
Citation: Yli-Heikkilä, M.; Wittke, S.;

Luotamo, M.; Puttonen, E.; Sulkava,

M.; Pellikka, P.; Heiskanen, J.; Klami,

A. Scalable Crop Yield Prediction

with Sentinel-2 Time Series and

Temporal Convolutional Network.

Remote Sens. 2022, 14, 4193. https://

doi.org/10.3390/rs14174193

Academic Editor: Charlotte

Pelletier

Received: 5 July 2022

Accepted: 23 August 2022

Published: 25 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Scalable Crop Yield Prediction with Sentinel-2 Time Series and
Temporal Convolutional Network
Maria Yli-Heikkilä 1,2,* , Samantha Wittke 3,4 , Markku Luotamo 5 , Eetu Puttonen 3 , Mika Sulkava 1,
Petri Pellikka 2 , Janne Heiskanen 2 and Arto Klami 5

1 Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland
2 Department of Geosciences and Geography, University of Helsinki, FI-00014 Helsinki, Finland
3 Finnish Geospatial Research Institute, National Land Survey of Finland, Vuorimiehentie 5,

FI-02150 Espoo, Finland
4 Department of Built Environment, Aalto University, FI-00076 Espoo, Finland
5 Department of Computer Science, University of Helsinki, FI-00014 Helsinki, Finland
* Correspondence: maria.yli-heikkila@luke.fi

Abstract: One of the precepts of food security is the proper functioning of the global food markets.
This calls for open and timely intelligence on crop production on an agroclimatically meaningful
territorial scale. We propose an operationally suitable method for large-scale in-season crop yield
estimations from a satellite image time series (SITS) for statistical production. As an object-based
method, it is spatially scalable from parcel to regional scale, making it useful for prediction tasks
in which the reference data are available only at a coarser level, such as counties. We show that
deep learning-based temporal convolutional network (TCN) outperforms the classical machine
learning method random forests and produces more accurate results overall than published national
crop forecasts. Our novel contribution is to show that mean-aggregated regional predictions with
histogram-based features calculated from farm-level observations perform better than other tested
approaches. In addition, TCN is robust to the presence of cloudy pixels, suggesting TCN can
learn cloud masking from the data. The temporal compositing of information do not improve
prediction performance. This indicates that with end-to-end learning less preprocessing in SITS tasks
seems viable.

Keywords: crop production statistics; yield forecasts; object-based; remote sensing; machine learning;
agriculture; time series

1. Introduction

Food security is one of the longstanding continuing development priorities of the
United Nations and has been reaffirmed in the 2030 Agenda for Sustainable Develop-
ment [1]. However, since the onset of the Agenda in 2015, the number of people in the
world affected by hunger has increased, reflecting persistent regional socio-economic in-
equalities [2]. Multiple factors interact within the food systems to the detriment of food
security and nutrition, the major global drivers being conflict, climate variability and
extremes, and economic slowdowns and downturns [2,3]. It is also estimated that the
minimum calorie requirement to eliminate projected food undernourishment by 2030 will
unlikely be attainable due to the competition for crops harvested for various other uses,
such as animal feed and crop-based biofuels [4].

One of the precepts to food security is to ensure the proper functioning of food
commodity markets and agricultural derivatives. Market disruptions or shocks in crop
production such as extreme weather events can occasionally disturb the equilibrium of
the price determination of agricultural commodities. This induces food price spikes and
volatility that are often triggering social unrest and food crises. When food markets
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are provided with timely and accurate information openly conveyed between actors,
the societies are better prepared for such disruptions in food supplies [2].

Today, many national, regional, and even global agricultural monitoring systems are
operating at a range of scales to collect, analyze, disseminate, and communicate compre-
hensive agricultural intelligence to decision makers (see, e.g., [5]). Since the 1972 launch
of the first Landsat satellite, earth observation (EO) has become an essential component
of such agricultural monitoring systems, providing timely, objective, and global coverage
information regarding crop acreage and yield. Free and open access to US Landsat [6] and
European Sentinel imagery [7], with high temporal and spatial resolution, and deployment
of high-performance computing have further accelerated the utilization of EO data. For a
review of a multitude of crop yield forecasting techniques, the interested reader is invited
to take a look at, e.g., [8,9].

Despite the promise of EO as an applicable source of information for operational use for
fine resolution crop yield forecasts, agricultural monitoring systems and national statistical
offices publish pre-harvest forecasts on state/country-levels. Nevertheless, accurate sub-
national level information about crop production is a prerequisite for local-scale research
or policy evaluation due to the typically high spatial variability in agricultural production.
In addition, agricultural producers, especially livestock husbandry, are dependent on local
primary production chains (seeds and fodder), because local supply reduces logistics costs.
Accurate, and publicly available, local level near-real time information about expected crop
production therefore helps the agricultural practitioners, markets, and decision makers to
react and adjust in the event of disruptions.

For fine resolution (temporal and spatial) crop production information, we need a
prediction model that can produce in-season crop yield estimates from rather long time
series of observations (e.g., 121 days in this study). In optical remote sensing, the time
series are typically irregular and sparse due to occlusion by clouds and overlap between
swaths from adjacent orbits at higher latitudes. The observable unit itself in crop growth
monitoring is a field parcel that is typically irregular in shape and size. In this setting,
there are plenty of avenues for constructing a representation of an observable unit for a
prediction model.

We assume that a field parcel or set of parcels are near-homogeneous areas, managed
with similar agricultural practices, sown approximately in the same short period, and grow-
ing in similar agroclimatic conditions and can therefore be considered as objects instead of
independent pixel units. In object-oriented remote sensing, objects are typically represented
by the mean [10–13] or median [14] of the reflectance values within the bounds of an object.
However, a point estimate of distribution, such as mean or median, is inclined to loose
important discriminating information about the samples. Histograms provide a straight-
forward means for utilizing more information from the reflectance distribution [15–17],
and histograms with more than one dimension can be used if the prediction method can
handle a larger feature space.

Random forests (RF) [18] is a widely applied machine learning method in remote
sensing [19] and specifically in agricultural monitoring tasks (e.g., [20–24]). In supervised
regression tasks, the method aggregates predictions from several randomized decision-trees
by averaging. RF is generally recognized for its high performance, easy parametrization
and robustness, and its ability to work in high-dimensional feature spaces while having
relatively low sample sizes compared with neural networks that usually perform better
with larger sample sizes. However, RF does not per se capture the temporal dimension.
Each time step is merely added to the input data as a new independent static feature. This
also implies that for each time step of interest (for each feature set), a separate model needs
to be trained, making it impractical for automatized near-real time monitoring.

The resurgence of neural networks and resulting advances in computer vision and
deep learning inspired by, e.g., LeCun et al. [25] have given rise to novel applications in
various domains, including remote sensing [26]. The development of deep neural network
models (DNN) has increasingly enabled end-to-end learning of subtle latent features, which
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previously required separate extraction. DNNs can reduce manual feature extraction in
a variety of fields, ranging from computer vision to chemometrics or assisting clinical
decisions [27–29]. In agricultural monitoring, DNNs have been applied for remotely sensed
time series, e.g., by [12,15,30–35].

A recent novelty of the temporal convolutional network (TCN) is a sequential im-
plementation of convolutional neural networks (CNN) that uses dilated convolutions.
The term was first introduced by [36] in their study on action segmentation and detection.
Ref. [37] showed that TCNs could outperform canonical recurrent neural networks (RNN)
for sequence modeling tasks on diverse benchmark datasets. Compared to RNNs, TCNs
can have a very long effective history making them a favorable option for crop monitor-
ing. TCNs also have the computational advantage of processing convolutions in parallel
instead of sequentially as in RNN. Ref. [37] In agricultural monitoring, [38] applied TCN
to crop classification. Ref. [39] used TCN in combination with RNN for greenhouse crop
yield forecasting. Ref. [40] applied an adaptation of TCN by introducing a channel (band)
attention mechanism in crop classification.

Occlusion by clouds in optical satellite images inevitably requires a handling strategy
for most remote sensing tasks and data. In most applications, cloud detection is involved
as an isolated preprocessing step, where approaches generally allow either discrete filtering
of pixels classified as cloudy or accepting pixels with a low cloud probability as part
of the signal [41–43]. As an explicit step, cloud masking has a long history combining
feature engineering, thresholding and classical machine learning [44–46]. Recently, DNNs,
especially CNNs, have increasingly enabled end-to-end cloud masking approaches without
preprocessed features [47,48].

Completely delegating cloud detection to latent features of the same machine-learning
model that is being used to learn the application features would be attractive due to sim-
plified processing. Rußwurm and Körner [10] studied crop type mapping with Sentinel-2
top-of-the-atmosphere (Level-1C) time series data. They auspiciously observed that self-
attention and recurrent based networks were able to suppress cloudy observations, al-
though cloud masking still outperformed in the overall classification performance. Other-
wise, explicitly assuming cloud detection as an latent hidden part of an end-to-end model
has been relatively unexplored in previous work to the best of our knowledge.

Information about crop yields is needed on finer temporal and spatial resolution.
The primary goal of this study is to find the most accurate, spatially scalable, yet opera-
tionally lightweight prediction method for statistical production. As explained above, this
requires a solution that can effectively use long, irregular and sparse time series of EO data
as basis of learning, and that is designed to provide predictions for fields of irregular size
and shape. To this end, we (i) examine several approaches to construct spatial and temporal
representations from the reflectance information of the observables. In addition, we explore
cloud detection and crop yield in separate and combined scope by (ii) comparing the
omission of cloudy pixels in preprocessing to end-to-end learning of cloud-contamination
from data in our modeling schemes.

For reliable validation of crop yield mapping methods, accurate historical harvest data
are needed. National agricultural statistics on crop yields are used as a primary source of
reference data in many crop yield mapping studies e.g., [16,49–58]. However, in the global
perspective, serious weaknesses have been identified in the practices of measuring agri-
cultural production [59–61]. In Europe, regulation imposed by the European Commission
streamlines statistical production for harmonized information at sub-national territorial
levels. Crop statistics are usually based on farmer surveys. Nevertheless, in designing
surveys, there is a trade-off between expenses and spatial coverage. Typically, nationally
representative sampling frames place more weight on high production areas of the econom-
ically most important crops. As an implication, this leaves fringe regions with a paucity
of information about crop yields and therefore, less accurate regional statistics. Acknowl-
edging the effects of measurement error and sampling variability calls for more careful
validation schemes for prediction models. We will additionally address this imperfection
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by selecting highly representative municipalities in farmer survey data when assessing the
accuracy of the method at the regional scale.

2. Materials and Methods
2.1. Study Area

Agricultural crop production in Finland is determined by the typical boundary con-
ditions of high-latitude rainfed agroecosystems, namely, a short growing season, un-
even rainfall distributions, special natural light conditions, and low growth temperatures,
e.g., [62,63]. In focus in this study are all the main cereal crops, namely, spring-sown barley,
oats, and wheat, and autumn-sown wheat, and rye [64]. The sowing period spans from
the end of April in the south until early June in the north [65]. Winter crops are sown in
August. Harvesting starts with winter crops in the early August followed by spring crops.
Harvesting ends in September.

The study area as shown in Figure 1 comprises of 28 Sentinel-2 tiles that overlay
approximately 92% of the arable land in Finland. The tiles were selected so that there were
min. ∼20 farms of any subsets (crop type per year) on a tile.

The growing conditions within the study area differ, because it extends from 60◦N
to 65◦N. A recent study by [66] showed that there was substantial local and temporal
variability in the average thermal growing season conditions in northern Europe. The main
drivers of spatial variation were latitudinal and elevational gradients. The proximity of seas
and lakes, and high forest cover, also typically characteristic of our study area in Finland,
suppressed temporal trends and interannual variability [66].

Figure 1. Study area is determined by 28 Sentinel-2 tiles. Selected regions (municipalities) are used in
the study to validate regional-level yield predictions. Note that multiple Sentinel-2 tiles on adjacent
orbits can overlay a municipality.
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The variability in growing conditions is also shown in the crop statistics from the
study area [64]: Figure 2 shows quite a high variation in regional crop yields, especially in
the autumn-sown winter crops. Interannual variation is notably higher in the winter crops.

Figure 2. The mean and 68% bootstrap confidence interval (dashed lines) of the regional crop yields
in the study area according to the crop production statistics [64] in 2018–2020.

2.2. Reference Data

The Finnish annual crop yield statistics are based on a farmer survey conducted by
the Natural Resources Institute Finland (LUKE). We utilized the same survey data as a
reference data. The sample unit is a farm, and thus, for each crop, we have the average
yield at a farm level. The sampling design of the survey aims for an accurate estimate of
crop yields at country level by following a multistage weighted sampling. Most of the
weight is determined by the regional share of total harvested area for the main crops in
Finland. We therefore do not have equal spatial coverage of farms in Finland, but most of
the farms come from the high agricultural productivity regions in the southwestern part
of the country. Other variables determining the weights in the sampling design are the
production type and economic size of the farm.

Observed fields comprised approximately 6.5% (159,110 ha) of the total arable land
in Finland. The main soil types in the sample were clay soils (54%), rough mineral soils
(35%), and organic soils (6.5%). The proportions deviate slightly from the total sample; the
Finnish cultivated soils are mostly 52%, 38%, and 10%, respectively [67]. The deviation
can be explained by the sampling design, which favors the high agricultural productivity
regions that are usually clayey.

Seeded crops are declared by farmers each year at the end of the sowing season
(the middle of June) to the agricultural monitoring authority for being compliant for
agricultural subsidies. Crop types and field geometries are stored in the Land Parcel
Identification System (LPIS). We utilized LPIS data to select the subset of farms in the crop
production sample growing the six main crop types (winter soft wheat, spring soft wheat,
rye, feed barley, malting barley, and oats). The spatial observable unit was therefore a field
(polygon) or a group of fields (multi-polygon) if a farm was growing the crop in question
on several fields.

To ensure that all fields of a crop type are located in approximately similar agroclimatic
conditions, we included only multi-polygons with an inner distance of less than 30 km.
Additionally, we chose to filter out fields smaller than 1 ha in order to ensure an adequate
number of pixels would represent a field. The average size of field parcel in Finland is
rather small, namely 2.4 ha. In our remaining subsample, there were few farms growing a
crop on a single parcel, therefore on an area of 1 ha only, but typically crops are cultivated
on a larger scale on several parcels. In our subsample, the average area of a single crop per
farm was 21.7 ha.

The number of farms in the crop-wise samples is shown in Table 1. With six crop
types and three monitoring seasons, we have a total of 18 sample sets. Winter wheat
and rye are winter crops and greatly differ from the summer crops in phenology. Winter
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crops are sown in the autumn, and harvested earlier in August than summer crops. All
varieties of crops have specific timing of developmental stages, in addition to the effect
of agroclimatic conditions on their growth, and we therefore decided to develop separate
models for each crop. However, feed barley and malting barley are phenologically similar,
and in early-season crop forecasts the two varieties of barley are typically published in one
yield estimate. We also have a combined barley model for in-season forecasting.

Table 1. Number of farms in the sample sets for all studied crops in 2018–2020.

Crop Type Year 2018 Year 2019 Year 2020 Total

Winter wheat (Triticum aestivum L.) 217 547 392 1156
Spring wheat (Triticum aestivum L.) 1895 1453 1544 4892
Rye (Secale cereale L.) 394 559 342 1295
Feed barley (Hordeum vulgare L.) 2633 2765 2629 8027
Malting barley (Hordeum vulgare L.) 707 396 486 1589
Oats (Avena sativa L.) 3095 3138 3445 9678

Total 8941 8858 8838 26,637

To validate regional-level yield predictions, we selected 91 subsets from 46 municipal-
ities (see Figure 1) where the survey data comprises 30% of the whole cultivated area of
a municipality (crop-wise). In addition, the minimum total cultivated area in the survey
data subset was set to 200 ha. These municipalities were then considered to be adequately
represented in the survey data, and the crop yields in these regions were calculated as the
sample mean.

To assess the in-season prediction performance of our proposed methods, we used
country-level crop forecasts from two sources as a reference. The European Commission’s
science and knowledge service Joint Research Centre (JRC) publishes European-wide
model-based crop forecasts with the MARS Crop Yield Forecasting System (MCYFS). We
collected forecasts for Finland from monthly MARS Bulletins (e.g., [68]). JRC publishes
forecasts as early as in mid-June, and in mid-July and mid-August. LUKE is another source
of country-level crop forecasts. LUKE’s forecasts are based on regional agricultural advisors’
estimates and they are published in mid-July and mid-August [69].

2.3. Optical Time Series Data

For crop yield prediction we needed time series of satellite observations of crop growth
as an input for the prediction model. Geometrically and atmospherically corrected bot-
tom of the atmosphere reflectance imagery (Level-2A) from the multi-spectral instrument
aboard the Sentinel-2A and Sentinel-2B satellites were downloaded from the Copernicus
Open Access Hub (Scihub). We excluded scenes with cloud cover over 95%. We utilized
10 spectral bands suitable for environmental monitoring with the following central wave-
lengths: Band 2 (492 nm), Band 3 (560 nm), Band 4 (665 nm), Band 5 (705 nm), Band 6
(740 nm), Band 7 (783 nm), Band 8 (842 nm), Band 8A (865 nm), Band 11 (1610 nm), and
Band 12 (2190 nm) [70]. The observation period (10 May–31 August) covers most of the
growing season in the study area. The average revisit-time over the study area is two days.
Due to overlapping swaths from adjacent orbits, even more frequent observations are
possible given cloud-free conditions.

Raw pixel values were extracted from the Level-2A product using a customized version
of the EODIE toolkit (v0.1) [71] that builds on Python libraries. Pixels with the center point
within the bounding polygon were included. The downstream modules of the processing
pipeline included cloud masking, feature engineering, reshaping, and model training.

2.4. Cloud Masking

Using the scene classification map product from the Sen2Cor processor [72], we filtered
out saturated or defective pixels, cloud shadows, clouds on medium and high probability,
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and thin cirrus (classes 0, 1, 3, 8, 9, and 10). Cloud masking reduced approximately 55%
of pixels (year 2020). Figure 3 shows the frequency distribution of reflectance values in
1000 bins for all bands from one season (10 May–31 August 2020) of field parcels growing
cereal crops (oats, barley, wheat, rye) in the study area. The histograms in Figure 3a are
calculated from unprocessed Level-2A data, and, in Figure 3b, after cloud masking. It seems
that cloud masking has cut the long tail of high reflectance values. The bump-curves at the
low reflectances of some bands are also somewhat dampened with cloud masking, but are
not removed entirely. Otherwise, a visual inspection suggests the distribution curves very
much resemble each other with or without cloud masking.

(a) Cloudy (b) Cloud-masked
Figure 3. Histograms of 10 Sentinel-2 bands with (b) and without (a) cloud masking. The data are
from the growing season (May–August 2020) of all field parcels in the study sample. Note that the
range of the surface reflectance values is set to [1, 6000]. The number of bins is 1000.

2.5. Object Representations

When monitoring the development of a specific crop type at farm-level, our sample
consists of time series of observations from one or several field parcels. We had on average
2056 pixels representing a farm (1503 after cloud masking) at each time point. First, we
treated each farm as an observational unit and constructed 32-bin histograms at each
time point from 10 bands separately. In making the histograms, the range of values was
determined by taking the 5th and 95th percentiles of the entire 2020 growing season cloud-
masked reflectance distributions for each band separately. Figure 4 shows these upper
and lower limits of range for bands 4, 8, and 12. The value range omits the small bump
on the left and the long tails on the right. Figure A1 in the Appendix shows histograms
with ranges for all 10 bands. The same upper and lower limits of range are used across all
crop types.

(a) (b) (c)
Figure 4. Displacement plots of surface reflectance histograms of three Sentinel-2 bands without
cloud masking (top) and with cloud masking (bottom). The data is from the 11 May–31 August 2020.
The range is set to [1, 6000]. The number of bins is 1000. (a) Band 4 (Red). (b) Band 8 (NIR). (c) Band
12 (SWIR).

The prediction models were also trained with median-based time series data for
comparison. Figure 5 shows the median intensity values of spring wheat fields of a farm
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during the 2020 growing season. The medians in Figure 5a are calculated from unprocessed
Level-2A data and in Figure 5b after cloud masking. The bands seem to be correlated in
both cases. Cloud masking seems to smoothen the time series curve. Before modeling,
the median values were rescaled by dividing image digital numbers by 10,000, as shown in
Appendix D in [73].

Figure 5. Median values of 10 Sentinel-2 bands from spring wheat fields of a farm calculated from
(a) cloudy and (b) cloud-masked surface reflectance.

Figure 6 shows histograms of a farm during the 2020 growing season (spring wheat)
from bands 4, 8, and 12. The data are `1-normalized at observation dates. The dates
without observations are simply zero-vectors. In some cases, cloud masking has resulted
in completely excluding some dates due to clouds or cloud shadows. On average, there
were 42 observation dates per season in the cloudy dataset, and 33 observation dates in the
cloud-masked dataset.

(a) (b)

Figure 6. Histograms of three Sentinel-2 bands from spring wheat fields of a farm calculated from
(a) cloudy and (b) cloud-masked surface reflectance. The x-axis is time, and the y-axis is the reflectance
value range of the histograms (low values at the bottom, high values at the top). The red rectangle is
an example of one timepoint in the early May, when the observed pixel values from spring wheat
fields of a farm are shrunk into a 32-bin histogram. The brightest yellowish bins are the value ranges
where the pixel counts are the highest.
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We further explored the capabilities of histograms as density estimates of larger
regions. From all the pixels of the survey data subset, we constructed municipality-level
histograms. However, municipalities can expand over several Sentinel-2 tiles. In time series,
there can therefore be observations from the adjacent orbits on different dates, posing a
potential problem of over-represented observations from marginal areas. As a solution, we
tested temporal compositing: Pixel values from an 11-day window were compiled into a
histogram. The 11-day window was chosen because it is approximately the longest period
of still modest phenological changes in crops, and at the same time, it is hoped that there
exists at least one clear-sky observation day available for each sample with the period. Both
farm-level (see Figure 7) and regional-level 11-day histograms were constructed. As the
crop monitoring period was from the early May till the end of August, we had 12 windows
per season. Similarly, we calculated the 11-day mean of median observations of farms (see
Figure 8) and regions. In a few cases there were observations from only 11 windows due
to clouds.

Figure 7. Histograms of three Sentinel-2 bands from spring wheat fields of a farm as 11-day compos-
ites. Calculated from cloudy and cloud-masked surface reflectance.

Figure 8. Median values of 10 Sentinel-2 bands from spring wheat fields of a farm as 11-day mean
composites. Calculated from (a) cloudy and (b) cloud-masked surface reflectance. X-axis shows the
12 time windows from a growing season.

2.6. Prediction Models

For sequence modeling task we used RF as a state-of-the-art baseline method despite
its limitations on time series tasks. We used RF implementation in sklearn-library version
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0.23.2 [74] with parameters: 500 trees, and eight features randomly sampled as candidates
at each split. The trees were grown to the maximal depth. For TCN, we used the Keras
implementation, version 3.4.0 [75] in the Tensorflow environment (version 2.7.0) [76]. Keras
TCN is based on [37]. TCNs were trained using the Adam optimizer [77] with parameters:
learning rate α = 0.001, β1 = 0.9, β2 = 0.999, and ε̂ = 0.1. The batch size was set to 128.
The validation loss was monitored with an early stopping mechanism. We used dilated
causal convolutions for dilations 1, 2, 4, 8, and 16. The receptive field size was then 63.
The validation split was set to 0.20.

2.7. Experimental Setup

We explored which machine learner and feature method performs best with farm-
level data. For each crop, we trained a separate model, both with RF and TCN. We used
two years for training and one year in testing. For cross-validation we iterated the training
for 10 times. For each learner and feature method, we thus had performance metrics from
30 runs. For comparison purposes we chose to explore prediction accuracy in the mid-June,
mid-July, mid-August, and at the end of the season (September 1). The TCN model can
take a variable-size input, but RF was trained at each time point separately. From the
model training perspective, we had either a 32 × 10 tensor (histogram) or a 1 × 10 tensor
(median) for each time point to feed for TCN. For RF, the number of features was simply
the time-steps × 32 × 10 (histogram) or time-steps × 1 × 10 (median). Missing observation
days were padded with zero. We repeated the object representation schemes for both
cloudy and cloud-masked datasets. The object representation schemes are illustrated in
Figure 9.

Figure 9. Processing pipeline to predict crop yield from satellite time series data. Six object repre-
sentation schemes were applied as an input to temporal convolutional network and random forests.
Object representation schemes were repeated with cloud-masked and not cloud-masked data. Models
were trained at both farm-level and regional-level for comparison. Regional predictions were either
mean-aggregated from farm-level predictions or taken from regional-level predictions.

3. Results

We start reporting the results with conventional cloud-masked datasets. See Table A1
in the Appendix for the performance metrics for all farm-level prediction models in the
experiments. First, we compared the novel histogram-based TCN model with the conven-
tional median-based RF as a baseline. Figure 10 shows the normalized mean of root-mean-
squared error (NRMSE) and its standard deviation from the iteration runs with farm-level
cloud-masked data. The accuracy of TCN improves in the course of the season, as is
expected in time series prediction. RF predicts well in the early season, but the prediction
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does not improve when adding new time features later the season. Overall, TCN has
lower NRMSE than RF. Note that both models performed worse with winter wheat and
rye (denoted with brown text). These are winter crops whose phenological development
differs from spring crops.

Figure 10. The normalized mean of root-mean-squared error (NRMSE), i.e., the share of root-mean-
squared error from the mean crop-wise yield, and its 68% bootstrap confidence interval of farm-level
predictions from four time steps within the growing season based on cloud-masked data.

As an example of how in-season TCN predictions evolve, Figure 11 shows yield
predictions of a farm during the 2020 growing season (spring wheat) vis-à-vis the mean
predictions and standard deviations of its surrounding farms in the same municipality.
The blue vertical lines denote real observation dates, whereas missing dates are zero-
padded. Both the individual farm prediction and the mean prediction of the region are quite
close to the actual harvested yield from the mid-June until early July. In July, the predictions
start to overestimate but again approach the true yield by the end of August. It is notable
that the region prediction has clear in-season trends with moderate standard deviation.
The trend is similar in both regional and farm prediction. This suggests that in these
prediction curves, it may be possible to observe external factors in the growing conditions
that determine the phenological development.

Figure 11. An example of in-season TCN predictions of spring wheat yield (kg/ha) of a farm and
its surrounding region (municipality) in 2020 from cloud-masked data. Blue vertical lines denote
observation dates. The region-level prediction is reported as the mean of all farm-predictions with
the standard deviation.
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Next, we calculated region-level histograms and their TCN predictions. Figure 12
shows the relationship of farm- and region-level predictions and actual spring wheat yields.
In Figure 12a, the years are distinguishable. In the actual yields, there is great variation; in
2018 the yields were lower, in 2019 higher, and in 2020 average. The model overestimated
the yields in 2018 and underestimated yields in 2019 and 2020. The area of spring wheat
fields does not seem to make a visible difference. Note that there is vertical clustering of
observations revealing rounding of reported yields. Figure 12b shows similar behavior
to the model at the region level. The predictions tend to be conservative (closer to mean),
and the area of an observation does not seem to be visually discriminative. The overall
accuracy calculated in root-mean-square error (RMSE) is better at region level (729 kg/ha)
than farm level (1131 kg/ha).

(a) (b)
Figure 12. Scatter plots of farm- and region-level predictions vs. actual, when using histogram-based
features with temporal convolutional network model, spring wheat, in 2018–2020, from cloud-masked
data. The root-mean-squared error (RMSE) is shown in kg/ha and as a percentage from the average
of the actual test set yield. The size of the point is proportional to the area of the observation (farm or
region) in hectares. The years are denoted in colors. (a) Farm level. (b) Region level.

In Table 2, we have gathered several error estimation metrics of the iterated region-
level crop yield predictions with 12 different feature engineering methods. Each dataset
contains either an aggregated histogram of a municipality’s pixels (region level) or mean-
aggregated predictions from farms within the municipality (farm level). The datasets are
either from non-cloud-masked or from cloud-masked data. The datasets are either from
those municipalities that are overlaid by one or multiple Sentinel-2 tiles. The number
of observations in the subset (region/crop/year) is either 495 if all regions are included,
and 176 if only regions overlaid by one tile are included.

We use RMSE as the main metric for evaluating the quality of the solutions, since
it provides the most direct interpretation in form of average error in kg/ha. We provide
the average RMSE over all prediction tasks (different crop types and the three prediction
scenarios corresponding to different years) as the aggregate summary, but additionally
report the relative RMSE normalized with the mean regional true yields to even out the scale
differences in yields across regions and crops. Mean average error (MAE) is provided as an
additional aggregate summary. We also report the average correlation coefficient ρ between
the predictions and true yields, averaged over the different prediction tasks. For this
metric we only consider cases with at least 10 samples, needed for reliable estimation of
the correlation coefficient.

In terms of RMSE and MAE, the best prediction accuracy is achieved with farm-level
histograms without cloud masking or temporal compositing. Similarly, high correlation ρ
agrees the result. Note that some model variants show even higher correlation indicating
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that they can reliably rank the relative yields, but would be less useful for yield forecasting
due to large average error. Indeed, temporal compositing seems to perform worse in all
cases, indicating that we lose important information in the temporal compositing proce-
dure. We expected to have superior results with regional histograms to farm histograms,
especially in cases where the region falls under several tiles on adjacent orbits. However,
the number of tiles does not seem to have importance here. Nor is cloud masking essential
for good performance.

Table 2. The mean of root-mean-square errors (RMSE), the share of the error from the mean regional-
level true yields (RMSE in %), mean absolute error (MAE), and the Pearson correlation coefficient
ρ of regional-level predictions with temporal convolutional network for 2018–2020. The best value
per error metric is printed in boldface. The number (#) of tiles means that the dataset are either from
those municipalities that are overlaid on one or multiple (1-6) Sentinel-2 tiles.

Level Feature
Type

Cloud-
Masked # of Tiles Temporal RMSE

(kg/ha) RMSE (%) MAE ρ

Farm Histogram 1–6 121 days 617 17 494 0.54
Farm Histogram 1 121 days 642 18 540 0.67
Farm Histogram x 1–6 121 days 709 20 585 0.56
Farm Median x 1–6 121 days 728 20 570 0.50
Farm Median 1–6 121 days 738 21 566 0.43
Farm Histogram x 1 121 days 750 21 645 0.67
Farm Median x 1 121 days 769 22 631 0.55
Farm Median 1 121 days 809 23 631 0.54
Region Histogram x 1–6 121 days 809 23 650 0.13
Region Histogram x 1 121 days 841 24 692 0.10
Region Histogram 1–6 121 days 862 24 676 0.11
Region Histogram 1 121 days 909 26 739 0.06
Farm Histogram 1–6 11-day 1006 28 809 0.62
Farm Median 1–6 11-day 1006 28 744 0.45
Region Histogram 1–6 11-day 1035 29 829 0.07
Region Histogram x 1–6 11-day 1038 29 819 0.12
Farm Median 1 11-day 1043 29 765 0.58
Farm Histogram 1 11-day 1060 30 848 0.71
Region Histogram 1 11-day 1094 31 885 0.00
Region Histogram x 1 11-day 1126 32 904 0.07
Farm Histogram x 1–6 11-day 1132 32 923 0.64
Farm Median x 1 11-day 1161 33 903 0.58
Farm Histogram x 1 11-day 1180 33 963 0.75
Farm Median x 1–6 11-day 1193 34 938 0.50

Finally, we compared our best performing predictions with country-level crop yield
forecasts published by JRC and LUKE (Figure 13). Here, we have used the best perform-
ing TCN model with a non-cloud-masked feature set. The actual yield levels have great
variation between years. Overall, TCN predictions and forecasts alike tend to be more
conservative and more likely to underestimate the yield compared to the actual yields.
The TCN model is less accurate for winter crops (winter wheat and rye). To compare devia-
tions from the actual yields, Table 3 shows that on average TCN outperforms published
forecasts by 2.5 percentage points. If we include only forecast times in which JRC or LUKE
forecasts are published, TCN outperforms the published forecasts by 2.2 percentage points.
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Figure 13. Bar plots of the mean farm-level predictions (TCN) and country-level published forecasts
from JRC (MCYFS) and LUKE, in 2018–2020. The horizontal red line shows the 3-year mean of
national level yields from the official crop statistics (LUKE). Black vertical lines show the minimum
and maximum values of the three years. Note that the scale of the y-axis is zoomed to values between
[2000, 5500].

Table 3. The deviation (%) of published country-level forecasts and TCN predictions from the actual
crop yield. The lowest deviation (crop-wise) at the forecast time is printed in boldface. NaN means
no forecast is available.

Crop Month LUKE (%) MCYFS (%) TCN (%)

Spring wheat June NaN NaN 1.0
July −0.5 NaN 1.0
August 0.7 NaN 1.2

Barley June NaN −1.6 −5.1
July −9.2 −8.3 −4.9
August −8.0 −8.7 −1.8

Feed barley June NaN NaN −6.0
July NaN NaN −3.9
August NaN NaN −1.4

Malting barley June NaN NaN 1.3
July NaN NaN 3.0
August NaN NaN 0.9

Oats June NaN NaN −4.4
July −3.7 NaN −2.1
August −7.2 NaN 1.2

Winter wheat June NaN NaN 0.9
July −5.8 NaN 7.9
August −4.9 NaN −0.8

Rye June NaN −5.9 −1.0
July −9.6 −4.4 2.2
August −5.9 −4.0 −10.7

Absolute mean deviation 5.5 5.5 3.0



Remote Sens. 2022, 14, 4193 15 of 24

4. Discussion
4.1. Prediction Performance

The growing conditions for crops at northern European high latitudes are in many
ways exceptional in global perspective [62]. Weather conditions have large inter- and
intra-annual as well as spatial variation [66] resulting in high natural variation in yields,
which makes accurate prediction difficult. A similar study by Engen et al. [78] on farm-level
crop yield prediction was located in Norway having somewhat similar cropping systems
to our study area [66]. The amount of observations were also approximately comparable
with ours. The best performing model was incorporating weather features and raw image
data as 7-day composites into a CNN-RNN model. When farm-level yield predictions were
scaled up to municipality-level, they reported nationwide RMSE of 308 kg/ha (compared to
our 617 kg/ha). Unfortunately, NRMSE was not reported, making the results incomparable.
However, interestingly, the study showed that raw satellite image data performed better
than conventional handcrafted features (vegetation indices). Similar results were shown
by [79]. Moreover, adding climatic data improved the performance.

Our results show that, the winter crop models perform worse on average than spring
crop models, especially at the end of August. The winter crops winter wheat and rye
have a different timing of phenological cycles than spring crops. Interannual and spatial
variation in winter crops is also considerably higher than in spring crops as shown in
Figure 2. As winter crops are harvested earlier, the model may have been confused about
the post-harvest information in August. In addition, the amount of data in the winter crop
subsets was lower than in other subsets, suggesting that with more training data available
in the coming years, the model performance may improve. Another improvement to cover
the high variability in growth conditions is to adjust the sampling design to ensure spatial
heterogeneity of soil properties in the data.

For further improving the accuracy, one could consider fusion of other remote sensing
data sources to cover the known growth factors. Grain yield in cereals is determined by
the number of spikes per area, grain number per spike, and grain weight. These yield
components evolve at different times of the growing season and therefore are exposed to
different growth conditions and stresses, such as pathogens, pests, and plant nutrition,
e.g., [80–82]. In crop yield studies, optical and near-infrared reflectance based vegetation
indices have been widely used as a proxy for biomass accumulation e.g., [49,83,84]. How-
ever, by the senescence stage, vegetation indices are reported to carry less information for
yield prediction, whereas climatic variables are more useful for monitoring yield affecting
growing conditions and plant stresses [84,85]. In our study, setting we only utilize informa-
tion from limited ranges of the electromagnetic spectrum provided by Sentinel-2. However,
our deep learning based model readily supports the application of hyperspectral imaging
in higher spectral resolution (higher feature space) to crop yield mapping when such data
with appropriate temporal resolution becomes available. The prediction accuracy could
also benefit from complementary information from microwave and thermal remote sensing,
as suggested also by [86].

4.2. Reference Data

Lack of extensive farm-level or higher-resolution ground yields for empirical crop yield
models is a common problem in large-scale yield mapping studies [8]. Even if higher-scale
datasets exist in commercial agricultural systems, they are rarely leveraged due to privacy
concerns. Similarly due to data protection and privacy laws, national statistical institutes
can only publish aggregated yields. Typically statistics are published on administrative
units. However, with satellite remote sensing, national statistical institutes could publish
reliable temporally and spatially finer-scale yield forecasts. This would also provide other
practitioners in crop forecasting a more precise proxy as a reference or validation for their
operational systems.

The reference data notwithstanding poses a limitation to our study. There exists errors
in the farmer-reported data, such as rounding (visible in Figure 12a). Furthermore, farms
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that do not sell out the crops but use it as livestock feed, may only have a rough estimate of
their crop yields. In addition, we note that the model is predicting harvested yield which is
unavoidably smaller than the total yield, e.g., due to lodging or shattering. In our data we
even had cases of harvest loss as high as 100%, i.e., farmers reported yields of value of zero.
This implies crop was not harvested, e.g., due to overly wet harvest conditions.

In terms of potentially improved accuracy, our study would benefit from additional
field-level training data, e.g., from yield monitors on-board combine harvesters, especially
from data-sparse areas. If such an opportunity opens up our histogram-based approach
readily allows fusion of data at different scales (one field or multiple fields of arbitrary sizes).
Nevertheless, our results show that the farm-level data work sufficiently well in model
training for regional yield forecasting. Therefore this work stands as a promising example
for national statistical institutes typically holding historical farm-level survey data.

4.3. Cloud Mask or Not?

Cloud cover is a hampering factor in optical SITS tasks. It is challenging to detect
various types of clouds: low and medium altitude water clouds; and high-altitude cirrus
clouds in the upper troposphere and in the stratosphere. In addition, clouds cast shadows
that result in darker reflectance areas. On the other hand, dark areas can be burned
vegetation or topographic shadows. Clouds can also be similar in reflectance with a bright
and white surface such as snow, ice, or water.

Several studies have evaluated the performance of cloud-masking algorithms on
Sentinel-2 imagery. Typically, the studies evaluate the overall performance of the algorithms
across several scenes. Indeed, cloud detection is challenging due to the high reflectance
variability of earth surfaces. For example, [43] compared Sen2Cor, MAJA, LaSRC, Fmask,
and Tmask in six very different scenes. They concluded that in overall, none of the
algorithms outperformed the others. Sen2Cor exhibited the highest omission of clouds
and shadows, performing better on clear-sky circumstances. In a similar comparison,
for flat agricultural sites in Munich (Germany) and Orleans (France) [87] reported an
inferior overall accuracy of Sen2Cor on two cloudy dates when compared with MAJA and
FMask. Ref. [88] compared Sen2Cor, Fmask, and ATCOR on 20 Sentinel-2 scenes across all
continents, different climates, seasons, and environments. They concluded that the overall
accuracy was very high for all three masking codes and nearly the same for all algorithms.
Based on their results, they suggested that Sen2Cor can best be applied for rural scenes in
moderate climate and in scenes with snow and cloud.

From the application perspective, we aimed for routine use of Sentinel-2 data with a
minimal computational burden and fluent automating of the whole deployment pipeline.
We therefore chose to start with the Level 2A product, i.e., surface reflectance after atmo-
spheric correction and its Sen2Cor cloud mask attached. We were encouraged by Sen2Cor’s
satisfactory performance in comparative studies. Ref. [10] had paved the way for further
studies of learning cloud omission, and we tested our processing pipelines with and with-
out cloud masking. Our results suggested that a deep learning based model can indeed
learn to ignore cloud-affected data. A more-in-depth investigation is needed into how
the model learns. Naturally, our results are restricted to relatively flat vegetated areas
in a high-latitude boreal climate. Note that although the cirrus band 10 would be highly
informative for the model to learn cloud-affected biases, it is only available in the Level-1C
product (top-of-the-atmosphere reflectances). The Level-1C product could therefore be a
more attractive target for further studying of end-to-end learning as showed by [10].

Another intriguing topic to study concerns how deep learned cloud omitting and
separate cloud masks (such as Sen2Cor) is performing across all developmental phases
during the growing season. The reflectance of the vegetation varies greatly through the
growing season, especially when it reaches the senescence stage or at harvest time.
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4.4. Object Representations

In the study, we constructed six different representations of the observations. At an
overall level, we explored the capabilities of histograms as opposed to common median-
based features. At farm level the results were ambivalent, meaning that median-based
features occasionally outperformed histogram-based features. However, when focusing
on regional-level results, histogram-based features performed better. A median-based
approach yields 32 times fewer features for the model input. Classical machine learning
algorithms would probably benefit from a smaller feature space. As with time, RF simply
takes each time step as a new feature, and this also explodes the feature space. On the other
hand, RF is famous for being invariant to irrelevant features, because trees are grown using
random features [18]. It is therefore noteworthy that RF already shows its best prediction
accuracies in the early summer, suggesting that early growing season features are truly
most informative for the model.

Our results indicated that temporal compositing did not improve model performance,
probably because of lost information. Yet it is possible that shorter window sizes in temporal
composition would produce better results, especially if the area of interest is less cloudy.
In any case, temporal compositing can be suitable for a visual characterization of the
growing season and for easy fusion to other temporal data sources. In the present setting,
the TCN can find more useful features in noisier data than in more preprocessed data.

5. Conclusions

The objective of the study was to find an operationally suitable method for large-scale
crop yield estimations, so that we can produce in-season crop forecasts on an agroclimati-
cally meaningful territorial scale. First, at farm level, we showed that the histogram-based
TCN model outperformed the baseline median-based RF. Secondly, at region level, our
results showed that TCN achieved the best prediction accuracy with farm-level histograms
without cloud masking or temporal compositing. Our results indicated that cloud masking
seemed to lose some information about the crop development. Similarly, temporal com-
positing did not improve model performance, probably due to lost information. Thirdly,
at country-scale, TCN predicted in-season crop yield on average 2.5 percentage points
more accurately than published forecasts from LUKE and JRC. In addition, we can produce
forecasts for crops for which no in-season forecasts have earlier been published. We believe
that more accurate regional level predictions as a reference can also boost the development
of global scale crop monitoring.
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(g) (h) (i)

(j)

Figure A1. Displacement plots of histograms of all bands from raw BOA Sentinel-2 images before
and after cloud masking. Range [1, 6000], bins 1000. (a) Band 2. (b) Band 3. (c) Band 4 (Red).
(d) Band 5. (e) Band 6. (f) Band 7. (g) Band 8 (NIR). (h) Band 8A. (i) Band 11. (j) Band 12 (SWIR).

Table A1. The farm-level mean and standard deviations of root mean square errors (kg/ha) on test
set validation with 10 training iterations of Temporal Convolutional Network (TCN) and random
forests (RF) models when using crop type-wise subsets and median or histogram based features.
The lowest mean error (crop-wise) at forecast time is printed in boldface.

Crop Type Method Mask June July August End-Of-Season

Winter wheat RF (histogram) Cloud-masked 1964 ± 383 1988 ± 386 2078 ± 432 2088 ± 427
Cloudy 1978 ± 384 1996 ± 393 2102 ± 443 2109 ± 442

RF (median) Cloud-masked 1912 ± 336 1914 ± 335 1979 ± 376 2003 ± 387
Cloudy 2001 ± 439 2027 ± 429 2090 ± 464 2072 ± 459

TCN (histogram) Cloud-masked 1629 ± 261 1544 ± 135 1637 ± 136 1735 ± 247
Cloudy 1822 ± 226 1594 ± 189 1673 ± 118 1754 ± 198

TCN (median) Cloud-masked 1476 ± 269 1489 ± 351 1576 ± 243 1630 ± 257
Cloudy 1553 ± 152 1513 ± 262 1659 ± 188 1749 ± 307

TCN (11-day histogram) Cloud-masked 2225 ± 801 1820 ± 573 1325 ± 180 1281 ± 180
Cloudy 2147 ± 464 2324 ± 985 1789 ± 602 1616 ± 436

TCN (11-day median) Cloud-masked 1539 ± 158 1396 ± 157 1405 ± 353 1459 ± 441
Cloudy 2326 ± 920 2459 ± 875 2429 ± 758 2571 ± 957

Barley RF (histogram) Cloud-masked 1127 ± 131 1105 ± 114 1112 ± 107 1115 ± 123
Cloudy 1125 ± 126 1109 ± 109 1115 ± 99 1119 ± 114

RF (median) Cloud-masked 1131 ± 147 1080 ± 112 1080 ± 104 1096 ± 137
Cloudy 1148 ± 136 1110 ± 118 1111 ± 112 1122± 139

TCN (histogram) Cloud-masked 1313 ± 136 1066 ± 93 1016 ± 73 1054 ± 88
Cloudy 1285 ± 162 1039 ± 103 1000 ± 81 1048 ± 117

TCN (median) Cloud-masked 1132 ± 109 980 ± 73 923 ± 62 998 ± 72
Cloudy 1174 ± 107 969 ± 112 936 ± 116 992 ± 146

Feed barley RF (histogram) Cloud-masked 1121 ± 115 1099 ± 96 1104 ± 87 1107 ± 102
Cloudy 1117 ± 109 1103 ± 91 1108 ± 83 1108 ± 95

RF (median) Cloud-masked 1128 ± 134 1074 ± 102 1073 ± 90 1087 ± 121
Cloudy 1146 ± 122 1109 ± 108 1107 ± 101 1114 ± 122

TCN (histogram) Cloud-masked 1343± 168 1108 ± 102 1077 ± 105 1100 ± 121
Cloudy 1309 ± 147 1030 ± 91 988 ± 60 1043 ± 92

TCN (median) Cloud-masked 1176 ± 115 1007 ± 91 963 ± 72 997 ± 85
Cloudy 1250 ± 114 993 ± 64 960 ± 58 1007 ± 64

TCN (11-day histogram) Cloud-masked 1340 ± 263 1541 ± 642 1258 ± 286 1188 ± 228
Cloudy 1205 ± 138 1206 ± 147 1088 ± 138 1070 ± 136

TCN (11-day median) Cloud-masked 1194 ± 104 1939 ± 1397 1490 ± 643 1348 ± 460
Cloudy 1466 ± 575 2021 ± 1057 1917 ± 858 1684 ± 630
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Table A1. Cont.

Crop Type Method Mask June July August End-Of-Season

Malting barley RF (histogram) Cloud-masked 1253 ± 276 1217 ± 265 1229 ± 260 1234 ± 280
Cloudy 1268 ± 292 1214 ± 245 1219 ± 258 1220 ± 265

RF (median) Cloud-masked 1254 ± 289 1212 ± 272 1205 ± 262 1210 ± 288
Cloudy 1247 ± 294 1223 ± 292 1239 ± 322 1237 ± 330

TCN (histogram) Cloud-masked 1358 ± 182 1044 ± 101 1070 ± 80 1101 ± 110
Cloudy 1442 ± 186 1054 ± 112 1079 ± 80 1148 ± 146

TCN (median) Cloud-masked 1030 ± 76 1003 ± 101 1117 ± 195 1159 ± 232
Cloudy 1033 ± 65 1029 ± 101 1173 ± 246 1233 ± 272

TCN (11-day histogram) Cloud-masked 1399 ± 357 2267 ± 1111 1706 ± 634 1465 ± 440
Cloudy 1762 ± 650 1921 ± 1001 1834 ± 768 1717 ± 714

TCN (11-day median) Cloud-masked 1445 ± 346 1614 ± 489 1202 ± 223 1124 ± 163
Cloudy 1643 ± 761 1718 ± 993 1391 ± 551 1335 ± 468

Oats RF (histogram) Cloud-masked 1283 ± 49 1264 ± 27 1263 ± 24 1270 ± 30
Cloudy 1288 ± 42 1274 ± 30 1270 ± 30 1277 ± 35

RF (median) Cloud-masked 1264 ± 50 1244 ± 24 1230 ± 28 1239 ± 39
Cloudy 1294 ± 64 1283 ± 56 1273 ± 60 1273 ± 74

TCN (histogram) Cloud-masked 1381 ± 170 1140 ± 145 1069 ± 133 1090 ± 135
Cloudy 1450 ± 132 1147 ± 110 1071 ± 96 1092 ± 100

TCN (median) Cloud-masked 1203 ± 131 975 ± 81 904 ± 61 922 ± 71
Cloudy 1343 ± 175 1022 ± 142 978 ± 150 1025 ± 149

TCN (11-day histogram) Cloud-masked 1398 ± 170 1413 ± 389 1190 ± 205 1166 ± 165
Cloudy 1394 ± 190 1179 ± 151 1101 ± 87 1090 ± 99

TCN (11-day median) Cloud-masked 1487 ± 304 1702 ± 595 1422 ± 421 1370 ± 443
Cloudy 1726 ± 436 1855 ± 750 1482 ± 317 1453 ± 326

Rye RF (histogram) Cloud-masked 1850 ± 471 1884 ± 442 1923 ± 449 1919 ± 450
Cloudy 1853 ± 497 1876 ± 464 1919 ± 470 1911 ± 472

RF (median) Cloud-masked 1760 ± 386 1786 ± 370 1829 ± 375 1833 ± 390
Cloudy 1849 ± 423 1869 ± 422 1884 ± 433 1869 ± 462

TCN (histogram) Cloud-masked 1647 ± 199 1519 ± 123 1528 ± 116 1610 ± 223
Cloudy 1610 ± 222 1471 ± 234 1504 ± 165 1572 ± 218

TCN (median) Cloud-masked 1433 ± 291 1441 ± 289 1510 ± 291 1692 ± 332
Cloudy 1557 ± 323 1601 ± 336 1740 ± 333 1946 ± 357

TCN (11-day histogram) Cloud-masked 2103 ± 794 1431 ± 357 1332 ± 271 1344 ± 276
Cloudy 2586 ± 1586 2188 ± 1088 1761 ± 661 1702 ± 632

TCN (11-day median) Cloud-masked 1471 ± 287 1464 ± 361 1500 ± 345 1529 ± 412
Cloudy 1559 ± 407 1513 ± 363 1575 ± 504 1623 ± 527

Spring wheat RF (histogram) Cloud-masked 1310 ± 114 1284 ± 112 1316 ± 115 1317 ± 120
Cloudy 1316 ± 131 1290 ± 118 1324 ± 123 1329 ± 130

RF (median) Cloud-masked 1314 ± 121 1250 ± 114 1266 ± 106 1276 ± 118
Cloudy 1312 ± 145 1271 ± 122 1283 ± 124 1289 ± 138

TCN (histogram) Cloud-masked 1475 ± 193 1113 ± 96 1056 ± 83 1079 ± 92
Cloudy 1494 ± 228 1126 ± 140 1071 ± 113 1102 ± 156

TCN (median) Cloud-masked 1231 ± 171 1069 ± 119 1048 ± 157 1090 ± 196
Cloudy 1259 ± 174 1061 ± 157 1075 ± 156 1101 ± 189

TCN (11-day histogram) Cloud-masked 1843 ± 599 1960 ± 1021 1390 ± 334 1319 ± 261
Cloudy 1606 ± 252 1593 ± 575 1416 ± 305 1277 ± 213

TCN (11-day median) Cloud-masked 1990 ± 906 2155 ± 1254 1854 ± 702 1702 ± 588
Cloudy 1606 ± 348 1593 ± 586 1734 ± 482 1391 ± 231
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