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Abstract: Accurately estimating forest aboveground biomass (AGB) based on remote sensing (RS) 

images at the regional level is challenging due to the uncertainty of the modeling sample size. In 

this study, a new optimizing method for the samples was suggested by integrating variance func-

tion in Geostatistics and value coefficient (VC) in Value Engineering. In order to evaluate the influ-

ence of the sample size for RS models, the random forest regression (RFR), nearest neighbor (K-NN) 

method, and partial least squares regression (PLSR) were conducted by combining Landsat8/OLI 

imagery in 2016 and 91 Pinus densata sample plots in Shangri-La City of China. The mean of the root 

mean square error (RMSE) of 200 random sampling tests was adopted as the accuracy evaluation 

index of the RS models and VC as a relative cost index of the modeling samples. The research results 

showed that: (1) the statistical values (mean, standard deviation, and coefficient of variation) for 

each group of samples based on 200 experiments were not significantly different from the sampling 

population (91 samples) by t-test (p = 0.01), and the sampling results were reliable for establishing 

RS models; (2) The reliable analysis on the RFR, K-NN, and PLSR models with sample groups 

showed that the VC decreases with increasing samples, and the decreasing trend of VC is consistent. 

The number of optimal samples for RFR, K-NN, and PLSR was 55, 54, and 56 based on the spherical 

model of variance function, respectively, and the optimal results were consistent. (3) Among the 

established models based on the optimal samples, the RFR model with the determination coefficient 

R2 = 0.8485, RMSE = 12.25 Mg/hm2, and the estimation accuracy P = 81.125% was better than K-NN 

and PLSR. Therefore, they could be used as models for estimating the aboveground biomass of 

Pinus densata in the study area. For the optimal sample size and sampling population, the RFR 

model of Pinus densata AGB was established, combining 26 variable factors in the study area. The 

total AGB with the optimal samples was 1.22 × 107 Mg, and the estimation result with the sampling 

population was 1.24 × 107 Mg based on Landsat8/OLI images. Respectively, the average AGB was 

66.42 Mg/hm2 and 67.51 Mg/hm2, with a relative precision of 98.39%. The estimation results of the 

two sample groups were consistent. 

Keywords: variance function; value coefficient; optimal sample size; aboveground forest biomass; 

remote sensing estimation; Landsat 8/OLI 

 

1. Introduction 

Forest biomass is an important indicator for estimating forest productivity, terrestrial 

ecosystem function, and sustainable forest management. With the fast development of 

remote sensing technology, multi-source remote sensing data have replaced the tradi-

tional ground sampling survey method for forest aboveground biomass inversion. It can 

obtain the quantity, spatial distribution, and dynamic change of forest resources and re-

alize the quantitative inversion of the forest measurement parameters combined with var-
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ious models and sample surveys [1,2]. Therefore, it can meet the requirements for moni-

toring and analyzing forest resources and ecological processes at different scales while 

saving the investigation cost. Recently, various studies have been performed to establish 

non-parametric remote sensing estimation models of forest aboveground biomass based 

on optical remote sensing data, such as decision tree regression, k-nearest neighbor 

method, support vector machine regression, and artificial neural network models [3–10]. 

The uncertainty of the model has attracted much attention in the quantitative inversion of 

forest biomass by remote sensing [11–14]. The above uncertainties mainly include ground 

data measurement uncertainty, model selection uncertainty, and spatial sampling uncer-

tainty. Shettles et al. [15] pointed out that the model uncertainty accounted for a large 

proportion (about 70%) of the total uncertainty among the three uncertainties. Compared 

with statistical models, the number of samples used for remote sensing modeling has a 

significant impact on the uncertainty caused by the model parameters, and the uncertainty 

of model parameters gradually decreases with the increase in the number of samples [16]. 

The remote sensing estimation accuracy of forest biomass on a regional scale based on a 

statistical model relies on the model training accuracy under different sample sizes. Given 

traditional statistical sampling data, 30 for a small sample and 50 for a large sample are 

only empirical sample sizes. The larger the number of samples, the better the model’s re-

liability. However, too many samples need to consume more human and material re-

sources and financial resources. In forestry production, under the premise of ensuring a 

certain model accuracy, modeling with as few samples as possible is one of the important 

problems to be solved in quantitative remote sensing. 

There have been few developments on the uncertainty of the sample size used for a 

remote sensing estimation model of forest measurement parameters at the regional scale 

worldwide. The main reason is to ensure the model’s reliability while discussing the sam-

ple problem. However, the feature variables for the remote sensing estimation of forest 

measurement parameters based on statistical models have obvious mechanism problems. 

Moreover, the influence of the number of samples on the model accuracy depends on the 

modeling method. Some methods are suitable for large samples, while some can obtain 

superior results using small samples. Furthermore, apart from the number of samples, the 

samples’ distribution, diversity, and representativeness are also key parameters. The ef-

fect of sample size on the analysis results is not apparent for homogeneous samples. In 

the previous studies based on the number of samples of the model, Fu et al. [17] analyzed 

the uncertainty of the estimated regional biomass based on the sample size of single-tree 

biomass modeling and believed that increasing the amount of modeling data can effec-

tively improve the biomass model’s estimation accuracy, accuracy, and work efficiency, 

and reduce the uncertainty. In practice, it is challenging to obtain forest resource survey 

data. Due to a limited number of samples, the model will have an “over-learning” phe-

nomenon. The non-parametric method to estimate forest aboveground biomass can effec-

tively solve this problem [18]. According to the estimation and application of remote sens-

ing-based regional forest biomass, Wu demonstrated that increasing the sample size could 

improve the modeling accuracy, especially for the support vector machine algorithm. 

However, the accuracy changes reflected by partial least squares regression (PLS) and k-

nearest neighbors (K-NN) algorithms indicate that increasing the number of samples can-

not necessarily improve the accuracy. Thus, different estimation methods need to find the 

most suitable number of samples. 

Aiming at the uncertainty of samples in remote sensing models of forest biomass 

using traditional statistical models, a new method to solve reasonable samples was sug-

gested that should integrate the geostatistical variance function and VC in value engineer-

ing to explore the change of VC with the change of samples and then solve the reasonable 

sample size for a remote sensing estimation of forest biomass. 

In this study, a Pinus densata forest, a typical forest ecosystem in Shangri-La, Yunnan 

Province, was taken as the research object, and the mean value of the root mean square 
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error (RMSE) based on 200 experiments of random sampling results as the evaluation in-

dex of model accuracy for different sample groups. Combining Landsat 8/OLI image and 

91 sample plots, the comparative analysis of model accuracy was conducted to provide a 

feasible model of reasonable samples for forest biomass remote sensing estimation based 

on random forest regression (RFR), nearest neighbor value (K-NN) regression (K-NN) re-

gression, and partial least squares regression (PLSR). 

Existing and limited studies on sample optimization at a regional scale for AGB esti-

mation are primarily concerned with how to design sample spots and select models [6,7–

11]. There have been no published reports on how to model the relationships between 

sample sizes and estimated accuracy. Therefore, this research aims at optimising samples 

for statistical models and exploring the feasibility of approaches to improving forest AGB 

estimation accuracy in the alpine mountains of Yunnan Province, China. 

2. Study Area and Materials 

2.1. Description of the Study Area 

The study area, Shangri-La City, is located in the northwest of Yunnan Province in 

southwestern China, neighboring Sichuan and Tibet (Figure 1). The geographical coordi-

nates are 99°23′6.08”–100°18′29.15” east longitude and 26°52′11.44”–28°50′59.57” north lat-

itude. Shangri-La has a total area of 1.142 million hm2. The Jinsha River surrounds it on 

the east, south, and west sides. It is the junction of Yunnan, Sichuan, and Tibet provinces 

and the world’s natural heritage “Three Parallel Rivers” scenic spot. High terrain, low 

heat, and low temperature are the main characteristics of Shangri-La. The altitude is 1503–

5545 m, the annual average temperature is 5.5 celsius centigrade, the annual average pre-

cipitation is 618.4 mm, the average snowfall day is 35.7 d, and the annual daylight rate is 

40–50%, belonging to the mountain cold temperate monsoon climate. The study area is 

rich in plant resources due to the dense tributaries of the Jinsha River water system, ice 

and snowmelt water, plateau lakes, and other water resources, and the forest soil types 

are dominated by brown soil and red soil. The forest vegetation area is large, the coverage 

rate is high, and the distribution of north–south differences is obvious. There are mainly 

10 types of vegetation, including Picea asperata, Abies fabri, Pinus densata, Pinus yunnanensis, 

and Quercus semicarpifolia. Picea asperata in the study area is a local pioneer species and the 

largest area tree species. Whether natural or planted stands, they were all pure, so they 

were used as a case for this study. 
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Figure 1. Location of study area. Shangri-La City in the northwest of Yunnan Province in south-

western China. (Note: (a) the study area is located in Southwestern China; (b) Shangri-La City is 

part of Yunnan province, and (c) a standard false color composite of Landsat Thematic Mapper (TM) 

band 4 in red, band 3 in green, and band 2 in blue, highlighting vegetated areas in red color, yellow 

triangle is the 91 sample plots of Pinus densata). 

2.2. Sample Plots Data and Calculation of AGB 

A total of 91 sample plots in the study area were inventoried in 2016. They were cir-

cular sample plots with a size of 1 hectare, which were usually known as angle gauge 

controlling sample plots (AGCSP) [19]. The plots were systematically allocated on a pre-

vious spatial distribution map of forest types (Figure 1). Within each plot, the average 

diameter at breast height (DBH) and tree height (H) were recorded. The calculation of the 

AGB of each plot has two steps. Firstly, the individual-average-standard tree AGB in 

AGCSP was calculated by the average tree height and average diameter at the breast 

height of the plot. The Individual tree aboveground biomass model of Pinus densata is 

shown in Equations (1) and (2) [6,20]. Secondly, the number of trees per hectare was cal-

culated according to Equation (3), and the sample plot’s aboveground biomass was ob-

tained by combining the single-average-standard tree aboveground biomass and the 

number of Pinus densata. 

Within 91 sample plots, the minimum, maximum, mean, and the standard deviations 

of the aboveground biomass of different tree species are recorded in Table 1. The maxi-

mum is 133.61 Mg/hm2, and the minimum is 3.36 Mg/hm2. 

AGB = 0.048(DBH�H)�.��� (1)

AGB = 0.0955(DBH�H)�.���� (2)

� = �� �
1

��
��

�

���

 (3)

where Equation (1) is the model of aboveground single tree biomass of Picea asperata and 

Abies fabri, and Equation (2) is the model of the aboveground single tree biomass of Pinus 
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densata. AGB is for aboveground biomass; DBH is the diameter at breast height; H is single 

tree height; �� is the number of counted trees of the jth diameter interval class (assuming 

that there are k diameter classes); �� is the sectional area of the median value of the di-

ameter class; �� is the sectional area coefficient of angle gauge; N is the obtained number 

of trees per hectare. 

Table 1. Description of the forest biomass observations. 

Species 
Sample Size 

(N) 

Minimum 

(Mg/hm2) 

Maximum 

(Mg/hm2) 

Average 

(Mg/hm2) 

SD 

(Mg/hm2) 

Pinus densata 91 3.36 133.61 64.56 31.84 

2.3. Collection of Remote Sensing Data and Preprocessing 

Three Landsat 8/OLI images with L1 (no radiometric calibration and atmospheric cor-

rection) products were obtained from Geospatial Data Cloud (http://www.gscloud.cn/, ac-

cessed on 13 January 2022) on 9 November 2016 (path/rows: 132/040, 132/041), while on 20 

December 2016 (path/rows: 131/041). The three images adopt a Universal Transverse Mer-

cator coordinate system (UTM) projection with zone 17 north, WGS84 ellipsoid, with a spa-

tial resolution of 30 m × 30 m. The images have 11 spectral bands and were mosaicked into 

one image, while 1–7 bands (on coastal band, three visible bands, one NIR band, and two 

SWIR bands) were only utilized in this study. The images were pre-processed by the soft-

ware ENVI 5.3, including radiometric calibration and atmospheric correction (FLAASH). 

2.4. Extraction of Feature Variables from Remote Sensing Data 

For AGB modelling at a regional scale, the variables contain spectral bands, vegeta-

tion indices, and textures [21–26]. The main feature parameters include 1–7 bands of the 

preprocessed image, the spectral reciprocal value of the bands, the band combination, and 

the texture feature factor [6]. The texture feature factor is based on eight texture feature 

parameters defined by Haralick et al. [1], and moving windows size (5 × 5, 7 × 7, 9 × 9 

pixels) and different bands (bands 3–7) were employed to calculate the texture features. 

(1) Spectra feature parameters 

For spectral bands, 23 modeling variables were extracted including the original spec-

tral bands (b1, b2, b3, b4, b5, b6, b7), reciprocal spectral bands (1/b1, 1/b2, 1/b3, 1/b4, 1/b5, 

1/b6, 1/b7), and combination bands ((b5 − b4)/(b5 + b4), b2/b5, b3/b5, b4/b5, b6/b5, b7/b5, 

(b4 + b6)/b7, (b4 + b6 + b7)/b5, (b3 + b4 + b6)/b7) [6]. 

(2) Texture feature parameters 

Textures are important features of remote sensing images, which play an important 

role in remote sensing image classification, quantitative remote sensing, and other fields 

[21,23,26]. They can represent ground object structure information in remote sensing im-

ages, reflecting the important information of spatial changes of land cover type in remote 

sensing images [22,24,25]. Currently, the main methods for texture feature extraction are 

statistical, structural, and spectral decomposition methods [6,24]. In this study, texture 

feature calculation was performed based on moving windows size (5 × 5, 7 × 7, 9 × 9, 11 × 

11, 15 × 15, 19 × 19, 25 × 25 pixels) and Landsat8 OLI bands (band 3, 4, 5, 6, 7) according to 

the eight texture feature parameters defined by Haralick et al. Therefore, 280 texture fea-

ture variables were extracted as the alternative parameters of AGB estimation and mod-

eling. The calculation equations of eight texture features are listed in Table 2. 
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Table 2. Calculation formulas of texture features. 

Texture Feature 

Parameters 
Equations 

Texture Feature 

Parameters 
Equations 

Mean, ME � ���,�

���

�,���

 Dissimilarity, DI � �

���

�,���

��,�|� − �| 

Variance, VA � ���,�(� − ��)�

���

�,���

 Entropy, EN � �

���

�,���

��,��− ln ��,�� 

Homogeneity, HO � �
��,�

1 + (� − �)�

���

�,���

 Second Moment, SM � ���,�
�

���

�,���

 

Contrast, CO � �

���

�,���

��,�(� − 1)� Correlation, CR � ���,�

���

�,���

�
(� − ��)(� − ��)

�������

� 

Note: where Pi,j is the probability of (i, j) appearing in the image, and i, j are the pixel values respec-

tively. 

3. Methods 

3.1. Experimental Design of Sample Groups 

In general, sufficiently large training samples facilitate the construction of remote 

sensing models with better adaptability and stability [6–8]. However, excessive sample 

plots consume more human, material, and financial resources. In forestry production, it is 

important to design a reasonable number of samples within a model’s accuracy and sta-

bility. The research was based on the number of samples and the accuracy of the model. 

A random sampling test was devised. 

For the convenience of description, x represents the number of samples, and Z(x) 

represents the estimation accuracy of the models versus the number of samples. Each ex-

periment randomly selects x samples with an interval of 2 from the sampling population 

(91 samples) as group samples, and the number of each group samples x (x ≥ 26) starts 

from 26 (due to the number of model’s parameters was 26) to avoid model overfitting. The 

model was run, and the estimation accuracy of the model was recorded for each group. 

The experiment was repeated 200 times due to the difference between the mean value of 

200 and 1500 trials being not significant by t-test (p = 0.01) (Figure 2). When the number of 

samples x exceeded the total number of samples, the experiment was over. The 200 times 

cycle experiment was set to avoid the randomness of a single experiment. 

 

Figure 2. Variability of 200 experimental results (sample size = 50). 
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3.2. Estimation Method and Accuracy Evaluation Indexes 

(1) Random Forest Regression (RFR) 

Random forest was proposed by Breiman and Cutler in 2001 [27]. The algorithm uses 

the Bootstrap sampling method. First, n random samples are taken from the original sam-

ple set as a sample set Dn. and n decision tree models Gn(x) are trained with the sample 

set Dn. When training the nodes of the decision tree model, an optimal feature is selected 

among k randomly selected sample features to do the left and right subtree division of the 

decision tree. This study uses a regression algorithm; then the final category is the mean 

of the leaf nodes reached by that sample point [28]. 

(2) K-Nearest Neighbor (K-NN) 

In the K-NN regression model, the observed value samples of the feature variables 

are designated as the reference set, the prediction set of the variables to be tested is desig-

nated as the target set, and the space defined by feature variables is the feature space. The 

predicted value mp of the continuous variable biomass m on the pixel p can be calculated 

as [6,20]: 

�� = � �����

�

���

 (4)

where mi is the measured value at the reference sample site i for the variable m; k is the 

neighbor’s number when calculating the predicted value mp; wip is the pixel weight value 

calculated as follows: 

��� =

⎩
⎨

⎧
���,�

�� � ���,�
��

��(�)

����(�)

�

    0, other conditions

, only if � ∈ {��(�), … , ��(�)} (5)

where i is the reference set sample; p is the target set pixel; pj is the sample corresponding 

to the reference set sample j, ���,�
��  is the distance decomposition factor; k and t are con-

stants, where their optimal values can be selected by repeated testing. {��(�), … , ��(�)} 

are the k reference set samples most similar to the pixel p measured in the feature space. 

The spatial similarity of feature variables indicated by ���,� can be obtained as: 

���,� = �� ���,��
− ��,��

��

���

 (6)

where ��,��
 and ��,� are the feature variables of the spectral bands and their derivation 

factors of the remote sensing image corresponding to the reference set and the target set 

samples, respectively. �� is the number of feature variables; p is the pixel of the target set; 

pi is the pixel corresponding to the sample i of the reference set. 

Referring to my previous related research results [24], the parameters of the K-NN 

model in this study were chosen as follows: distance metric was used in the form of Eu-

clidean distance, with a k value equal to 8 and a t value equal to 1. 

(3) Partial Least Squares Regression (PLSR) 

PLSR is a multivariate statistical analysis method that consists of a combination of 

multiple linear regression, principal component analysis, and typical correlation analysis. 

The PLSR method combines the correlation between the independent and dependent var-

iables while extracting the characteristics, which eliminates the complex covariance of the 

original variables while preserving the large variance, thus allowing the created regres-

sion model to reflect the corresponding relationship between the dependent and inde-

pendent variables. The PLSR method has the advantage of dealing with this problem and 

is able to remove unsuitable samples from the residuals of the calibration model more 
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easily and build the best model quickly. PLSR first constructs new variables named com-

ponents, each of which is a linear combination of the dependent variable and determines 

its coefficients by combining the independent and dependent variables, and finally con-

structs the regression equation between the dependent variable and these components 

using the least squares method. The PLSR model is as follows [29]: 

�� = ��� + ����� + ⋯ + ���（� = 1, 2, … , �） (7)

where T1, …, Tn are the linear combinations of the bands of the spectrum, respectively, 

and �� (i =1, …, n) is the coefficients, which can be estimated by least squares. 

(4) Evaluation of Model Accuracy 

The traditional statistical model-based accuracy evaluation indexes mainly use the 

coefficient of determination (R2), root mean square error (RMSE), and estimation accuracy 

(P). Generally, the larger R2, the smaller RMSE, and the higher P. RMSE (Equation (8)) 

were utilized to evaluate the uncertainty of the model’s sample size in this study. 

In order to estimate the RMSE of the models for different samples, Leave-one-out 

(LOO) cross-validation was employed; that is, for N samples, one sample is drawn from 

N samples as the test set, while the remaining N − 1 samples were adopted as the reference 

set, and the cycle was repeated N times until the end. This study statistically analyzed the 

model predicted value ��� (i = 1, …, N) of the N samples and the measured value (��) of the 

corresponding sample. The model stability was evaluated using the average RMSE for 

each group of samples based on 200 tests. 

RMSE = �
∑ (��� − ��)��

���

�
 (8)

where ��  and ���  are the measured and predicted values of the sample size of the ith 

group, respectively. 

3.3. Optimal Samples Estimation Integrating Semi-Variance Functions and Value Coefficients 

(5) Value coefficients (VC) 

The uncertainty analysis was conducted on the model sample size using the value 

coefficient (VC), which calculating formula is VC = F/C (where F is the function coefficient 

and C is the cost coefficient). The VC means the relative ratio of the degree of matching 

between the function and cost of a product in Value Engineering to help engineers find 

engineering improvement objects and reduce costs when conducting cost analysis [29]. In 

this study, the relative ratios of the RMSE between per group samples and sampling pop-

ulation was used as the function coefficient F, and the relative ratio of the cost was used 

as the cost coefficient C, i.e., F = RMSEsample/RMSEpopulation and C = Nsample/Npopulation. It indi-

cates a relative variation between a model’s accuracy (RMSE) and the cost of modeling 

samples based on the sampling population. 

��(�) =
�����/�����

��/��
 (9)

where NT is the sampling population, RMSET is the model’s root mean square error; Ni is 

the number of ith group samples, and VC(i) is the model’s value coefficient with Ni sam-

ples, RMSEi is its root mean square error. 

(6) Semi-variance Functions 

Assuming that the values of the regionalized variable (�(ℎ)) at space points X and X 

+ h are Z(X) and Z(X + h), the semi-variance function, also known as the “semi-covariance 

function”, is defined as follows [30]: 
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�(ℎ) =
1

2�(ℎ)
�  

�(�)

���

[�(��) − �(�� + ℎ)] (10)

where N(h) is the number of point pairs at distance h. Since �(ℎ) is unknown, it must be 

obtained by the relevant model from the experimental data, such as a spherical model: 

�(ℎ) =

⎩
⎨

⎧
0                                                       ℎ = 0

�� + � �
3ℎ

2�
−

ℎ�

2��
�                 0 < ℎ ≤ �

�� + �                                            ℎ > �

 (11)

where �� is the nugget variance, C is the partial sill, i.e., arch height, �� + � is the sill, 

and a is the range, which indicates the maximum distance of a regionalized variables from 

spatial autocorrelation to irrelevance. 

(7) Optimal Samples Estimation 

In this study, the initial analysis was derived from scatterplots that the values of VC 

(Y-axis) were graphed against the values of cost, i.e., the number of sample plots (X-axis); 

and the approach of the parameters based on semi-variogram was suitable for the rela-

tionship between VC and the number of sample plots. Here, the change in values of VC 

was attributed to spatial autocorrelation, and the number of samples was regarded as the 

spatial distance. To estimate the optimal value of group samples, the range parameter of 

spatial distance was established, that is, the maximum distance of spatial autocorrelation 

or variability. 

Based on the spherical model, h is Ni, i.e., the number of ith group samples (h = s + 26) 

when solving the optimal samples. �(ℎ) is the value coefficients of models, ��  is the 

value of VC at N = 26 (s = 0), C is the change rate of VC, �� + � is the maximum or mini-

mum VC when the cost reaches its optimal sample size. When estimating the parameters 

of the spherical model, let �(ℎ) = �(�), �� = �, �� = ��, �� = ��, 
��

��
= ��, and 

��

��� = ��. 

The transformed linear model is shown in Equation (12), and the parameters (��, ��, ��) 

are obtained using the least-squares method. The optimal sample size corresponding to 

different models is shown in Equation (13). 

�(�) = �� + ���� + ���� (12)

�������� = �
−��

3��
 (13)

4. Results 

4.1. Collection of Model Feature Variables 

In order to establish the remote sensing model, feature variable factors should be first 

selected. The correlation analysis between the aboveground biomass of Pinus densata and 

remote sensing spectral feature variables reveals a strong correlation between the spectral 

band combination values and aboveground biomass. There is a very significant correla-

tion level with the variable values of (B4 + B6)/B7, (B3 + B4 + B6)/B7), B6/B5, and B7/B5 

within 23 spectra feature parameters, while only 22 variables were significant within 280 

texture feature parameters. This study employed 26 feature factors with highly significant 

correlation levels (four band combinations and 22 texture features, as shown in Figure 3) 

to establish AGB models. The correlation between the forest aboveground biomass and 

remote sensing feature variables of Pinus densata is shown in Figure 3. The correlation 

coefficients ranged from −0.24 to 0.26, with the strongest correlation being (B4 + B6)/B7. 

As shown in Figure 3, 7-5-CO represents contrast (CO) texture filtering under the 5 × 5 

window of the 7th band, Bi is the ith band of Landsat8 OLI (i = 1, 2, …, 7), and so on. All 
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corresponding characteristic variables of biomass estimation models for Pinus densata. was 

shown in Table 3. 

 

Figure 3. Correlation between Pinus densata biomass and remote sensing feature variables. 

Table 3. Characteristic variables of biomass estimation models for Pinus densata. 

Variable Types 26 Characteristic Variables 

Texture features variables 

3-19-CO, 4-11-EN, 4-15-HO, 4-15-DI, 4-15-EN, 4-19-HO, 4-19-DI, 4-

19-EN, 4-25-HO, 4-25-DI, 4-25-EN, 5-11-SM, 5-15-DI, 5-19-SM, 6-5-

SM, 6-5-CO, 6-7-SM, 6-9-SM, 6-11-SM, 6-15-SM, 6-19-SM, 7-5-CO  

Spectral feature variables (B3 + B4 + B6)/B7, (B4 + B6)/B7, B7/B5, B6/B5 

4.2. Sampling Effect 

In general, the reliability analysis of the uncertainty of sample size on RS models ac-

curacy should depend on sufficiently large samples. Therefore, this experiment adopted 

91 sample plots of Pinus densata as the sampling population surveyed by the National 

Forest Resources Planning and Design Department in 2016 according to systematic sam-

pling with more than 90% estimation accuracy, which can adequately represent the over-

all changes of typical forest ecosystems in the study area. The reliability of the sampling 

results requires that the mean of samples per group should be consistent with the sam-

pling population. 

Therefore, to avoid the random error of a single experiment, the samples mean of 200 

random selections was used as the statistical value per group (Table 4). By t-test (p = 0.01), 

the statistical per group was not significantly different from the sampling population (91 

samples), and the group samples could be used as the model training sample for the ac-

curacy calculation. 

Table 4. Statistical values of different sample sizes under 200 random sampling. 

Number 

(N) 

MEAN 

(Mg/hm2) 

STDV 

(Mg/hm2) 
CV 

Number 

(N) 

MEAN 

(Mg/hm2) 

STDV 

(Mg/hm2) 
CV 

26 64.1250 31.1622 0.4885 60 64.7301 31.4118 0.4860 

28 64.1084 30.9366 0.4852 62 64.6219 31.6234 0.4899 

30 64.1363 31.3576 0.4916 64 64.2446 31.4907 0.4906 

32 64.9825 30.9830 0.4792 66 64.5929 31.6167 0.4899 
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34 64.4875 31.5644 0.4920 68 64.4334 31.5488 0.4899 

36 64.8181 31.1635 0.4829 70 64.3674 31.5703 0.4909 

38 64.4959 31.3397 0.4876 72 64.4704 31.6147 0.4907 

40 64.9200 31.5427 0.4873 74 64.5597 31.6779 0.4910 

42 64.1528 31.3019 0.4893 76 64.7947 31.6243 0.4883 

44 64.5796 31.3125 0.4859 78 64.4896 31.6672 0.4912 

46 64.6162 31.4065 0.4871 80 64.5684 31.5644 0.4890 

48 64.6764 31.4140 0.4868 82 64.4872 31.6410 0.4908 

50 64.4293 31.7441 0.4938 84 64.6030 31.7069 0.4909 

52 64.0252 31.2946 0.4896 86 64.5759 31.6848 0.4907 

54 64.7302 31.2874 0.4841 88 64.5169 31.6846 0.4911 

56 64.4366 31.4135 0.4883 90 64.5806 31.6278 0.4898 

58 64.5098 31.6588 0.4914 91 64.5601 31.8402 0.4907 

Note: MEAN is sample average of group samples, STDV is standard deviation, CV is coefficient of 

variation. 

4.3. Statistical Analysis of Model Accuracy 

The accuracy of the remote sensing estimation of biomass at a regional scale depends 

on the model, and the estimating results of different models within the same group of 

samples varies. In this study, three models, RFR, PLSR, and K-NN were selected to ana-

lyze the variation of model accuracy under different samples. 

Table 5 shows the variation of the value coefficient of the aboveground biomass esti-

mation model based on the RFR model. By t-test (p < 0.01), the VC difference between the 

group samples and the sampling population (sample size = 91) is not significant, indicat-

ing that the sampling results are consistent with the population. 

In Figure 4, the VC of the three models (Figure 4a–c) decreases with the increasing 

cost of modeling samples. When the sample number of Pinus densata is less than 50, the 

VC variance is 1.5 times that of the sampling population, and the relative ratios of VC are 

large; and the sample number is larger than 50, the trend of change is flat. It indicates that 

increasing the sample is beneficial to the model accuracy within 50 samples; if the sample 

size exceeds 50, the VC change rate decreases. If the sample size is further increased, the 

model accuracy change should be flat. Correspondingly, the cost is too high. 

Table 5. The value coefficients of RF model based on different sample size. 

Number 

(N) 
VC 

Number 

(N) 
VC 

Number 

(N) 
VC 

Number 

(N) 
VC 

26 3.6725  44 2.1048  62 1.4970  80 1.1378  

28 3.3303  46 2.0238  64 1.4387  82 1.1153  

30 3.1921  48 1.9382  66 1.3992  84 1.0873  

32 2.9421  50 1.8750  68 1.3587  86 1.0661  

34 2.7792  52 1.7665  70 1.3244  88 1.0378  

36 2.6112  54 1.7184  72 1.2804  90 1.0116  

38 2.4604  56 1.6545  74 1.2512  91 1.0000  

40 2.3421  58 1.6001  76 1.2104    

42 2.2155  60 1.5333  78 1.1755    
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Figure 4. Variation of model value coefficients with sample size (a) RFR; (b) KNN; (c) PLSR. 

4.4. Determination of Optimal Sample Size 

Taking the VC of the models as the variance function �(ℎ), and the sample size as 

the spatial distance h, the linear transformation of the spherical model was performed. 

Furthermore, the spherical model parameters (Nugget variance: C0, Partial sill: C, Range: 

a, Sill: C0 + C) were obtained, and the corresponding range “a” was the optimal number 

of samples. The calculation results of the variogram parameters are shown in Table 6. 

The variogram results reveal that the ratio of nugget variance to sill value (C0/C) re-

flects the degree of spatial variation of models VC to samples. Generally, it may be divided 

into three grades: 0–25%, 25–75%, and above 75%, indicating the weak, medium, and high 

spatial variation, respectively [27]. The results in Table 3 indicated that the spatial vari-

ances of samples to VC for the RFR, K-NN, and PLSR models were 61.17, 60.97, and 
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58.54%, all of which reached a moderate spatial variance. Correspondingly, there was a 

moderate spatial correlation between model accuracy and cost variation, and the spherical 

model parameters could be solved (Table 6). According to Equation (13), the optimal sam-

ples of RS models for the RFR, K-NN, and PLSR were 55, 54, and 56 (Table 7), and the 

results of the optimal sample sizes were consistent. Respectively, the modeling costs were 

only 60.44, 59.34, and 61.54% of the total costs (91 samples). 

Table 6. Fitting parameters of variation function based on spherical model. 

Model B0 B1 B2 

Nugget 

Variance 

(C0) 

Sill 

(C0 + C) 

Sampling 

Variation 

(C0/C + C0) 

Range 

(a) 

RFR 3.5788 0.062479 −0.000007 3.5788 5.850802 61.17% 55 

K-NN 3.4261 0.061024 −0.000007 3.4261 5.619168 60.97% 54 

PLSR 2.9717 0.0564 −0.00006 2.9717 5.07636 58.54% 56 

Table 7. Estimation accuracy with reasonable sample size. 

Model 

Optimized  

Samples 

(N) 

Decision  

Coefficient (R2) 

RMSE 

(Mg/hm2) 

Estimation  

Accuracy 

(P%) 

RFR 55 0.8485 12.2535 81.1253 

K-NN 54 0.2658 28.7278 55.3621 

PLSR 56 0.3972 28.0759 56.3810 

Note: the coefficient of determination (R2), root mean square error (RMSE) and estimation accu-racy 

(P) were the mean of estimation accuracy with optimized samples based on 200 tests. 

4.5. Forest AGB Estimation Based on Optimized Samples 

For the optimal sample size, the RFR, K-NN, and PLSR models of AGB Pinus densata 

were established in the study area, combining 26 variable factors. The modeling accuracy 

is shown in Table 7. The results showed that the mean of estimation accuracy, coefficient 

of determination (R2), root mean square error (RMSE), and estimation accuracy (P) were 

0.85, 12.2535 Mg/hm2 and 81.13% for the RFR model, which is better than K-NN (R2 = 0.27, 

RMSE = 28.7278 Mg/hm2, P = 55.36%) and PLSR (R2 = 0.40, RMSE = 28.0759 Mg/hm2, P = 

56.38%) based on 200 tests. Therefore, the RFR model was used to estimate the AGB of 

Pinus densata in the study area. 

Based on the sub-compartment data of the National Forest Resources Planning and 

Design Survey in the study area, the distribution area of Pinus densata was extracted, with a 

total area of 183,671.1470 hm2. Using the RFR model and Leave-one-out cross-validation, 

combined with the optimal sample size of 55 and the sampling population (91 samples), the 

coefficients of determination of the modeling accuracy were 0.852 and 0.8478 (Figure 5a,b), 

which was better than the K-NN (R2 = 0.0464, Figure 5c; R2 = 0.2078, Figure 5d) and PLSR (R2 

= 0.0548, Figure 5e; R2 = 0.1501, Figure 5f) models, and the total AGB was 1.22 × 107 Mg and 

1.24 × 107 Mg based on Landsat8/OLI images, and the average AGB was 66.42 Mg/hm2 and 

67.51 Mg/hm2, respectively, and their spatial distribution is shown in Figure 6a,b. 
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Figure 5. Biomass measured value compared with RFR (a,b), K-NN (c,d), and PLSR (e,f) model 

predicted value. 
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Figure 6. Map of biomass inversion basic data (a) Inverse map of alpine biomass from 55 samples. 

(b) Inverse map of biomass from 91 samples. 

5. Discussion 

5.1. Sample Size Problem for Remote Sensing Estimation of Forest Aboveground Biomass at 

Country Scale 

In this paper, we estimated the optimal samples for RS models, such as the random 

forest regression (RFR), nearest neighbor (K-NN) method, and partial least squares re-

gression (PLSR) by combining Landsat8/OLI imagery and 91 sample plots at a regional 

scale. The optimal results of the RFR, K-NN, and PLSR models were 55, 54, and 56, which 

were solved by the least squares method based on linear transformation to the spherical 

model of variance function. The idea behind these models is that as the value coefficient of 

the model’s RMSE decreases, the number of sample plots, i.e., modeling cost, change quickly 

at the beginning, then slowly and eventually smoothly. When the value coefficient becomes 

smooth, the corresponding numbers of the modeling samples (cost of models) can be re-

garded as optimal samples. The optimal results of the three models were consistent. 

While the available research on the remote sensing estimation of forest AGB was 

based on the traditional empirical sample size, i.e., 30 is a small sample and 50 is a large 

sample [7,9,11,13,14]. In general, the larger the number of samples, the better the model’s 

reliability. There are few reports on the uncertainty of the sample size of the remote sens-

ing estimation model at the regional scale. This is mainly due to the fact that the optimal 

sample size changes with the object, such as Pinus densata, Pinus yunnanensis. On the other 
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hand, it requires not only a stable model and a sufficiently large sample size but also a 

normal distribution of samples and a stable evaluation index of model accuracy variation. 

In this study, the optimal sample size was solved by integrating geostatistical variance 

function and value coefficient in value engineering, which was reconstructed using the 

model accuracy evaluation index RMSE and the model sample cost. The optimizing 

method of the sample size is one of the innovative points of this study. 

5.2. Selection Problem for Remote Sensing Estimation Models of AGB and Feature Variables 

The nonparametric models, such as neural network models (NNM), support vector 

machine regression (SVMR), RFR, K-NN, and parametric models such as linear regression 

analysis, PLSR, are often used to develop AGB estimation at region scale [6–12,21–26]. 

When analyzing sample uncertainty based on remote sensing estimation models, firstly, 

the models of RS should be reliable; secondly, the influence of sample size on model ac-

curacy is related to the estimation methods, some of which are suitable for large samples 

such as K-NN, and some of which can obtain better results with small samples such as 

SVMR. In this study, the nonparametric models RFR, K-NN, and parametric PLSR models 

were selected because the RFR model is better than the others in anti-noise and voiding 

the risk of overestimations by introducing random factors [27]; the K-NN model is suitable 

for large samples because of non-assumptions on the data and non-sensitivity to abnormal 

samples [28], and the PLSR model can effectively eliminate the model parameter covari-

ance problem [31]. 

According to the results of the selected three modes (RFR, K-NN, and PLSR), it seems 

that the optimal sample sizes are almost the same (55, 54, and 56), although the RMSEs for 

them are significantly different (12.25 vs. 28.73 or 28.08). It is implied that the optimization 

results have little relationship with the estimation accuracy of the selected model for 

aboveground biomass. 

To further verify whether the optimal method was correlated with the selected 

model, an experiment using the SVMR model was conducted. The optimal method was 

similar to that of using the RFR model and cross-validation. By combining Landsat8/OLI 

imagery and 91 sample plots at region scale, the optimal number of samples for the SVMR 

model was 54, for which the coefficients of determination of model and estimation accu-

racy were 0.011 and 51.49%, respectively. The optimization result of the SVMR model was 

almost the same as those of the three selected models (RFR, K-NN, and PLSR). It shows 

that the optimal samples are independent of the accuracy of the selected model. The opti-

mal results of the selected models were consistent. 

Zhao’s study [21] has implied that the potential uncertainty of remote sensing esti-

mation models may be caused by optical imagers with different temporal, spatial, radio-

metric, and spectral resolutions. The feature variables values extracted from optical im-

ages were different even at the same time, in the same place, and for the same feature 

object. In this study, 26 independent variables with textural features and vegetation in-

dexes were selected by correlation analysis between AGB and variables feature based on 

Landsat8 OLI. The difference in optimizing samples was not significant by modeling with 

26 independent variables. For other optimal images, such as SPOT5, IKNOS, QuickBird, 

and MODIS, the result should be analyzed in future work. 

5.3. Validity of Estimation Results Based on Optimal Sample Size 

The verification of the accuracy of the aboveground biomass estimation results of 

forests at a regional scale has been a difficult problem in quantitative remote sensing [21–

26,31–36]. The main reason is the difficulty of obtaining the field measurement values at 

the regional level. The existing studies on the validity of estimation results at a regional 

scale on AGB estimation focus mainly on how to improve remote sensing models’ accu-

racy evaluation, such as optimizing model algorithms [6], optimizing model features var-

iables [21,34], and using multi-source remote sensing collaboration [12,33–36]. 
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In Lu’s study [12], aboveground forest biomass was estimated with Landsat and Li-

DAR data. Although the estimation accuracy of the remote sensing model was high, the 

validity of the estimation result depended on the model itself and sample spots. As the 

validity is lacking a sampling control statistical survey in the study area, the credibility of 

the results needs to be further improved. 

In this study, the aboveground biomass of Pinus densata was counted using the data 

measured by the National Forest Resources Planning and Design Survey in 2016 in the study 

area. Wang’s [32] study showed that the total biomass of Pinus densata was 1.3347 × 107 Mg, 

and the average biomass was 72.6705 Mg/hm2. Using Wang’s results as the real reference 

value, the estimated results based on the RFR regression model were 1.22 × 107 Mg and 1.24 

× 107 Mg at the sample sizes of 55 and 91, with absolute precision of 91.41 and 92.90%, re-

spectively. This indicates the reliability of the RFR model based on the optimal sample size. 

5.4. Optimal Solution Problem about Equations (12) and (13) 

Wang’s [32] study shows that Equations (12) and (13) have three cases after calculat-

ing B0, B1, and B2. 

(1) B0 > 0, B1 > 0, B2 < 0, when the three parameters (the nugget variance C0, the partial sill 

C, and the range a) are optimally fitted based on spherical model of variation 

functions, Equations (12) and (13) have optimal solutions. 

(2) B0 < 0, B1 > 0, B2 < 0, as B0 < 0, that is, the parameter C0 < 0, it does not meet the 

requirements of the spherical model. So it is necessary to let B0 = 0, then the Equation 

(12) becomes Y(X) = B1X1 + B0X2, and Equation (13) has the optimal solution. 

(3) B0 > 0, B1 > 0, B2 ≥ 0, if B2 = 0, Equation (13) becomes Y(X) = B0 + B1X. For a linear model, 

not a spherical model, the parameters can be solved according to the estimation 

method of the parameters of the linear regression model. The other is B2 > 0 when the 

original data are adjusted by adding or deleting some unimportant data points from 

the actual variance function points and repeatedly adjusting it many times until B2 < 0. 

6. Conclusions 

In the paper, integrating the theory of semi-variance function in geostatistics and 

value coefficients in value engineering, a new method suggested that a reasonable sample 

size was estimated by remote sensing models of forest biomass. The main conclusions are 

as follows: 

(1) The statistical values (mean, standard deviation, and coefficient of variation) for each 

group of samples based on 200 experiments are not significantly different from the 

overall samples (91 samples) by t-test (p = 0.01), and the sampling results were 

reliable for establishing RS models. 

(2) The reliable analysis of value coefficients based on RFR, K-NN, and PLSR models 

with sample groups shows that the VC decreases with increasing samples of every 

group, and the decreasing trend of VC is consistent. The optimal samples of RFR, K-

NN, and PLSR were 55, 54, and 56 based on the spherical model of variance function, 

respectively, and the optimal results are consistent. 

(3) Among the established models based on the optimal samples, the RFR model with 

the determination coefficient R2 = 0.8485, RMSE = 12.25 Mg/hm2, and the estimation 

accuracy P = 81.1253% was better than K-NN and PLSR. It could be used as a model 

for estimating the aboveground biomass of Pinus densata in study area. Based on the 

optimal 55 samples of the RFR model and overall (91 samples), the total aboveground 

biomass in the study area was 1.22 × 107 Mg and 1.24 × 107 Mg, and the average 

aboveground biomass was 66.42 Mg/hm2 and 67.51 Mg/hm2, respectively, with a 

relative precision of 98.39%, and the estimation results of two groups were consistent. 
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