: historical analysis [9], climate change
analysis [10,11], extreme event analysis [12,13] and storm analysis.

All precipitation data sets can be obtained using the same methods, which can be
either direct or indirect. Direct methods employ rain gauges and meteorological stations
as measurement instruments and are considered to be more accurate than indirect meth-
ods. Examples of their successful use include gathering data on variations in the amount,
frequency and intensity of precipitation along the western coastline of Sumatra [14]; improv-
ing gridded precipitation data sets, based on radar-detected precipitation, and validating
these with rain gauges in regions in Israel and the Netherlands [15], analyzing rain gauge
quantification of the Ganges River basin in India [16] and generating climate indices in
Brazil [17]. However, these direct method instruments also raise certain concerns. These
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include density issues, as seen in the Ebro River basin in Spain [18], rain gauge operation
and design issues [19] and climate and altitude factors [20]. Indirect methods are, therefore,
useful as substitutes.

When discussing indirect methods, it is worth considering how satellite sensors and
radar instrumentation capture precipitation data. The generation process for satellite
sensors results in satellite-based precipitation (SBP) products. These provide the most
accessible radar-generated precipitation data and have been employed in various stud-
ies [21,22]. Popular precipitation products include the global satellite mapping of pre-
cipitation (GSMaP) [23,24] and the Climate Hazards Group Infrared Precipitations with
Stations (CHIRPS) [25,26]. CHIRPS has been used to evaluate extreme precipitation in
the Qinghai-Tibet Plateau, China [27] and the Brazilian Amazon [28], while GSMaP has
been used for precipitation analysis in the mountainous regions of Nepal [29] and Iran [30].
Despite their accessibility and ease of handling, SBP products have several issues that
require further consideration.

One such issue is that SBP products are constantly updated through the introduction
of new versions and products, and analysis is required to understand variations in these
updates. An example is the Climate Hazards Group, which had its main product—the
Climate Hazards Group Infrared Precipitations (CHIRP)—before it added stations to the
algorithm and developed CHIRPS [31]. IMERG precipitation products provide another
example. Three versions of the same product were issued—early, late and final—the main
difference between them being the processing time [32]. In contrast, SBP products show
“estimated precipitation”, which does not represent precipitation registers on the ground.
The utilization of SBP products requires the analysis of SBP (see case studies of the Mekong
River basin [33] and a segment of the Nile River in Egypt [34]) and the employment of a
methodology (for example, bias correction) to rectify the precipitation data before it can be
used in another research [35,36].

Another consideration is that experience with SBP products, such as rain gauges,
highlights the challenges of using these products in studies. The generation of combined
precipitation products using both SBP and rain gauge data can offer an alternative that
improves information accuracy and generates a distributed precipitation product. One
study in China used a deep neural network fusion model between convolutional neural
networks (CNN) and a long–short-term memory network (LSTM) with daily temporal
resolution. This study employed TRMM 3B42 V7 satellite data, rain gauge data, and thermal
infrared images for the release of the fusion [37]. The “three-cornered hat” (TCH) is another
merging method that employs an inverse error variance-covariance matrix to estimate
uncertainty and generate weighted precipitation data for SBP products. The TCH method
requires at least three data sets to be employed, using either daily or monthly temporal
resolution [38]. Another combined method involves using an optimized methodology
base for the entropy, variance and standard deviation for daily precipitation data. This
methodology, which was applied in the Chaobai River in China, utilizes PERSIANN-
CCS [39].

Our focal country, Bolivia, has around 381 rain gauges with 36 years of precipitation
data [40]. Nonetheless, rain gauge density does not exist in the ranges recommended by
the World Meteorological Organization (WMO) [41]. In light of this, Bolivia’s Ministry
of Environment and Water (known by its Spanish acronym, MMAyA) requested the in-
tegration of generated precipitation products for use in its Balance Hídrico Superficial
de Bolivia (BHSB) [40]. The result of this request was the implementation of a gridded
meteorological ensemble tool (GMET) product [42]. However, generating this product
requires high-end computing equipment, which limits its ability to be replicated in other
case studies. Moreover, it employs a combined method that utilizes the relative error and a
number of iterations to generate a monthly precipitation product for Bolivia [43].

The objective of this study is to generate a combined daily precipitation data set for
Bolivia. The SBP products selected are GSMaP and CHIRPS.
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2. Materials and Methods
2.1. Study Area

Bolivia is a landlocked country in the central region of South America, with an area of
1,098,006 km2 and elevations varying between 200 m and 5000 m above sea level (m.a.s.l.).
The country’s range of elevations has resulted in three distinct ecological regions: the
highlands, valleys and lowlands. The focal areas for this study are Bolivia’s three major
river basins.

The first, the Altiplano basin, is located in the southwest of the country between
66◦5′W and 69◦44′W longitude and between 14◦35′S and 22◦96′S latitude. With an area
of 151,722 km2, this endorheic basin is considered to be Bolivia’s smallest major basin. It
encompasses primarily the highland ecological region (Figure 1a), and its elevation ranges
between 3500 and 5000 m.a.s.l. Figure 1b shows an elevation profile of the main river
connecting Lake Titicaca with Lake Poopó. In this profile, the elevation difference around
these lakes is approximately 750 meters.
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Figure 1. (a) Hydrological and orographic map of Bolivia and elevation profile for: (b) the Altiplano
basin, (c) the Amazon basin and (d) the La Plata basin.

Bolivia’s second major basin, the Amazon, is located in the central, northern and
northeastern parts of the country, between 59◦39′ and 69◦40′W longitude and between
9◦36′S and 20◦32′S latitude. With an area of 720,792 km2, it is the largest basin in this study
(Figure 1a). The Amazon basin, which discharges into the Atlantic Ocean, encompasses
the three previously mentioned ecological regions. As seen in Figure 1c, the elevation
difference between the source of the main river and the point where it exits Bolivia is
around 4100 meters.

The third major basin, the La Plata, is located in the south and southeast of the country,
between 57◦23′ and 67◦2′W longitude and 16◦10′S and 22◦55′S latitude, with an area of
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225,492 km2. It discharges into the Atlantic Ocean and encompasses the three previously
mentioned ecological regions (Figure 1a). The elevation difference of the La Plata basin is
similar to that of the Amazon basin and can be observed along the length of the main river
(Figure 1d).

Figure 2 contains annual precipitation and temperature maps for Bolivia for the period
2001–2015. The Altiplano basin shows precipitation intensities varying between 200 mm
and 750 mm per year and temperatures between −4 ◦C and 5 ◦C. In the Amazon basin,
mean precipitation is around 500 mm to 3000 mm per year and the mean temperature is
between 4 ◦C and 28 ◦C. The La Plata basin has mean precipitation of around 400 mm
to 2300 mm per year, with temperatures varying between −4 ◦C and 25 ◦C. It is clear
from these figures that precipitation and temperature in Bolivia are directly related to the
country’s ecological regions.
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Figure 2. (a) Annual mean precipitation map of Bolivia; (b) daily mean temperature map of Bolivia
for the period 2001–2015.

2.2. Data Set

The satellite-based products GSMaP_Gauge v6 and CHIRPS were used to generate
monthly combined precipitation products. GSMaP is an SBP product developed by the
Japan Aerospace Exploration Agency (JAXA). It has a spatial resolution of 0.1◦ (approxi-
mately 10 km) and hourly temporal resolution [23,24]. CHIRPS is an SBP product that was
developed at the Climate Hazards Center of the University of California, Santa Barbara.
This product has a spatial resolution of 0.05◦ (approximately 5 km) and three different
temporal resolutions (daily, pentadal and monthly) [25,26].

The gridded meteorological ensemble tool (GMET) generates gridded precipitation
and temperature data through spatially correlated, random fields (SCRFs) sampled from
the standard normal distribution [44]. This method requires precipitation and temperature
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data from the rain gauge. The GMET employs an ensemble method to generate gridded
maps. The final map is the result of merging the generated gridded maps. The GMET
can generate gridded maps with different pixel sizes. In the case of Bolivia and the BHSB,
because of the low density of rain gauges, synthetic stations had to be generated using
CHIRPS precipitation data [30] gathered between 1980 and 2016. The final gridded spatial
resolution was about 0.05◦.

For this study, all precipitation data (SBP products, GMET and rain gauge maps)
require a spatial resolution of 0.05◦.

2.3. Development Method

The iterative combined method is based on the adjustment of relative error between
rain gauge data and SBP product data. Before proceeding to a discussion of this method,
several considerations must be highlighted.

2.3.1. Sub-Basins Map

This methodology employs a sub-basins system following the national sub-division.
To start the process, a sub-basin map must be defined.

The sub-basin map employed in the previous study was the official Pfafstetter Level
Three coding system for Bolivia [43]. This map identifies 61 sub-basins for the country.
However, many of these sub-basins are not considered to be relevant due to their extensions.
Therefore, in the present study, another sub-basin map was utilized. The official Pfafstetter
Level Four coding system identifies 329 sub-basins. Moreover, it includes the 17 prioritized
strategic basins for the Plan Nacional de Cuencas (PNC) for the period 2013–2020 [45,46].
Figure 3a shows both sub-basin systems. Some of the prioritized sub-basins are shaped for
many sub-basins of Level Four, while others are for the same basins and one group is not
included in the Level Four map.
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After combining both maps in a shapefile (Figure 3a), it was necessary to rasterize
the map to define the number of pixels comprising each sub-basin. In this process, some
sub-basins were integrated into others because these have reduced areas in relation to the
number of pixels. This map should have the same resolution as the precipitation maps
(0.05 × 0.05◦). In Figure 3b, the rasterized map presents only 296 sub-basins; it was then
processed to combine the SBP products with rain gauge data.

2.3.2. Rain Gauge Data

The first step is an analysis of rain gauge data. Base data from the BHSB was depurated
and filled to generate the GMET [40]. To generate the rain gauge gridded maps, kriging
interpolation with a pixel size of 0.05◦ was used. Nevertheless, the daily precipitation
data implies the existence of days on which no rain was recorded. The flow chart in
Figure 4 shows the considerations applied in this case and analyzes the sum of all daily
rain gauge data. If the sum was equal to zero, it was necessary to generate a precipitation
map containing only one value (for the implementation of relative error). In this study,
these maps contain the value of 0.1 mm per day.
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In those cases when the sum was higher than zero, kriging interpolation was utilized.
As a result, precipitation maps could generate negative values. In Figure 5a, the precip-
itation kriging map presents pixels with negative precipitation data. Because of this, it
is necessary to correct the precipitation maps, assuming that all negative precipitation is
equal to zero. The results can be seen in Figure 5b.
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2.3.3. Rain Gauge Data

To initiate the combined method, it was first necessary to determine the relative error
(RE) between rain gauge data and data from SBP products. However, Equation (1) was
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conditioned to the value that the rain gauges might be presented; it was necessary to add a
conditional in case the rain gauge value data was zero (Equation (2)).

R.E. =
SBP− RG

RG
× 100% (1)

i f RG = 0→ R.E. =
SBP− 0.1

0.1
× 100% (2)

After determining the RE between rain gauges and SBP products, it was necessary
to calculate the RE value per sub-basin. To do this, the sub-basin map was introduced to
obtain maps of daily average precipitation. It was then possible to calculate the average
relative error.

The relative error calculation made it possible to analyze general differences between
rain gauge data and SBP products. Due to the relative error operation, high values were
observed in the tables. For these cases, the values were conditioned, based on a maximum
and minimum equivalent of ±95%. This conditioning allowed for the generation of an
adjustment factor and control of the iterative process. In the case of the adjustment factor,
this was a correction value based on the average relative error per basin that was then
applied to the next equation.

FA = 1− R.E.
100%

(3)

The adjustment factor was used to generate a new combined product. This factor was
multiplied by the SBP product, which was then used to obtain the relative error value. Once
generated, the new precipitation product was analyzed utilizing the average relative error
per sub-basin. The condition to accept the generation process was based on the relative
error of the new precipitation product and was found to be ±5%. With this condition, the
final combined precipitation product was obtained in the fifth iteration. Figure 6 presents a
flow chart of the previously explained combined processes.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 19 
 

 

Average Relative Error 
per Sub-Basin

Final 
Combined 

Product

Local Rain 
Gauges 

Network 
(RG)

Sub Basins Maps

Where “i” is the 
number of iterations

Satellite-Based 
Precipitation 

Product  (SBP)

Relative Error Adjustment Factor per 
Sub-Basin

Iterative Process Replacing

Combined Product

YesNo

 
Figure 6. Flow chart process to obtain the combined product using satellite-based precipitation 
(SBP) and the rain gauge network. Source: Adapted from Ureña, Saavedra and Kubota [43]. 

3. Results 
3.1. Precipitation Base 

The SBP products utilized in this research (GSMaP and CHIRPS) present different 
daily features than the data obtained from the rain gauges. Figure 7 shows the daily 
precipitation maps for these products. The rain gauge map (Figure 7a) shows the highest 
precipitation levels to be in the Amazon basin, with an average value of 8 mm per day, 
while the GSMaP data (Figure 7b) shows the highest precipitation levels to be in the 
northwest of the Amazon basin, with values of around 6 mm to 7 mm per day. The 
CHIRPS data (Figure 7c) shows that the highest precipitation levels—8 mm per year—
correspond to the same zone as that indicated by the rain gauge data. The CHIRPS data 
also shows higher precipitation levels than those shown by the rain gauge data in the 
northwestern zone of the Amazon basin. The Altiplano and La Plata basins do not present 
visible differences in the various maps. 

   

   
(a) (b) (c) 

Figure 6. Flow chart process to obtain the combined product using satellite-based precipitation (SBP)
and the rain gauge network. Source: Adapted from Ureña, Saavedra and Kubota [43].

3. Results
3.1. Precipitation Base

The SBP products utilized in this research (GSMaP and CHIRPS) present different daily
features than the data obtained from the rain gauges. Figure 7 shows the daily precipitation
maps for these products. The rain gauge map (Figure 7a) shows the highest precipitation
levels to be in the Amazon basin, with an average value of 8 mm per day, while the GSMaP
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data (Figure 7b) shows the highest precipitation levels to be in the northwest of the Amazon
basin, with values of around 6 mm to 7 mm per day. The CHIRPS data (Figure 7c) shows
that the highest precipitation levels—8 mm per year—correspond to the same zone as that
indicated by the rain gauge data. The CHIRPS data also shows higher precipitation levels
than those shown by the rain gauge data in the northwestern zone of the Amazon basin.
The Altiplano and La Plata basins do not present visible differences in the various maps.
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precipitation levels to be in the Amazon basin, with an average value of 8 mm per day, 
while the GSMaP data (Figure 7b) shows the highest precipitation levels to be in the 
northwest of the Amazon basin, with values of around 6 mm to 7 mm per day. The 
CHIRPS data (Figure 7c) shows that the highest precipitation levels—8 mm per year—
correspond to the same zone as that indicated by the rain gauge data. The CHIRPS data 
also shows higher precipitation levels than those shown by the rain gauge data in the 
northwestern zone of the Amazon basin. The Altiplano and La Plata basins do not present 
visible differences in the various maps. 

   

   
(a) (b) (c) 

Figure 7. Average daily precipitation maps for the period 2001–2015: (a) rain gauges,
(b) GSMaP_Gauge, (c) CHIRPS.

During the initial analysis of the SBP products, none of the selected data showed a
high correlation with the rain gauge data. Figure 8 shows significant variations between the
Altiplano (Figure 8a), Amazon (Figure 8b) and La Plata (Figure 8c) basins. These variations
permitted distinctions to be made among the maximum precipitation ranges for the three
basins. The maximum precipitation levels registered were 15 mm per day, 35 mm per day
and 30 mm per day for the Altiplano, Amazon and La Plata basins, respectively.
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In light of these findings, statistical indicators must be used to analyze the SBP products
for each major basin. In Table 1, it can be seen that GSMaP presented better indicators than
CHIRPS. Data for the Altiplano basin shows higher determination (R2) and correlation (R)
coefficients for both products, in comparison with the other basins. The accumulated bias,
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relative bias, mean absolute error (MAE) and root mean square error (NSE) of this basin
shows little difference between the rain gauge and SBP products. Nash-Sutcliffe efficiency
values show ranges between 0.57 and 0.76, indicating acceptable relationships between
the analyzed data. The best values should be close to 1.0. In all cases, the Altiplano basin
presents better values in comparison with the other basins, while GSMaP is demonstrated
to have a slight advantage in comparison with CHIRPS.

Table 1. Statistics indicators for SBP products in relation to rain gauges.

Altiplano Basin Amazon Basin La Plata Basin Bolivia

GSMaP CHIRPS GSMaP CHIRPS GSMaP CHIRPS GSMaP CHIRPS

Determination Coefficient (R2) 0.35 0.38 0.37 0.28 0.33 0.25 0.36 0.29

Correlation Coefficient (R) 0.58 0.61 0.60 0.52 0.58 0.50 0.59 0.53

Accumulated Bias (mm) 3933.9 3115.3 11,450.8 12,363.9 8181.3 8581.7 8573.2 9030.3

Relative Bias (%) 9.14 −7.91 5.56 1.55 12.49 −3.92 6.78 0.29

Mean Absolute Error (MAE) 0.65 0.52 1.90 2.05 1.36 1.42 1.42 1.50

Root Mean Square Error (RMSE) 1.05 1.01 2.79 3.34 2.11 2.57 2.04 2.42

Nash and Sutcliffe Efficiency (NSE) 0.69 0.72 0.76 0.66 0.71 0.57 0.80 0.72

In this regard, only the quantitative value is insufficient to analyze the products.
Figure 9 shows the daily spatial correlation coefficient of GSMaP and CHIRPS in comparison
with the rain gauge data. In the case of GSMaP (Figure 9a), the map illustrates a correlation
of around 0.5 in the Altiplano and La Plata basins. The Amazon basin contains regions with
minor values of 0.4. On the CHIRPS map (Figure 9b), the Altiplano and La Plata basins
present values of around 0.4, while the Amazon basin presents minor values of 0.3. In
general, the precipitation products with daily temporal resolution present lower values,
including some regions with a maximum correlation of 0.5.
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3.2. Combined Precipitation

The generation of combined products allowed for the approximation of SBP product
data to rain gauge data. Figure 10b shows that the combined product of the GSMaP and
rain gauge data (GS) presents approximation values in the region north and northeast
of the Amazon basin on the rain gauge map (Figure 10a). However, this product data is
still not comparable with precipitation data from the central part of this basin, with an
observable underestimation in this region. The CH data (which is the combined product of
CHIRPS and rain gauge data) in Figure 10c shares many similarities with the GS product
data. Slight differences are noticeable, based on precipitation values from the rain gauge
data in the basin. Finally, the GMET data (Figure 10d) present an overestimation of 8 mm
per year in the Amazon basin region, while the rain gauge data show average values of
6 mm to 7 mm per year. In the northwest region of this basin, the GMET data present
values of around 6 mm per year, in comparison with the 4 mm to 5 mm per year shown on
the rain gauge map.
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(c) CH and (d) GMET.

Analysis of the daily values of these products shows a significant improvement versus
the initial SBP products. For the Altiplano basin, Figure 11a shows that GS and CH
present a slight underestimation in comparison with the rain gauge map. The GMET
presents slight variations for the rain gauge data. In Figure 11b, GS and CH display
several underestimations for the Amazon basin, while GMET shows an overestimation
for this basin. Finally, for the La Plata basin (Figure 10c), GS and CH present a general
underestimation in comparison with rain gauge values. The GMET presents several
overestimations for values of around 10 mm to 30 mm per day.

Table 2 presents interesting results for an analysis of the statistical data of these values.
GS and CH demonstrate a marked improvement in comparison with initial SBP products
in all basins. For the Altiplano basin, GS offers a better precipitation product than CH and
GMET. With an R-value of 0.97 and an NSE of 0.98, GS exceeds the next-closest product,
which is CH (with an R-value of 0.93 and NSE of 0.95). For the Amazon basin, the GS
and GMET show the same R-value of 0.86. However, the NSE indicator demonstrates
the superiority of the GMET (NSE = 0.95) in comparison with GS (NSE = 0.87). Another
significant indicator is the accumulation bias value, with GS and CH presenting values
between about 7400 mm and 8000 mm. The GMET shows a value of around 4800 mm,
which is about 40% less than the values of the other products. In the La Plata basin, GS
presents an R-value of 0.96 and an NSE value of 0.97 in comparison with the next-best
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product, CH (with values of R = 0.89 and NSE = 0.90). The accumulation bias for GS is
around 2030 mm, which is almost 50% less than other values in the basin. Overall, the
GMET yields low values for the La Plata basin.
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Table 2. Statistics indicators for SBP-generated precipitation products in relation to rain gauges.

Altiplano Basin Amazon Basin La Plata Basin Bolivia

GS CH GMET GS CH GMET GS CH GMET GS CH GMET

Determination Coefficient (R2) 0.93 0.86 0.73 0.75 0.70 0.75 0.93 0.80 0.68 0.81 0.74 0.73

Correlation Coefficient (R) 0.97 0.93 0.85 0.86 0.83 0.86 0.96 0.89 0.81 0.90 0.86 0.85

Accumulated Bias (mm) 976.9 1336.7 1191.4 7478.5 7960.3 4810.9 2034.4 4035.0 4017.1 8573.2 6178.2 3390.2

Relative Bias (%) −12.03 −22.86 −10.00 −32.90 −34.96 4.04 −13.75 −29.78 −2.25 −29.04 −33.64 2.46

Mean Absolute Error (MAE) 0.16 0.22 0.20 1.24 1.32 0.80 0.34 0.67 0.67 0.89 1.02 0.56

Root Mean Square
Error (RMSE) 0.28 0.42 0.43 2.03 2.16 1.31 0.66 1.21 1.30 1.43 1.60 0.91

Nash and
Sutcliffe Efficiency (NSE) 0.98 0.95 0.95 0.87 0.86 0.95 0.97 0.90 0.89 0.90 0.88 0.96

The spatial correlation map highlights the differences shown in the previous table.
Figure 12a shows a higher GS correlation in the Altiplano and La Plata basins, with values
of around 0.8 to 0.9. For the Amazon basin, some sub-basins in the north and northeast
demonstrate a high correlation. In general, this basin presents moderate correlation values
of around 0.4 to 0.6. For the CH precipitation product (Figure 12b), the general correlation
values in the three major basins are between 0.2 and 0.6. For the GMET product (Figure 12c),
the correlation values are around 0.4 to 0.8. The highest correlation values are around zones
with higher rain gauge density.

3.3. Application of Generated Precipitation Products in Hydrological Modelling

In order to check the potential application of generated daily precipitation products, a
hydrological model was set up in the Rocha river basin, located in the valleys of Bolivia
at 2500 m.a.s.l. using HEC-HMS software. The elevation map of the studied basin and
average precipitation can be seen in the panels of Figure 13. The delineated basin area
reached 3626 km2. The Rocha River basin is one of the prioritized basins in the country,
due to the population density and the water resources requirements of a semi-arid region.
On the other hand, landslides and flash floods have been reported due to the steep slopes
channeling river discharge to the central part of the valleys. Thus, daily precipitation is
required for short-event hydrological analysis.
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Figure 13. (a) Rocha basin elevation map point and (b) average daily precipitation map for the period
2000–2015, with the Puente Cajón flow measuring station shown as a green triangle.

The hydrological model was set up using land use and soil texture information. The
basin was divided into 59 sub-basins [47], as can be seen in Figure 14a. The size of the
smallest sub-basin was 5 km2, the largest, 169 km2 and the average, 62 km2. Most of these
are micro-basins where a detailed hydrological analysis is feasible. The spatial distribution
of precipitation in the Rocha River basin was checked using interpolated rain gauges,
GSMaP, CHIRPS, GS (enhanced GSMaP) and CH (enhanced CHIRPS), as can be seen
in Figure 14b–f, respectively. The precipitation products were accumulated from 17 to
31 January 2014, when storm events in the studied area were reported. The enhanced GS
and CH products clearly show the precipitation patterns in northwest and southeast areas.
However, the GS product shows closer agreement with the rain gauge pattern.
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Figure 14. (a) Rocha sub-basin map, (b) rain gauge accumulated precipitation, (c) GSMaP accumu-
lated precipitation, (d) CHIRPS accumulated precipitation, (e) GS accumulated precipitation and
(f) CH accumulated precipitation from 17 to 31 January 2014.

The hydrological model was forced using interpolated rain gauge, GSMaP, CHIRPS,
GS, and CH precipitation products. The simulated river discharge was compared with the
real data observed at Puente Cajón Station, as can be seen in panels of Figure 15. A close
agreement when using the GS product with the one forced by rain gauges can be noted in
Figure 15a,d.

The statistical indicators of simulated river discharge at Puente Cajón Station can be
seen in Table 3. The performance of simulated discharge can be noted in those indicators
using the GS precipitation product compared to a rain gauge.

Table 3. Statistical indicators of simulated river discharge at Puente Cajón Station.

Rain Gauge GSMaP CHIRPS GS CH

Determination Coefficient (R2) 0.52 0.82 0.09 0.42 0.36
Correlation Coefficient (R) 0.72 0.91 0.30 0.65 0.60

Mean Absolute Error (MAE) 5.45 1.19 6.55 4.25 3.14
Root Mean Square Error (RMSE) 9.88 2.79 12.44 8.55 6.23

Nash and Sutcliffe Efficiency (NSE) −1.32 0.82 −2.67 −0.74 0.08



Remote Sens. 2022, 14, 4195 14 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

  

(a) (b) 

  
(c) (d) 

 
(e) 

Figure 15. Precipitation time series of simulated and observed river discharge at Puente Cajon Sta-
tion, using various products: (a) rain gauge, (b) GSMaP, (c) CHIRPS, (d) GS and (e) CH. 

The statistical indicators of simulated river discharge at Puente Cajón Station can be 
seen in Table 3. The performance of simulated discharge can be noted in those indicators 
using the GS precipitation product compared to a rain gauge.  

Table 3. Statistical indicators of simulated river discharge at Puente Cajón Station. 

 Rain Gauge GSMaP CHIRPS GS CH 
Determination Coefficient (R2) 0.52 0.82 0.09 0.42 0.36 

Correlation  
Coefficient (R) 0.72 0.91 0.30 0.65 0.60 

Mean Absolute Error  
(MAE) 5.45 1.19 6.55 4.25 3.14 

Root Mean Square Error  
(RMSE) 

9.88 2.79 12.44 8.55 6.23 

Nash and 
Sutcliffe Efficiency (NSE) −1.32 0.82 −2.67 −0.74 0.08 

Figure 15. Precipitation time series of simulated and observed river discharge at Puente Cajon Station,
using various products: (a) rain gauge, (b) GSMaP, (c) CHIRPS, (d) GS and (e) CH.

4. Discussion

The daily GSMaP product data represents a general overestimation in the north and
northeast of the Amazon basin, while in the south, underestimation was evident in compar-
ison to the rain gauge map data. In terms of the daily CHIRPS product, overestimation has
only been evident in the northeast of the basin; the product presents similar precipitation
values in the south of this basin but shows a different distribution. In comparison with the
average statistics indicator for the three major basins, GSMaP presents correlation values
of around 0.58 to 0.60. The best results for this product are in the Amazon basin. With
NSE values between 0.69 and 0.76, this product shows a slight approximation to rain gauge
values. In comparison, CHIRPS presents correlation coefficient values of around 0.50 and
0.61, along with NSE values between 0.57 and 0.72. For this product, a better result was
found in the Altiplano basin. CHIRPS presents more variation in its statistical indicators
than GSMaP, while GSMaP presents higher values in its correlation coefficient map.

After application of the proposed method with iterations, the combined products
of GS (the results of the GSMaP and a rain gauge) and CH (the result of CHIRPS and a
rain gauge) were compared with the GMET precipitation product. The GS and CH maps
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showed improvements in the north and northwest of the Amazon basin. However, the
maps of the southern region of this basin continued to yield underestimations. Analyzing
the statistical indicators, GS and CH showed several improvements in comparison to SBP
products. GS presented correlation coefficient values of around 0.86 to 0.97 and NSE values
of 0.87 to 0.98. This product presented the best values in the Altiplano basin and the worst
values in the Amazon basin. CH showed coefficient correlation values of around 0.83 to
0.93 and NSE values of 0.86 to 0.95. The product presented similar features to those of GS.
After reviewing the spatial resolution of these products, it can be seen that GS presented
better correlations in the Altiplano and La Plata basins. Data for the Amazon basin showed
sub-basins with low correlation values, in comparison with the rain gauge data. CH is a
product offering an acceptable improvement in comparison to its SBP product base, but
it is inferior to GS and is not recommended for further research use. These findings are
consistent with previous works using monthly scale products in Bolivia using three selected
basins [48] and 61 sub-basins [43]. Lower performance was found in the Amazon basin
compared to the Altiplano and La Plata basins.

A hydrological application was employed in a prioritized basin in the central part
of Bolivia, known as the Rocha River basin, to check the ability of the daily generated
products to simulate daily river discharge, in order to forecast floods. It was found that the
performance of simulated flow using the GS daily product was in closer agreement with
the product using a rain gauge and was much better than when using CH, CHIRPS and
GSMaP products.

5. Conclusions

The iterative method proposed here for generating daily precipitation data sets in
Bolivia presents an alternative for reducing the bias of SBP products and covering ungauged
areas. This methodology represents a feasible way to generate new precipitation data with
an acceptable spatial resolution.

The combined products GS and CH present notable improvements in comparison to
the SBP products that were utilized. Initially, GSMaP and CHIRPS presented correlation
values of around 0.58 and 0.60, in comparison with the rain gauges. After data set genera-
tion, the combined products (GS and CH) presented correlations of around 0.87 and 0.97,
while the GMET presented values of around 0.89 and 0.95 for the three basins.

Among the products employed with the iterative method, GS displays the best results.
In the Altiplano and La Plata sub-basins, the product data achieves a high degree of
similarity with the rain gauge data. In the case of the Amazon sub-basins, the data from
the group located to the north and northeast yielded high correlation coefficient values.
However, the rest of the Amazon sub-basins presented with low correlation values, showing
a general underestimation of these values.

In short, the methodology proposed here can be applied in other countries to enhance
the spatial and temporal resolution of precipitation data sets. These data sets can, in turn,
be utilized in hydrological applications. In order to check the quality of this ability, a case
study in the Rocha River basin was carried out. The daily GS precipitation product was
used to force a hydrological model. The latter was able to simulate daily river discharge and
forecast flood peaks in the Rocha River basin. Therefore, we recommend the use of these
daily generated precipitation products in a wide spectrum of hydrological applications,
using different models to support decision-making in water resources management and
risk analysis, even at the micro-basin scale level at less than 100 km2.
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