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Abstract: The enormous amount of data that are generated by hyperspectral remote sensing images
(HSI) combined with the spatial channel’s limited and fragile bandwidth creates serious transmission,
storage, and application challenges. HSI reconstruction based on compressed sensing has become a
frontier area, and its effectiveness depends heavily on the exploitation and sparse representation of
HSI information correlation. In this paper, we propose a low-rank sparse constrained HSI reconstruc-
tion model (LRCoSM) that is based on joint spatial-spectral HSI sparseness. In the spectral dimension,
a spectral domain sparsity measure and the representation of the joint spectral dimensional plane
are proposed for the first time. A Gaussian mixture model (GMM) that is based on unsupervised
adaptive parameter learning of external datasets is used to cluster similar patches of joint spectral
plane features, capturing the correlation of HSI spectral dimensional non-local structure image
patches while performing low-rank decomposition of clustered similar patches to extract feature
information, effectively improving the ability of low-rank approximate sparse representation of spec-
tral dimensional similar patches. In the spatial dimension, local-nonlocal HSI similarity is explored
to refine sparse prior constraints. Spectral and spatial dimension sparse constraints improve HSI
reconstruction quality. Experimental results that are based on various sampling rates on four publicly
available datasets show that the proposed algorithm can obtain high-quality reconstructed PSNR and
FSIM values and effectively maintain the spectral curves for few-band datasets compared with six
currently popular reconstruction algorithms, and the proposed algorithm has strong robustness and
generalization ability at different sampling rates and on other datasets.

Keywords: hyperspectral images reconstruction; compressed sensing; joint spectral dimensional
plane; Gaussian mixture model (GMM); low-rank decomposition; sparse constraints

1. Introduction

Hyperspectral remote sensing images (HSI) provide the possibility to observe features
at a high level of detail due to their “atlas-integrated” and spectrally high-resolution charac-
teristics. However, the enormous amount of data and the limited and fragile bandwidth
of the spatial channel create great challenges for HSI transmission and reconstruction [1].
Limited by signal bandwidth and Nyquist’s sampling theorem [2], early HSI reconstruction
schemes that were based on signal sampling techniques were difficult to assure the quality
of the reconstructed images. With the continuous development of compressive sensing
theory [3,4], people have directly sampled the features of sparse signals and achieved signal
reconstruction that is based on a small amount of uncorrelated observation information
under the constraint of prior sparse property, which has greatly improved the quality of
the reconstructed signals [5].

In recent years, the classical approach to obtaining reconstructed images has been
to extract the sparse feature information from the image by making expert domain prior
knowledge regularization terms and solving an inverse optimization problem to reach an
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optimal reconstruction [6]. Early HSI reconstructed images can use discrete Fourier trans-
form (DFT) filters [7], discrete cosine transform (DCT) filters [8], discrete wavelet transform
(DWT) filters [9], etc., to obtain sparse feature coefficients by changing the dictionary basis
space. Subsequently, Kawakami et al. [10] proposed a classical OMP algorithm for solving
sparse coefficients with greedy ideas, which is widely used in HSI reconstruction tasks.
From the perspective of extracting similar texture structure features, Zhang et al. [11] used
a principal component analysis (PCA) unsupervised dimensionality reduction algorithm to
map HSI high-dimensional streamer feature information into a low-dimensional subspace,
overcoming the curse of dimensionality while capturing super-pixel global and local fea-
tures, and thus achieving a high-quality reconstruction effect. To further explore the sparse
properties of the HSI structure at a deeper level, Xu et al. [12] used the unsupervised clus-
tering K-means method to group the existing spectral inter-band, combined with the OMP
algorithm to batch down the dimension and obtain the sparse coefficients to achieve the
prediction and reconstruction of other bands. On this basis, Azimpour et al. [13] proposed
a clustering method with variational Bayesian maximum posterior probability estimation
to mine the HSI global similarity properties in a statistical Bayesian framework and thus
obtain better reconstruction results. In recent years, Gaussian mixture models have been
widely used in image reconstruction, classification, and anomaly detection because they can
effectively estimate the feature information of a dataset for complex and variable feature
classes starting from Bayesian probability statistics. Qu et al. [14] used the GMM method
to extract the anomalous feature pixels in each band and effectively implemented the HSI
anomaly detection that was based on the GMM weighting method. Subsequently, Ma
et al. [15] used super-pixel segmentation to mine spatial dimensional similarity based on a
Gaussian mixture model as a way to obtain homogeneous regions and combine low-rank
attributes to effectively solve the hyperspectral unmixing problem; however the work
lacked an exploration of the sparsity of the HSI spectral dimensional structure.

Based on the sparsity characteristic of the spatial-spectral high redundancy of HSI in a
specific dictionary basis, [16] lays the foundation for HSI reconstruction with compressive
sensing. In order to achieve better reconstruction results, the sparse properties of HSI have
been studied in different spatial and spectral dimensions, and corresponding HSI recon-
struction methods have been proposed [17-24]. Reconstruction methods that were based
on a combination of sparse representation and low-rank approximation have also received
attention in recent years [25,26]. Xue et al. [27] proposed a spatial-spectral structured sparse
low-rank representation model that learned from the low-rank factor of the affinity matrix
based on the existence of spatial non-local similarity and spectral band correlation in HSI,
and implemented HR-MSI and LR-HSI fusion as a representative to obtain super-resolution
HSI reconstructed images, which is of strong value for HSI sparse reconstruction tasks.
Yi et al. [28] effectively merged HS and MS data information to obtain high-quality HSI-
reconstructed images by considering both spatial and spectral correlations and forming a
regular term constraint on the overcomplete dictionary and low-rank features. This class
of algorithms extracts features using sparse representation and low-rank approximation
methods, then reconstructs the image by fixing the orthogonal base dictionary, resulting
in high-quality reconstruction when the extracted image features match the dictionary
features. However, this consistency of features is difficult to achieve, and for this reason,
reversible projection matrix learning algorithms [29] and K-SVD algorithms [30] have
been proposed to alternate the training of sparse coefficients of dictionaries and image
patches, respectively, for reconstruction purposes. Fotiadou et al. [31], for example, used
sparse dictionary learning methods instead of the traditional fixed observation matrix.
In order to better maintain the 3D structure of HSI, HSI reconstruction methods that are
based on tensor representation have also been better developed. Chen et al. proposed HSI
reconstruction methods for non-local tensor ring decomposition [32] and weighted group
sparse regularized low-rank tensor decomposition (LRTDGS) [33] for HIS reconstruction,
respectively. The former achieves image reconstruction by applying a low-rank constraint
on the subspace, while the latter improves the reconstruction quality by implementing a
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low-rank Tucker decomposition that allows HSI to capture the spatial-spectral correlation
in three dimensions and to approximate the unfolded image by a I, parameter number. Xue
et al. [34] used a I; kernel-based parametrization as a tensor sparse low-rank regularization
term to characterize the spatial-spectral structural correlation properties instead of the
original Tucker decomposition setting a priori rank. The effectiveness of the above methods
depends heavily on the mining and effective representation of the relevance of HSI infor-
mation, the complexity of actual Earth observation scenarios, and the multidimensionality
of HSI data structures, and the high redundancy of their data leaves a space for much
development of current research in this area.

Furthermore, the recent success of deep learning techniques in image vision has led to
their application in the field of HSI reconstruction, where deep neural networks are used to
mine HSI features, constrain the reconstruction process, and further obtain reconstructed
images by optimizing the heuristic network [35-40]. However, the method’s shortcomings,
such as excessive training cost burden, weak generalization, and poor interpretability,
severely limit its usefulness. The current HSI reconstruction scheme that is based on
sparse representation still needs to be studied in depth, and the reconstruction quality of
HSI still needs to be improved. In particular, how to ensure the structural features and
spectral characteristics of the reconstructed HSI while improving the quality of spatial
information during the reconstruction process has not been well addressed. This paper
proposes a reconstructed model of HSI with low-rank sparse representation that is based
on an in-depth study of the sparse properties of joint spatial-spectral dimensional HSL

The main contributions of this paper are listed as follows:

1. By grouping adjacent spectral dimensional planes and stitching them together in a
folded fan fashion to form a joint spectral dimensional plane. The innovative design
of a “joint spectral dimensional plane” structure leads to the conclusion that the joint
spectral dimensional plane of HSI can be used to capture similar patches of HSI
spectral dimensional non-local structure more effectively, laying the foundation for
determining more effective sparsity constraints. This conclusion can be applied not
only to the sparse reconstruction of HSI but also to other applications of HSI based on
sparse representation.

2. A Gaussian mixture model (GMM) that is based on unsupervised adaptive parameter
learning of external datasets is proposed for guiding the clustering of similar patches
of joint spectral dimensional plane features, which not only reduces the setting of
a priori domain hyperparameters but also breaks through the traditional non-local
similar patch search with fixed small size windows and further improves the ability
of low-rank approximate sparse representation of similar patches.

3.  Alow-rank approximate representation of the HSI sparse reconstruction model (LR-
CoSM) with collaborative spatial dimensional local-nonlocal correlation and joint
spectral dimensional plane structure correlation constraints is designed, which solves
the problem of insufficient waveband datasets and well maintains the structural infor-
mation of the HSI while effectively improving the spatial quality of the reconstructed
images.

The remainder of the paper is organized as follows. The theoretical meaning and
principles of compressed sensing that are based on image processing are presented in detail,
and the existence of non-local similarity of HSI is proven in Section 2. The construction of a
joint spectral dimensional plane is proposed, and a flowchart of our proposed algorithm is
given, together with a detailed approach to its implementation in Section 3. The proposed
algorithm is analyzed numerically and discussed in relation to the comparison algorithm
in Section 4. The conclusions of the paper are given in Section 5.

2. Related Works
2.1. Compressed Sensing of Image Patches

Image sparse representation is the process of pre-selecting bases or dictionaries that
can be compressed and sparsely represented to obtain a matrix of sparse coefficients that are
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based on the image patch’s own texture characteristics. Specifically, for an image patch X of
size m x n, the original target image patch can be represented by a linear combination of far
fewer than m x n non-zero coefficients. A common representation is the decomposition of
the two-dimensional image X (m x n) into a linear combination of K linearly independent
unitary orthogonal basis matrices, as shown in Equation (1):

K
X=)Y 6% =10 1)
i=1

where ¥ = (¥, ¥2, ... ¥x) denotes a series of orthogonal basis matrices and 6 = [0, 67, . . . 6] T
denotes the sparsity factor of the image X under the projection of basis ¥. K is often referred
to as the sparsity. The birth of dictionaries has broken the traditional constraint of not
getting good sparse solutions for basis functions, giving rise to sparse decomposition of
high-dimensional complex signals using over-complete dictionaries, where the number of
rows in the K > n dictionary matrix is less than the number of columns. The compressed
sensing sampling differs from the traditional sampling approach by allowing sampling
while compressing, by expanding the image patch X vector of length N by an observation
matrix of size M x N, and thus achieving a non-adaptive linear projection and obtaining
an observation vector Y, which can be written in the matrix form as:

Y = X )
Subsequently, bringing Equation (1) into Equation (2) gives:
Y =0X = dY0 =00 (©)]

where ® denotes the measurement matrix and ¥ is the sparse transformation basis, multi-
plying the measurement matrix and the sparse transformation basis to obtain the sensing
matrix ©@. The process of recovering and reconstructing the original image X is then
expressed as follows:

min||X|[, st ®X =y 4)

Most image reconstruction methods use the minimization /; norm convex relaxation
method to solve the non-convex [y norm optimization problem, which is an NP-hard
problem, by replacing the unstable /[y norm non-convex sparse term with the convex [
norm one to extract image features while removing redundant information, and using
the convex optimized sparse term as an a priori constraint to construct a regularized
reconstruction model and iterate. In turn, the optimal solution of the convergence interval
is obtained and the best reconstructed estimate is obtained as follows:

A !
£ = argmin [}y — ®X|P + A X[, ©
X

where the first factor, called the residual term, is used in the iterative algorithm to measure
the error between the reconstructed image X and the original image X. When the loop
iterations converge to a certain value (||ly — ®X||* < a(a € R)) or the maximum number
of loops is reached, the loop is jumped out to obtain the reconstructed image. A(A > 0)
denotes the penalty parameter, which is used to control the sparsity of the sparse code X.

2.2. Hyperspectral Image Band Non-Local Correlation

The features that are reflected by light emissivity in a single band of HSI have a
regional periodic distribution, so that the gray value of each image pixel in the HSI also
changes with the region, and an image pixel in the same region has a strong correlation
with its neighboring image pixel. The search area is also extended according to the principle
of locality, where a particular pixel at the center of a certain range is surrounded by pixels
of the same size patches with a very high degree of similarity, implying the existence of
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(a)

non-local correlation. Extending the non-local similarity property of the above single image
to the multi-band case, we chose bands 30, 40, 50, 60, 70, and 80 from a total of 102 bands
that were captured by the ROSIS spectrograph at the Pavia Center (intercepted in the
upper left corner and with a size of 256 x 256, see Section 4.1), and selected representative
locations of roofs, open spaces, and roads as the center coordinates of a reference patch of
size 8 x 8, as shown in Figure 1. At the same time, a search window of fixed size 10 x 10 is
used to find image patches that are similar to the reference patch, and their similarity is
measured using the average Euclidean distance Equation (6) between image patches:

\/ 5 (n(xy) — Li(xy))?
x=1y=1

d(Iy, I,) = S (6)

where [, and I, denote the two image patches to be evaluated, both of size m x n, since
the Euclidean distance correlation between pure black and pure white image patches is
the weakest, we use its correlation coefficient 4 as a normalization factor and assign it a
value of 31.875, and d (I, I;) denotes the similarity of the two image patches based on the
normalized mean Euclidean distance. The smaller the value, the more similar.

@ :(19,49)

@ (149,48)

@:(150,208)

Figure 1. Feature point selection for the Pavia Center dataset in a total of 102 bands that were taken
by the ROSIS spectrometer, @ for roof coordinates (19,49); @ for open space coordinates (149,48);
@ for road coordinates (150,208): (a) Band 30; (b) Band 40; (c) Band 50; (d) Band 60; (e) Band 70;
(f) Band 80.

In order to quantify the relationship between the distribution of non-locally similar
patches and the degree of similarity between bands, we calculated the coordinates of the
reference patches at the same location in each band and the upper left corner of the similar
patches as shown in Table 1. There are three reference patches that are listed, (19,49) for
the roof of the school, which is identical in the 30-60 band; (149,48) for the open space,
which is identical in the 40, 60, 70, and 80 bands; and (150,208) for the road, which has some
fluctuation in similarity due to the influence of pedestrians and vehicles on the reflectance
at different times, but the overall location distribution does not vary much.
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Table 1. The most similar HSI non-locally similar patch coordinates of typical landforms such as roofs,
open spaces, and roads at different wavebands are given according to the Euclidean distance formula.

70 (151,208
80 (151,208

(164,215) (155,210) (155,211)
(155,211) (150,209) (151,209)

165,216)
156,211)

Reference Band Number Coordinates of the Top Five Image Patches
5 Coordinates According to Similarity
o
5 30 (1849) (2049) (1948) (1848)  (19,50)
5 40 (18,49) (2049) (1948) (1848)  (19,50)
"§ (19,49) 50 (18,49) (2049) (19.48) (1848)  (19,50)
§ ’ 60 (1849) (2049) (1948) (1848)  (19,50)
Y, 70 (18,49) (2049) (1948) (19,50)  (18,48)
"F; = 80 (18,49) (2049) (19.48) (1950)  (18,48)
'5 '§ 30 (148,48) (148/49) (148,47) (150,50) (147,47)
% 5 40 (148,48)  (150,50) (148,49) (150,49) (148,47)
;5 8 (149,48) 50 (150,50) (148,48) (14849) (150,49) (148/47)
- ! 60 (148,48) (150,50) (148,49) (150,49) (148,47)
S 70 (148,48)  (150,50) (148,49) (150,49) (148,47)
§ 80 (148,/48) (150,50) (148/49) (150,49) (148/47)
2]
& 30 (151,208) (150,209) (151,209) (155,211) (164,215)
= 40 (151,208) (155,211) (150,209) (151,209) (155,210)
E (150,208) 50 (151,208) (155,211) (150,210) (151,209) (154,210)
n § 60 (151,208) (155,211) (154,210) (155,210) (151,209)
) (
) (

Based on the non-local correlation of HSI bands, this paper adopts the “overall non-
local similarity patch” method of our paper [23] in the processing of HSI spatial domain
correlation, in which the first band of each group is called the key band, a reference patch
is identified, similar patches are found on the key band, and then the remaining patches
in each band are stacked together to form the overall non-local similarity patch of the
constructed reconstruction model. The patches in the same position are then stacked
together to form an overall non-local similarity patch, which in turn forms the sparse
regularization constraint for the reconstructed model, as described in Section 3.4.1.

3. Methodology

In this paper, we propose a hyperspectral image reconstruction model (LRCoSM)
with a joint spatial-spectral domain low-rank sparse representation to achieve high-quality
sparse reconstruction of multi-band HSI at different sampling rates. The overall architecture
of the model is shown in Figure 2. The model consists of four processes: first, the original
dataset is combined with compressed sensing theory, and the original dataset is mapped to a
low sampling rate sparse dimension to obtain the image feature representation; second is to
find the local-nonlocal similar image patch feature information in the spatial domain as the
spatial sparse constraint regular term; third is to construct the “joint spectral dimensional
plane” based on the low-rank sparse representation of similar image patches by GMM
to obtain the spectral domain feature information, and then form the spectral sparse
constraint regular term; and fourth, the reconstructed image is obtained by iteratively
solving the optimization problem with constraints and the compressed sensing inverse
transform. In this section, the joint spectral dimensional surface is first defined, based on
which a Gaussian mixture model low-rank clustering algorithm is proposed. Finally, the
reconstructed image is obtained by combining the compressive sensing framework.
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Figure 2. The LRCoSM algorithm is divided into two dimensions. The overall non-local similar
patches are found in the spatial dimension through filters as the first sparse regular term. The global
similar patches are found in the joint spectral dimension using Kmeans++ and GMM clustering
algorithms through low-rank decomposition as the second sparse regular term, and the sparsely
reconstructed image is solved by iterations: (a) Sparse representation of the image; (b) Sparse
reconstruction of the image.

3.1. Joint Spectral Dimensional Structure and Its Correlation

Based on the segmental smoothness of the HSI feature spectral curves, in our previous
paper [24] we proposed the concept of “spectral dimensional plane” in the HSI spectral
domain and demonstrated that the spatial dimensional local correlation of the HSI band
group has similar spectral curves in the same row or column, and there is also some correla-
tion between the different bands in a single spectral curve. This paper extends the previous
research work by deep feature mining in the global range spectral domain and proposes a
“joint spectral dimensional plane” structure to detect and capture the correlation between
long-range spectral curves of complex scenes HSI. We stitch the adjacent spectral curves
in a grouped manner as in Figure 3, for the hyperspectral image menxq(Xl, Xy, ... Xq)
(m denotes the rows of the spatial dimensional plane, n denotes the columns of the spatial
dimensional plane, and g is the number of bands), the spatial dimensional single-band
image is denoted as Xs, (Sp =mxnke{1,2,...,4q}),and then the spectral dimensional
plane is denoted as x5, ,(Sy = m x q,j € {1,2,...,n}). The spectral dimensional plane
xs, ,, where the first column of the spatial dimensional plane is located, is taken as the first
set of reference dimensional planes, and N consecutive spectral dimensional planes are
selected among them to form the first experimental dataset. Subsequently, we fully consider
that since features are locally correlated in the spatial dimension, similarly neighboring
spectral dimensional planes from the surface to the lower ground are also correlated to
some extent, and we then perform a I' operation on the spectral dimensional planes of
j=2,4,6,...,N, with a mirror inversion along the m-axis, to achieve an effective extension
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of the structural correlation. In the second group, xs, ., is used as the second reference
dimensional plane, and N consecutive spectral dimensions are also selected to form the
second experimental dataset, and so on, so that a total of » = n/ N experimental datasets
can be formed. Usually, the value of N is a factor of n and is denoted by the integer divisor
“1”. If it cannot be integer divisible, the spectral dimensions of similar bands can be used
to piece together to obtain an integer r joint spectral dimensional dataset. At the same time,
to satisfy n = g X N as much as possible, the multiplication of the number of bands g and
the selected N spectral dimensional planes is the number of original HSI columns n. The
stitching Equation (7) is also given as:

Yy j=246 N
{6, } =9 %%, =135 N-1 )
r=Nln Un=gxN

Sn Sn+l Sn+2 Sn+3

* =25n

12345+

Spatial column

Space dimension

Spatial row

Bne] 25n42 25n+3 350 3Smel 3Sme2 35n+3

soun] 20eds Jo Joquiny

12345 oo s o oesooese n & ©

Number of space columns

Figure 3. Diagram of joint spectral dimensional planes grouping expansion stitching.

In order to construct an integer number of joint spectral planes and verify the existence
of non-local correlations in the joint spectral planes at a low number of bands while
recovering high quality HSI, we selected the joint spectral unfolding stitching example
of Pavia Center (85-92 band images, 256 x 256 x 8) at 8 bands, where we let N = 32,
thus constructing eight sets of joint spectral dimensional datasets as shown in Figure 4.
Subsequently, the non-local extraction of structurally similar patches operation that was
introduced in Equation (7) is performed on each of these eight experimental datasets.

The blue part of the image above is the search area size 15 x 15. The red image patch is
the reference patch and the green image patch is the similar patch, both of size 10 x 10. We
selected the top five most similar patches in the search area and made the edge length of the
image patch larger than the width of the single-band spectral plane. To further verify our
conjecture, we extended the search area to the global range. Figure 5 gives an example of
patch matching for some similar patches in the global range of the joint spectral dimension.
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Figure 4. The non-local correlation of the joint spectral dimensional plane of groups (a-h).
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Figure 5. Joint spectral dimensional plane global similarity patch matching point cloud map:
(a) Coordinate point is (19,45); (b) coordinate point is (23,139); (c) coordinate point is (119,97);
(d) coordinate point is (193,195); (e) coordinate point is (139,198); (f) coordinate point is (223,66).

We select the reference coordinates of the upper-left corner of the Figure 5a—f joint
spectral plane patches as the center point and use the Euclidean distance discriminant
formula to draw a rainbow plot of similarity. The closer the blue part is to the reference
coordinate point, the more similar it is. The similarity patches in the single joint spectral
plane are found to be discrete and irregularly distributed across rows and columns, which
confirms the existence of non-local correlation in the joint spectral plane.
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3.2. GMM Guides Image Patches Clustering

This paper uses a generative GMM to perform sparse a priori mining of joint spectral
dimensional structural correlations as a Bayesian posterior problem. For this purpose,
the overlapping patches of a specific size on the joint spectral dimensional plane {xgl1 ]_}
and sliding searched for at a certain step size are taken as independent initial samples
xi ={1,2,3,...,j}. Assuming that all patches satisfy a Gaussian distribution, the probabil-
ity density function value (PDF) of each sample is given:

ol =) = ——— exp{ 3 (1= "= 1w - )} ®
(2m) %z

2

where y and X denote the mean and symmetric positive definite covariance matrix of a
single Gaussian distribution, respectively, and D is the dimension of the space in which the
sample is located. Since the image patch is two-dimensional, D = 2 is chosen. Due to the
large amount of texture information on the joint spectral dimension, similar patches can
be clustered into K clusters, which means that a Gaussian distribution cannot adequately
represent the probability values of the categories to which the patches belong, and thus it is
considered as a linear superposition of K Gaussian distribution functions, and a Gaussian
mixture model (GMM) is proposed as follows:

K
P(xi) = Y me&(xilpe, k) 9
=1

where 1, and X denote the parameters of the k-th Gaussian mixture component, respec-
tively, and 7 > 0 denotes the value of the weight that is occupied by each Gaussian
distribution whose weight value satisfies £X ;71 = 1. P(x;) is called the joint probability
density function, implying the probability of each sample image patch to the coordinates of
each cluster center.

Further, in order to clarify the specific Gaussian distribution from which the sample
image patches come and to which cluster they belong, we introduce the discrete random
hidden variable probability cluster labels Z = (1,2,...,k). Since the image patches are
divided into K clusters, each image patch corresponds to a total of k hidden variable labels,
and subsequently solves for the posterior probability P(Z = k|x; ) that the sample image
patch x; belongs to the cluster under the label Z with the largest probability density function
value. From Bayes’ theorem and Equation (9) we obtain:

l L P (ilwi %))

where P(Z = k) denotes the prior probability, which is equivalent to the cluster k Gaussian
distribution weight value 71y; P(x;|Z = k) is the likelihood conditional probability of the
sample image patch x; relative to the hidden variable label, representing the Gaussian
distribution to which the current conditional sample belongs; and P(x;) is the normalized
evidence factor, which is the sum of the joint probability densities of all the clusters K.

Since the method of maximum likelihood estimation (MLE) does not yield an analytic
solution in high-dimensional space, the solution of Equation (10) can be obtained by finding
the expectation for the dependent variables P(Z = k), uy, Xk, and 7y (see Equation (11))
and maximizing the log likelihood of the sample x; until convergence:

j K
L(x;) = i1n<2 ﬂkP(xiWk,Zk)) (11)
i

k=1
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The parameters are further updated using the expectation maximization iterative
algorithm (EM). The weights of each Gaussian distribution are updated according to
Equation (12):

J
Y p'(Z=k|x)
mil== (12)
J

where the weights of the initialized individual Gaussian distributions are kept equal and
all are 1/K, and are updated and assigned to n,i“ by averaging the posterior of the sample
components. Secondly, the sample mean y; is initialized, unlike the conventional random
initialization of y;. We use the unsupervised hard clustering Kmeans++ algorithm [41] for
adaptive selection of sample clustering centers, using Euclidean distance to maximize the
distance between cluster and cluster centers while minimizing the distance from sample
x; to center py within the cluster (see Equation (13)). Figure 6 presents the KSC 30th
band pseudo-color image (see Section 4.1 later) and shows a comparison between Kmeans
clustering, Kmeans++ clustering, and clustering by Kmeans++ and GMM guidance. It
can be seen that when K < 3, (a) and (b) algorithms have low clustering accuracy; when
K > 3, (a) and (b) algorithms have clustering confusion. The effect of using Kmeans++ for
parameter yj preprocessing operation to guide GMM clustering is improved significantly,
which effectively improves the recognition ability of image edge texture information and
avoids clustering confusion.

D(x;) = argmin||x; — ull3,i =1,2,--- ,j (13)

Groundtruth  Method

The number of clusters K
K=4

(b)

Figure 6. Comparison of clustering effects of different algorithms under K-clusters. The black boxes
represent the comparison areas: (a) Kmeans, (b) Kmeans++, (¢) Kmeans++, and GMM.

Finally, the clustering center point pj that was obtained from the preprocessing is
brought into the EM iterative algorithm to solve Equation (14). The analytical solution
Equation (15) is further obtained by taking the partial derivative of X; in the maximum
log-likelihood:

P (Z = k|x;)x;
(14)

M =

i
iy
I~ [N gt

1Pt(ZZklxi)

-
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j
Y (x; — i) (xi — ) p'(Z = k|xy)
ziHt = = (15)

j
¥ p!(Z = Kx)

In this way, the parameters yy, X, and 7y are continuously modified in the EM
algorithm until the maximum number of iterations is reached, or until the maximum log-
likelihood function L(x;) reaches a state of convergence, and finally all samples are divided
into the number of clusters K.

3.3. Low-Rank Sparse Representation of Clustered Image Patches

Based on the previous clustering of similar patches in the joint spectral dimensional
plane, a low-rank sparse approximation was used to reduce the dimensionality of the data
to obtain the main features of the image. Assuming that after GMM model clustering,
in every k cluster, similar patches are collated in a vectorized pull column expansion as
shown in Figure 7. Each data is a column vector and subsequently collapsed into a matrix
Nx; = {Njx;, Nox;, ..., Nix;}. On this basis, the collocation matrix Nx; to be processed is
decomposed into a low-rank matrix Qy and a sparse redundancy matrix Vi by matrix SVD:

Nixi = Qe + Vi (16)

-

R ——

/
DR —— v
€ —m—— e ——— = B

-
e =

NOEPD) +NEPD

Figure 7. Non-locally similar patches of spatially and spectrally dimensional planes are pulled into
columns and stitched together.

According to Equation (10), we extract all the clustered similar image patches in the
set of k clusters with maximized probability density function values and converts the Nj
image patches x; Bayesian maximum a posteriori probability clustering problem into the
following constrained solution problem on a low-rank sparse matrix minimizing energy
function E(Q):

K
E(Q) = argmin ) [|Nixi — Qullz + 7l Qxll. (17)
i k=1

where T denotes the selected threshold percentage and is an artificially settable hyperpa-
rameter that controls the sparsity of the matrix Oy eigenvectors. To obtain the low-rank
matrix Qy, an eigenvalue decomposition of the covariance matrix is performed on the
clustered sample data Nx; to solve the SVD, resulting in U denoting the left singular
matrix with each row denoting the eigenvector {uy}, X = diag(ay, ay, . .. «;) the diagonal
matrix, which in general denotes the eigenvalues of the singular vectors and is ordered
from highest to lowest energy, and VT the right singular matrix with each column denoting

the eigenvector {vy}, as in Equation (18):

1 1 1
C = — (Nex)(Nexi)' = —UsvIveu™ = —uz?u’ (18)
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where m denotes the number of similar patches in each cluster. The eigenvectors of the
covariance matrix C are the same as the eigenvectors of the left singular matrix U. Thus,
it is proven by Equation (18) that the eigenvalues of the covariance matrix can be used to
low-rank approximate the similar patch sample matrix. The higher the structural relevance
within an image patch, the more energy is concentrated in the first few features. By setting
a threshold to discard the less energetic eigenvalues in the diagonal matrix X, as well as
discarding the row eigenvectors {uy} and column eigenvectors {vy} corresponding to the
eigenvalues, combining Equations (11) and (17) enables the use of GMM on each joint
spectral dimensional plane to learn clustered similar image patches while guiding the
corresponding cluster similar patches into the low-rank subspace optimization, which in
turn removes redundant information. Thus the low-rank approximate sparse representation
model of the joint spectral dimensional plane is transformed into an optimization problem
with GMM guided clustering and low-rank constraints on the dual regular term constraints:

J K
=argminAl| Y = x; |3 = Lojy, v, (Zln<2 ﬂkP(kairZ\#k'Zk)>> + Z(H Nexi — Qe |1+ 11 Q« \L) (19)
i=1

Y A
EZAD) %z Q) k=1 k=

where A is a positive parameter, chosen to be 0.18 in the experiments of this paper. Accord-
ing to the log-likelihood formula, the second term of the equation has a negative sign. The
exact calculation procedure of Equation (19) can be found in the literature [42].

3.4. Model Expression and Numerical Computation
3.4.1. Model Representation

The hyperspectral image is divided into S¢ band groups based on spectral correlation.
(2)

mxnxq

For band group {X (z € {1,2,...,5;}), where g denotes the number of bands in

each band group, and the “joint spectral dimension” corresponding to band group X,(rf )an q

(z)
can be obtained according to Equation (7), denoted as {xg” ]_} , where S, ; denotes the

number of consecutive selected spectral dimensions, a total of S, sets of experiments are
required.

1.  Spatial domain regularity constraints

The orthogonal transform of Tzp is performed after stacking all the waveband groups
of overall non-local 3D similar patches E3P on the spatial dimension as described in
Section 2.2, followed by a 2D wavelet transform for each 2D image patch in the spatial
dimension, and a 1DDCT transform between similar patches, as in Figure 7 color section,
assuming that the two dimensional similar patches are of the same size, and calculating
the sparsity coefficients of the image patches passing through the transform domain. The
sparse coefficients that are obtained from the transform domain are used to express the
sparse prior of the overall non-local correlated patches of the multi-band group [24]:

(m—i)xg—]')/Sk(H Tip (EiD(Z)) ||0)

o v=1
HO_ (m—i)x (n—j)xixjxq

fl (Xgrflnxq)éH‘YNLoc,Spa,Bloc (X151Z>)<n><q) (20)
where S; denotes the number of closest patches to the reference patch that was selected
in the spatial dimension according to the Euclidean distance, i and j denote the size of
the reference patch, respectively, (i = j = 8 was chosen for the experiments), and the

denominator (m — i) X (n — j) x i X j X q is the normalization factor. We use f; (X,(; )anq)
as the spatial domain regularization term in the proposed algorithm. A detailed description
and solution of spatially non-local correlation sparsity for HSI band groups can be found in

our preface research literature [23].
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2. Spectral domain regularity constraints

From Figure 4, it can be seen that the texture features on the joint spectral dimension
are more obvious and the global similar patch distribution has a certain regularity. Assum-
ing that the parameters of each Gaussian distribution are learned adaptively by the EM

algorithm, the image patches on the joint spectral dimension {xs }(Z) are divided into
K clusters by the Kmeans++ and GMM algorithms, and then the elgenvalues are solved

using SVD low-rank:
p (2) ’ (z)
fZ({xSnj} )A Tjoi_spaBloc({x,(nlanxsnn} )

where the denominator p is the normalization factor. We use ngz)a?l(z) as the stitched
image after low-rank clustering of each joint spectral dimensional plane in multiple sets

K

A

i
2 — klf 1)

of experiments, and we use fo (x5 ,)(Z) as the spectral domain regularization term for the
nj

reconstruction algorithm.
3. The final form of the model

Based on the above two dimensions of the regular constraint Equations (20) and (21), a
representation of the proposed joint space-spectral domain low-rank sparse representation
of the HSI reconstruction model (LRCoSM) is given:

LRCOSM (X, g ) = CFF fi (Xiikny ) + CE 2 ()

(m—i)xg—j)/skw 3D(E3D(z )H )

fl (Xr(;zqu)éHTNLoc_SPﬂ_BIOC (Xr(rfzqu) HO = ( = )

/2 <{ sui } (Z)>A ¥joi_spa_Bloc ({xf;)x A }(2))

where Ciz) and Céz) are non-negative weighting coefficients to balance the contribution
of the spatial domain regular term and the spectral domain regular term, which satisfies

ng) + Céz) = 1. It is chosen as (Cg), Cél)) = (0.50,0.50) in the experiments of this paper,
and for z > 2, the weighting coefficients ng) and Céz) for the current band group can be
determined according to Equation (23):

n—])xzx]xq (22)

(Z) )

X
K
=

p

2

C(Z) o ( m><n><q)

A(a) +A({57})

{x
o) _ ({xs” ] })
T A(Xak) 2550

3.4.2. Numerical Calculation and Algorithm Implementation of the Model

(23)

The spatially dimensionally filtered non-locally similar patches E3P and the joint
spectral dimensionally low-rank clustered patches N #;, in turn, are expanded from left to
right and top to bottom according to the index as the sparse constrained image X(?), where
the colored part of Figure 7 shows the special case of two dimensionally similar patches of

the same size, size (i(*) x ]( )) x (N@ED 4 N]E'Z)xfz)), which is then transformed into the
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optimization problem of solving the objective function of the linear regression model as

follows: s
e(a?h (u?) +cf () ))

st.X(@) =

min (%HA —dX®
£6),ul?)

(24)

where @ is the observation matrix, A is the sampled data, each column of which corre-
sponds to the measurement of the corresponding band image, and the reconstructed image
is obtained by an inverse transformation of the sparsely constrained image compression

(z)

sensing. ¢ is a non-negative hyperparameter, and the intermediate variable U, is intro-

duced such that Ufz) = x¥ while the corresponding {xgn j}(Z) will be denoted as

mxnxgq’

Uz(z), and X(®) will be denoted as U(?). Furthermore, the above Equation (24) is transformed
by the SBI algorithm into the following three iterative subproblems:

)
2
(PR e au)) @)

B+ — B _ <(X(Z))(t+1) B <H(Z))(r+1>>

where ¢ and { are positive parameters, which are chosen to be 0.025 and 0.05 in the
experiments of this paper. The specific calculation procedure of Equation (25) can be found
in the literature [43].

Based on the previous discussion, the proposed HSI reconstruction steps are shown in
Algorithm 1.

(X(z)) (e = arg min <%HA —®X®

2
" éHX(Z) —_a®_p
K@) 2 ?

(;z(z))(‘*” O 10)

Algorithm 1: Joint space-spectral domain low-rank sparse representation of the HSI
reconstruction model (LRCoSM)

Input: HSI image X of original size m x n X ¢, sampling rate r, number of distribution clusters K.
Output: HSI reconstructed image X of size m x 1 x g after removal of redundant information.

Initialization: Using the mean u? obtained in the Kmeans++ algorithm, a random initialization of
the variance estimate £9, and a priori probability weights 7, = 1/k.
Step 1: fori = 1 : iters do

forj=1:qdo

The regular term f1 (Xmxnx q) is calculated on the spatial dimensional plane by means of
Equation (20).

end
Step2: forj=1:gdo

fore=1:5,do

The joint spectral dimensional plane {xgp,j} is obtained via Equation (7).
repeat
Step 3: E-Step.

Update p(x;) to find the current parameter likelihood function probability value by
Equations (8), (9), and (11).
Step 4: M-Step.

Update 7T]t(+1 through Equation (12), update ufH through Equation (14), and update Zf“
through Equation (15).
until the parameter size does not change or the maximum number of iterations is reached.
Select sample points to cluster into k classes, by Equation (10).

end
end
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Step 5: Low-rank sparse solution is used for clustering similar patches via Equation (17) and
Equation (19).

forj=1:qdo

fore=1:5,do

Put back the joint spectral dimensional plane {xgu }
end

end

Step 6: Using Equations (20) and (21) as regular terms, the reconstruction result is obtained
through Equation (22).
end

4. Experimental Results
4.1. Datasets

We selected four types of hyperspectral images, shown in Figure 8 as test images,
including hyperspectral images from Kennedy Space Center (KSC), Florida [44]; Pavia
Center (PA), Italy [45]; The Cooke City MT (CoC), USA [46]; and the Okavango Delta,
Botswana (Bot), South Africa [47].

(1) KSC dataset: It is taken by the NASA AVIRIS sensor. Its spatial area size contains
512 x 614 pixels and contains obvious feature information such as buildings, bridges,
coastal zones, etc. The spectral range is 400-2500 nm. After removing low signal-to-
noise ratio and absorbing noise bands, there are 176 bands for the experiment.

(2) Pavia Center dataset: taken through the ROSIS spectrometer, the original image spatial
size is 1096 x 715 pixels. It has a spectral range of 430-840 nm and contains mainly
ground-truth samples of buildings, bare soil, meadows, and asphalt in 102 bands.

(3) The Cooke City dataset: captured by the HyMap airborne hyperspectral imaging
sensor, containing 280 x 800 pixels in space, capturing mainly mountains, houses, and
vehicles, with a spectral range of 450-2480 nm and 126 effective bands.

(4) Botswana dataset: captured by the Hyperion spectrometer, the original remote sensing
image size is 1476 x 256 pixels, recording a variety of vegetation and water, etc. The
spectral range is 400-2500 nm with a total of 145 spectral bands.

Figure 8. 3D visualization of four types of hyperspectral remote sensing images: (a) KSC dataset;
(b) Pavia Center dataset; (c) The Cooke City dataset; (d) Botswana dataset.

4.2. Parameters Settings

The comparison experiments were conducted on a computer with Intel(R) Core(TM)
CPU i7-8750 H at 2.21 GHz and 16 G RAM, using a 64-bit Windows 10 operating system
and MATLAB R2019b experimental simulation software, while the comparison algorithm
ISTA-Net was tested using Python 3.7 and the TensorFlow 2.1 runtime platform framework
was tested with the GPU NVIDIA GTX1060 for training.

(1) Description of image patch size and band selection: In this experiment, in order to

construct a joint spectral dimensional dataset {xgﬂ j_} with equal m = n rows and

columns, all four types of hyperspectral images cropped the pixel region in the upper
left corner 256 x 256 as the experimental dataset and selected 8 bands for the exper-
iment, with KSC selecting 30-37 bands, Pavia Center selecting 85-92 bands, Cooke
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City choosing the 50-57 band, and Botswana choosing the 115-122 band, which also
implies S, = 32 in Section 3.1. In order to save computational space, hyperspectral
images are divided into multiple patches to process the input information, and the
spatial domain is specified to search for image patches with a sliding window of
size 8 x 8. A total of 62,001 samples are searched in a single band; to increase the
number of clustered sample datasets and to improve accuracy, the joint spectral do-
main image patch size is set to 7 x 7, with a total of 256,036 samples in a single joint
spectral dimension.

(2) Key experimental parameters: Before sampling, we randomly initialize the Gaussian
measurement matrix &, setting the maximum PDF corresponding to each sample
to the category K to which the current sample belongs, being set to K = 10. When
performing the low-rank SVD decomposition, the threshold is chosen to be the eigen-
value Dp(X) = diag({a —0.1a}) of 90% of the main diagonal, and the algorithm
SVT [48] is called to solve it while the number of iterations is iter = 100.

4.3. Numerical Statistics and Visualization

In order to compare and evaluate the compressed reconstructed images, three evalu-
ation metrics are proposed in this section, namely peak signal to noise ratio (PSNR) [49],
feature similarity index measure (FSIM) [50], and spectral angle mapping [51], which are
given by Equations (26), (27), and (28). We also recorded the default unit of running time
for each algorithm in seconds(s) and the letter h for hour.

255 x 255
N

PSNR = 101g ——
Y L [x(i,f) — 2, )

(26)

The denominator part of the above Equation (26) represents the normalization op-
eration of the difference between the original image and the reconstructed image, also
known as the mean squared error of the two. In general, the higher the PSNR value, the
closer the reconstructed image is to the original image and the better the reconstruction is.
Structural feature similarity (FSIM), a quality evaluation that is based on feature similarity,
is an authoritative measure of reconstruction effectiveness by calculating the local similarity
between the original image and the reconstructed image and expressing it in numerical
form. The defining Equation (27) is as follows:

£ Sux(0) PCulx(i )
ESIM = == 5 ) 7

xeQ)

where () represents the range of pixel point values for the whole image, x(i, j) represents
the coordinates of the pixel points to be measured, PC,, represents the multiple phase
consistency feature extraction, S; represents the power exponent of the coupling of gradient
feature extraction (GM) and phase consistency extraction, and FSIM takes values in the
range of (0,1). The closer the value is to 1, the higher the quality of the reconstructed image.

T .. .
1 n m E I(l’]’ 0()/1(1,],0()
SAM = —Z Z cos ™! o=l (28)

mn = = q q
j=1li=1 \/Z I(i,j,Dé)z\/ Z I’(i,j,zx)z
a=1 a=1

where I(i, j, ) represents a pixel in the & band of the hyperspectral remote sensing image
Xmxnxq, and I'(i,j, o) represents a pixel in the same position after reconstruction. The
spectral angle takes a range of SAM € [0,90°]. When the value of the spectral angle
is smaller, it means that the difference between the two spectral curves is smaller, thus




Remote Sens. 2022, 14, 4184

18 of 32

indicating that the reconstructed image is closer to the original image and the reconstruction
quality is higher.

The proposed algorithm was compared with six classical compressed sensing recon-
struction algorithms, including the improved SLF_GPSR [52], RCoS [43], HICoSM [22],
TR [53], ISTA_Net [35], and TV [54]. Figures 9-16 show visualizations and numerical line
charts for various datasets at different sampling. In Figure 9, Figure 11, Figure 13, and
Figure 15, we show one of the reconstructed images for the four datasets when the sampling
rate is 0.2, 0.3, and 0.4. The last column of each set is the ground-truth (GT) for that band,
and the residual image of the reconstructed image and the original image are also given and
plotted with a rainbow plot, where closer to blue means less reconstruction error and closer
to red means the reconstruction error is larger. In Figures 10, 12, 14 and 16, we present the
line statistics of PSNR values of the multi-band comparison algorithms for the four datasets
at different sampling rates.

In terms of the objective PSNR metric values of the reconstructed band images, the
algorithms in this paper improve by approximately 10.59 dB, 4.57 dB, 4.76 dB, 16.35 dB,
6.51 dB, and 6.26 dB on average over the SLF_GPSR, RCoS, HiCoSM, TR, ISTA_Net, and TV
algorithms at a 0.2 sampling rate. The average improvement over the comparison algorithm
at 0.3 sampling rate is approximately 10.42 dB, 5.37 dB, 5.38 dB, 15.07 dB, 5.44 dB, and
6.23 dB, with the PSNR values for each band shown in Table 2. The average improvement
over the comparison algorithms is approximately 9.20 dB, 5.50 dB, 5.48 dB, 9.89 dB, 4.29
dB, and 6.46 dB at a 0.4 sampling rate. Table 3 shows the numerical statistics of FSIM for
KSC at different sampling rates. The results are all greater than the other algorithms, and
the spectral angle (SAM) results are still approaching smaller values, with the LRCoSM
algorithm reconstructing the best results.
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Figure 9. Comparison of the different algorithms for reconstructing images of the KSC when the
sampling rate is 0.3: (a) SLF_GPSR; (b) RCoS; (¢) HICoSM; (d) TR; (e) ISTA_Net; (f) TV; (g) LRCoSM;
(h) GT.
Table 2. PSNR (dB) values for the band 30-37 KSC dataset at 0.3 sampling rate.
dB 30 31 32 33 34 35 36 37
SLF_GPSR 22.76 27.90 28.29 29.16 29.81 30.07 30.14 28.13
RCoS 32.83 32.81 33.06 33.54 33.86 33.88 33.55 33.13
HICoSM 32.83 32.79 33.1 33.62 33.92 33.77 33.46 33.09
TR 22.73 22.96 23.07 23.62 24.16 24.14 24.34 24.00
ISTA_Net 32.75 32.72 33.05 33.50 33.84 33.83 33.47 3293
vV 32.57 32.49 32.6 32.74 32.92 32.58 32.17 31.70

LRCoSM 36.62 38.22 39.47 40.74 41.18 40.09 37.94 35.31
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Figure 10. Line graph of PSNR (dB) values for KSC dataset that was reconstructed by different
algorithms at other sampling rates: (a) rate = 0.2; (b) rate = 0.3; (c) rate = 0.4.

Table 3. The average FSIM and SAM as well as the algorithmic time statistics of the KSC dataset after
seven algorithms with different sampling rates.

Algorithms
SLF_GPSR RCoS HiCoSM TR ISTA-Net TV LRCoSM
FSIM 0.77 0.88 0.89 0.78 0.78 0.84 0.94
0.2 SAM 14.8030 3.1140 3.4572 18.6800 5.0357 5.7238 3.5184
] TIME 6.53s 108.47 s 109.00 s 548.95s 13.6h 197.34 s 4.04h
5
‘fb FSIM 0.83 0.91 0.92 0.79 0.90 0.88 0.97
k= 0.3 SAM 12.1261 2.6975 2.9500 18.0189 3.1685 3.7016 3.0597
% TIME 6.22s 109.38 s 121.39 s 551.67 s 13.5h 295.37 s 3.64h
A FSIM 0.89 0.94 0.94 0.88 0.94 0.91 0.98
0.4 SAM 7.7499 2.3868 2.6118 10.8569 2.4544 3.2386 2.8145
TIME 6.31s 111.80 s 113.76 s 585.44 s 13.0h 458.07 s 3.86 h
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Figure 11. Comparison of different algorithms for reconstructing images of the PA when the sampling
rate is 0.4: (a) SLF_GPSR; (b) RCoS; (c) HICoSM,; (d) TR; (e) ISTA_Net; (f) TV; (g) LRCoSM,; (h) GT.

With the PA dataset, the algorithms in this paper improved by approximately 16.57 dB,
8.77 dB, 8.90 dB, 14.71 dB, 12.00 dB, and 11.91 dB on average over the SLF_GPSR, RCoS,
HiCoSM, TR, ISTA_Net, and TV algorithms at a sampling rate of 0.2. At a 0.3 sampling rate,
the average improvement over the above algorithm is about 19.05 dB, 10.75 dB, 10.95 dB,
14.31 dB, 10.31 dB, and 13.77 dB; at a 0.4 sampling rate, the average improvement over the
comparison algorithm is about 19.07 dB, 12.56 dB, 12.89 dB, 8.71 dB, 9.55 dB, and 15.38 dB.
The specific PSNR values for each band are shown in Table 4. Table 5 shows the numerical
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statistics of the Pavia Center’s FSIM at different sampling rates. The results are all greater
than the other algorithms, the SAM metric tends to be at a minimum, and the LRCoSM

algorithm reconstructs the best results.

Table 4. PSNR (dB) values for the band 85-92 PA dataset at a 0.4 sampling rate.

dB 85 86 87 88 89 90 91 92
SLF_GPSR 22.59 24.30 24.39 24.35 24.27 24.25 24.27 24.28
RCoS 30.66 30.60 30.60 30.60 30.53 30.52 30.80 30.50
HICoSM 30.66 30.64 30.25 30.20 29.99 30.07 30.32 30.01
TR 34.26 34.31 34.50 34.49 34.66 34.63 34.08 34.65
ISTA_Net 33.74 33.67 33.68 33.63 33.55 33.55 33.56 33.51
TV 27.82 27.83 27.86 27.83 27.74 27.72 27.71 27.65
LRCoSM 37.76 43.01 45.43 46.43 46.19 45.34 43.06 38.09
(a) (b) (c)
Figure 12. Line graph of PSNR (dB) values for the PA dataset that was reconstructed by different
algorithms at other sampling rates: (a) rate = 0.2; (b) rate = 0.3; (c) rate = 0.4.
Table 5. The average FSIM and SAM as well as the algorithmic time statistics of the PA dataset after
seven algorithms with different sampling rates.
Algorithms
SLF_GPSR RCoS HiCoSM TR ISTA-Net TV LRCoSM
FSIM 0.70 0.88 0.88 0.82 0.67 0.79 0.98
0.2 SAM 14.9715 2.1600 2.9165 10.9885 2.9703 2.0679 3.7412
% TIME 4.72s 108.70 s 109.68 s 558.45 s 13.6 h 198.82 s 6.30 h
fo FSIM 0.75 0.92 0.91 0.88 0.90 0.84 0.99
é 0.3 SAM 12.0685 2.0605 2.8681 10.2932 2.4701 2.0046 3.4349
E* TIME 459 s 11243 s 110.03 s 550.33 s 135h 297.57 s 6.12h
& FSIM 0.82 0.94 0.93 0.97 0.96 0.88 0.99
0.4 SAM 4.7885 2.0608 2.9389 5.5989 2.1384 3.9672 3.0741
TIME 4.66 s 11247 s 11492 s 538.95 s 13.0h 516.50 s 5.95h
o
Lo
e}
=1
<
o)

Figure 13. Cont.
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Figure 13. Comparison of the different algorithms for reconstructing images of the CoC when the
sampling rate is 0.2: (a) SLF_GPSR; (b) RCoS; (c) HICoSM; (d) TR; (e) ISTA_Net; (f) TV; (g) LRCoSM;
(h) GT.

Under The Cooke City dataset, the algorithm in this paper improves approximately
20.70dB, 9.63 dB, 9.56 dB, 11.02 dB, 14.39 dB, and 16.31 dB on average over SLF_GPSR, RCoS,
HiCoSM, TR, ISTA_Net, and TV algorithms at a 0.2 sampling rate, and the PSNR values
of each band are shown in Table 6. At a 0.3 sampling rate, the average improvement over
the above algorithm is approximately 21.45 dB, 10.80 dB, 10.56 dB, 7.28 dB, 11.19 dB, and
15.87 dB; at a 0.4 sampling rate, the average improvement over the comparison algorithm
is approximately 18.98 dB, 11.70 dB, 11.65 dB, 6.43 dB, 8.79 dB, and 17.18 dB. Table 7 shows
the numerical statistics of FSIM for CoC at different sampling rates. The results are greater
than the other algorithms, the SAM metrics show better retention of the spectral angle, and
the LRCoSM algorithm reconstructs the best.

Table 6. PSNR (dB) values for the band 50-57 CoC dataset at a 0.2 sampling rate.

dB

50

51 52 53 54 55 56 57

SLF_GPSR
RCoS
HICoSM
TR
ISTA_Net
TV
LRCoSM

10.68
30.26
30.26
28.86
25.83
23.92
37.27

19.09 20.63 20.64 20.66 20.65 20.64 20.65
30.35 30.31 30.33 30.32 30.27 30.21 30.19
30.37 30.53 30.59 30.33 30.20 30.14 30.37
28.83 28.85 28.94 28.83 28.95 28.89 29.01
25.92 25.89 25.90 25.89 25.83 25.78 25.77
23.98 23.97 23.97 23.95 23.91 23.88 23.83
40.28 41.38 41.83 42.00 41.40 40.07 37.72

(a) (b) (c)

Figure 14. Line graph of PSNR (dB) values for the CoC that was dataset reconstructed by different
algorithms at other sampling rates: (a) rate = 0.2; (b) rate = 0.3; (c) rate = 0.4.
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Table 7. The average FSIM and SAM as well as the algorithmic time statistics of the CoC dataset after
seven algorithms with different sampling rates.

Algorithms
SLF_GPSR RCoS HiCoSM TR ISTA-Net TV LRCoSM
FSIM 0.76 0.92 0.93 0.93 0.74 0.83 0.99
0.2 SAM 12.4156 0.4091 0.9412 3.2539 0.6093 0.5323 0.9757
2 TIME 513s 108.39 s 109.90 s 558.08 s 13.6h 197.38 s 3.35h
‘fn FSIM 0.81 0.95 0.95 0.98 0.93 0.87 0.99
£ 0.3 SAM 5.7284 0.3759 0.7528 1.9829 0.4640 0.3893 0.8702
E‘ TIME 477 s 11042 s 121.20's 551.69 s 13.5h 421.12s 3.37h
& FSIM 0.88 0.97 0.97 0.99 0.98 0.89 0.99
0.4 SAM 1.1161 0.3415 0.3416 1.4440 0.3649 0.3637 0.7722
TIME 455s 92.28 s 116.37 s 569.76 s 13.0h 955.26 s 3.11h
@) (b) (©) (d) (e) (f) (8) (h)
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Figure 15. Comparison of different algorithms for reconstructing images of the Bot when the sampling
rate is 0.4: (a) SLF_GPSR; (b) RCoS; (c) HICoSM; (d) TR; (e) ISTA_Net; (f) TV; (g) LRCoSM; (h) GT.

With the Botswana dataset, the algorithms in this paper improve on average by
approximately 11.41 dB, 3.41 dB, 3.43 dB, 2.87 dB, 5.75 dB, and 7.48 dB over the SLF_GPSR,
RCoS, HiCoSM, TR, ISTA_Net, and TV algorithms at a sampling rate of 0.2. The average
improvement over the above algorithm is about 9.29 dB, 3.81 dB, 3.76 dB, 0.65 dB, 3.94 dB,
and 5.98 dB at a 0.3 sampling rate; and about 7.86 dB, 4.09 dB, 4.03 dB, 0.42 dB, 3.2 dB,
and 6.62 dB at a 0.4 sampling rate compared to the comparison algorithm, and the PSNR
values of each band are shown in Table 8. Table 9 shows the numerical statistics of FSIM for
Bot at different sampling rates. The results are greater than the other algorithms, the SAM
metrics show better retention of the spectral angle, and the LRCoSM algorithm reconstructs

the best.
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Table 8. PSNR (dB) values for the band 115-122 Bot dataset at a 0.4 sampling rate.

dB 115 116 117 118 119 120 121 122
SLF_GPSR 25.23 28.52 28.72 30.05 29.89 29.05 29.15 30.00
RCoS 31.45 31.73 32.17 33.18 33.14 3291 32.88 33.30
HICoSM 31.45 31.73 32.09 33.16 33.19 33.01 33.03 33.54
TR 33.93 34.93 35.84 37.35 37.17 36.89 36.77 37.26
ISTA_Net 32.28 32.48 33.03 34.41 34.28 34.09 34.05 34.59
TV 29.26 29.47 29.83 30.75 30.7 30.48 30.48 30.84
LRCoSM 33.6 35.15 36.48 38.6 38.58 38.04 37.53 36.84

PSNRUB

[ SLF_GPSR,
= RCoS

=R

= STAN

|t LRCoSM

Figure 16. Line graph of PSNR (dB) values for the Bot dataset that was reconstructed by different
algorithms at other sampling rates: (a) rate = 0.2; (b) rate = 0.3; (c) rate = 0.4.

Table 9. The average FSIM and SAM as well as the algorithmic time statistics of the Bot dataset after
seven algorithms with different sampling rates.

Algorithms
SLF_GPSR RCoS HiCoSM TR ISTA-Net TV LRCoSM
FSIM 0.78 0.85 0.86 0.92 0.63 0.81 0.93
0.2 SAM 14.0492 2.5653 2.6522 4.0471 3.1180 2.8417 2.8129
2 TIME 5.19s 108.38 s 109.06 s 550.00 s 13.6 h 198.87 s 4.37h
fn FSIM 0.83 0.89 0.90 0.95 0.81 0.84 0.95
£ 0.3 SAM 59134 2.2644 2.3336 3.2629 2.7003 2.3265 2.6394
E* TIME 491s 107.79 s 12522 s 559.54 s 13.5h 293.58 s 473 h
& FSIM 0.86 0.92 0.93 0.97 0.89 0.86 0.97
0.4 SAM 3.4510 2.0281 2.0493 2.3532 2.2328 2.2003 2.3477
TIME 4.98s 119.39 s 118.49 s 512.88 s 13.0h 435.70 s 6.50 h

4.4. Discussions and Analysis

After numerical experiments and visualization analysis, it can be seen that the SLF_GPSR
and TV algorithms are convex optimization sparse reconstruction methods. Although
this method can effectively reduce the computational effort, it is an approximate solution
method resulting in poor reconstruction quality, which is prone to motion artifacts while
falling into local optimal solutions. The HiCoSM algorithm is an improvement on the RCoS
algorithm, which introduces a predictive sparsity measure of spectral correlation based
on RCoS. However, the algorithm has the risk of reconstruction prediction errors between
long range bands in the multi-band case and is computationally expensive. The TRLRF
tensor ring decomposition algorithm decomposes a high order large scale 3D rectangular
matrix of hyperspectral remote sensing images into multiple small-scale tensor factor
multiplication structures and imposes low-rank constraints on each factor. However, the
algorithm requires a large amount of hyperparametric prior knowledge and is not highly
generalizable.
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Recent deep learning-based compressed sensing reconstruction algorithms, such as
the most typical ISTA-NeT, OPINE-Net [55], are used to obtain a convergent loss function
for image reconstruction by training a symmetric deep neural network architecture such as
CNN with weights w, bias b, and an observation matrix ® at different sampling rates. There
are three shortcomings of this type of algorithm. Firstly, the algorithm has high demand
for hardware such as GPU, and the algorithm takes more than 10 h. Second, over-reliance
on the category and quantity of the original data. The tasks that are currently done by the
algorithms are all baseline problems that are based on open-source datasets, and it is more
difficult to deal with specific problems in specific domains. Third, different sampling rates
correspond to an adaptive learning of the observation matrix ®. Other sampling rates still
need to be re-learned, and the training samples are thrown into the network architecture
together with the encapsulated ®. This process is similar to a black box problem where
generalization and interpretability are not strong.

The proposed LRCoSM algorithm can significantly improve the reconstruction results
at different sampling rates and has strong robustness. In particular, it is possible to construct
ajoint spectral dimension surface and thus achieve a better sparse representation, especially
for the case where the number of samples in the band is extremely limited. In this paper,
we innovatively proposed the joint spectral domain based on the previous study [23], and
broke the limitation of weak similarity of long-range spectral curve image blocks on image
elements in the paper [24], verified the existence of non-local similarity on the joint spectral
plane, and combined with the optimization algorithm of SBI [43] to obtain a more adequate
sparse prior for HSIL. Here, it should be noted that the a priori hyperparameter cluster
number K in the method needs to be set manually with reference to ground-truth. Figure 17
shows the KSC where the first group of joint spectral dimensional surface downscaling
mapping clustering scatter plots are displayed. The different color pixel points represent
the image patches belonging to different clusters, and the horizontal and vertical coordinate
systems represent the mapping to the two-dimensional fixed area boundary range, which
facilitates the observation of the cluster contour looseness and accuracy. Observing the
purple sample clustering, when K = 5, the distribution of clustered samples is more
discrete. When K = 20, the cluster number labeling too much aggregation returns is
reduced. At the same time, it appears to be clustering confusion, which consumes a huge
amount of computation. The selection of K can be done with reference to the kind of picture
ground-truth category label.

o B R -

(b) (©)

Figure 17. Two-dimensional mapping scatterplot of the joint KSC spectral dimensional plane for
different K clusters: (a) K = 5; (b) K = 10; (¢) K = 20.

For the dataset without ground-truth, we give different hyperparametric clustering K
values and different low-rank principal diagonal thresholds for experimentation through
the algorithm in this paper. In Table 10, we can see that different datasets in this paper
can be effectively reconstructed by the LRCoSM model under different hyperparametric
clustering K values, but in this paper, K = 10 for various types of datasets to achieve
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the best reconstruction effect. This is because only the closest to the real ground-truth
clustering K, reconstruction effect will be better. Too small K value clustering is not
sufficient. The disadvantages of over-clustering and the time-consuming cost that are
brought by too large a K value setting are obvious. In the case of no datasets without
ground-truth provided, we suggest that a slightly larger estimated K value can be selected
for downward debugging. At the same time, Table 11 shows that the selection of low-rank
principal diagonal thresholds for different datasets has an impact on the reconstruction
effect, and the magnitude of low-rank principal diagonal thresholds is positively related to
the reconstruction quality when other environmental variables are certain. Therefore, how
to find the cluster number K that is closest to the actual feature ground-truth and how to
choose the adaptive hyperparametric low-rank main diagonal threshold setting scheme to
remove more redundant information but maintain the high quality reconstruction effect
and improve the reconstruction effect of land water and object edges for different datasets
is the focus of our future research.

Table 10. Reconstructed PSNR (dB) values for the 85-92 band Pavia dataset at a 0.4 sampling rate
with different clustering clusters K.

Number of K-Clustering Distributions

Datasets
K=5 K=10 K=15 K=20
Kennedy Space Center 40.31 40.38 40.32 40.36
Pavia Center 40.58 43.16 40.63 40.67
The Cooke City 43.87 46.09 43.85 43.93
Botswana 36.63 36.85 36.62 36.64

Table 11. Reconstructed PSNR (dB) values for four datasets with a sampling rate of 0.4 for different
Y, diagonal matrix eigenvalue low-rank thresholds.

X Diagonal Matrix Eigenvalue Low-Rank Threshold Percentage Selection

Datasets 10% 30% 50% 70% 90%
Kennedy Space Center 36.99 37.01 39.42 40.04 40.38
Pavia Center 34.31 34.33 37.47 39.16 43.16

The Cooke City 35.74 35.75 38.66 41.42 46.09
Botswana 35.35 35.40 35.89 36.62 36.85

5. Conclusions

In this paper, a low-rank constrained sparse reconstruction model (LRCoSM) is pro-
posed for compressive reconstruction of HSI at low sampling rates. For the first time, a
sparse measurement and representation of the spectral domain in the joint spectral dimen-
sional plane is proposed which effectively overcomes the impact of the restricted number of
spectral bands on the reconstruction quality of HSI. On this basis, the existence of non-local
correlation on the joint spectral dimension is verified, and a GMM adaptive unsupervised
learning mechanism is proposed for guiding image patch clustering, which expands the
search range of non-local similar patches and improves the effectiveness of the low-rank
sparse regular constraints that are formed after clustering. Experimental results on a large
number of datasets at different sampling rates show that the proposed LRCoSM algorithm
has better reconstruction quality and stronger generalization ability than the popular and
classical algorithms at this stage.
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