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Abstract: Road networks play a fundamental role in our daily life. It is of importance to extract
the road structure in a timely and precise manner with the rapid evolution of urban road structure.
Recently, road network extraction using deep learning has become an effective and popular method.
The main shortcoming of the road extraction using deep learning methods lies in the fact that there
is a need for a large amount of training datasets. Additionally, the datasets need to be elaborately
annotated, which is usually labor-intensive and time-consuming; thus, lots of weak annotations
(such as the centerline from OpenStreetMap) have accumulated over the past a few decades. To
make full use of the weak annotations, we propose a novel semi-weakly supervised method based
on adversarial learning to extract road networks from remote sensing imagery. Our method uses
a small set of pixel-wise annotated data and a large amount of weakly annotated data for training.
The experimental results show that the proposed approach can achieve a maintained performance
compared with the methods that use a large number of full pixel-wise annotations while using less
fully annotated data.

Keywords: road extraction; semi-weakly supervised learning; Generative Adversarial Network;
OpenStreetMap

1. Introduction

Accurate and up-to-date road network information is fundamental for our daily life,
whether for use in urban management, traffic planning, vehicle navigation, intelligent
transportation systems, and so on. Therefore, continually extracting road networks is of
great importance, especially for fast-growing areas. With the rapid development of remote
sensing technology, images can be easily obtained from remote sensors installed on drones
or satellites, which allows the updating of road networks and the timely adoption of road
extraction methods of remote sensing images.

Recently, deep learning methods have been leading in road extraction methods for
remote sensing images [1,2]. However, the superior performance of these deep learning-
based methods highly depends on massive quantities of precisely annotated training
data [3]. Obtaining a large amount of precisely annotating data is usually a labor-intensive
and time-consuming process. Thus, it is hard to acquire large-scale precisely annotated
data in reality, especially since weak annotations (such as road centerline) can be easily and
economically obtained, given the rapid development of the OpenStreetMap (OSM).

Remote sensing images with different types of annotations are shown in Figure 1.
Figure 1a represents a typical image obtained from remote sensing cameras; Figure 1b
represents the full labelled image which is annotated by a human pixel-by-pixel; and
Figure 1c represents the road centerline, which can be easily obtained form OSM [4–6] and
can be regarded as sparse scribbles for road labels.

From Figure 1, we can see that the precise labelled annotation is much more compli-
cated than the scribble OSM centerline.
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(a) (b) (c)

Figure 1. Sample images. (a) is the satellite image, (b) is pixel-wise annotation and (c) is OSM
centerline which can be regarded as a sparse annotation.

To mitigate the weakness of the massive demand for high-quality annotated training
data in deep learning methods, Wu et al. and Wei et al. only use the weak annotations
from OSM centerline to extract the road networks [4,6]. Nevertheless, there is still room for
improvement in the performance of these methods, since they do not use any existing data
with full annotations.

In order to reduce the reliance on high-quality pixel-wise annotations and to improve
road extraction performance for automated satellite images interpretation, this paper
proposes a semi-supervised method named Semi-Weakly Generative Adversarial Network
(SW-GAN) to extract the road network from remote sensing imagery. In this method, to
make efficient road extraction, we use only a small amount of precisely annotated data and
large amounts of easily acquired weakly annotated data (OSM centerlines).

The contributions of this paper are summarized as:
1. A novel semi-weakly supervised learning framework is proposed for extracting the

road networks, which can make good use of both the massive amounts of weakly labelled
annotations and small amounts of precisely annotated data.

2. To make good use of the weak annotations, we design a novel weakly supervised
network and add it to the typical GAN (Generative Adversarial Network) network. The
weakly supervised network can automatically learn from the latent features of a large
amount of weakly supervised data and feed the learned features into the GAN networks.

3. To validate the proposed method, we carry out extensive experiments on three
real-world datasets. The results show that the proposed semi-weakly supervised method
can obtain very close results to that of the fully supervised methods while just using 20%
fully annotated data.

The following sections are arranged as follows. First, the related work of road extrac-
tion, semi-supervised and weakly supervised learning are discussed. Then, the proposed
method, SW-GAN, is illustrated. After that, the experiments and discussions are presented.
Finally, the conclusion of this paper is drawn.

2. Related Work
2.1. Road Extraction

Traditionally, road extraction from remote sensing images can be divided into unsu-
pervised and supervised methods.

The main difference between the unsupervised road extraction methods and super-
vised methods lies in the fact that the unsupervised ones do not need annotated data
for training. Hence, the unsupervised methods mainly use clustering technologies to
extract the road network. K-means [7], graph theory [8,9], mean shift [10,11] and domain
mapping [12,13] are widely used as unsupervised learning algorithms to extract the road
networks. However, the performance of unsupervised methods in road extraction remains
lower than the supervised ones.

Unlike unsupervised road extraction methods, supervised approaches usually need
lots of training samples. The extraction performance heavily relies on the quality and
amount of the training samples. These methods mainly include support vector machine
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(SVM) [14], conventional artificial neural network (ANN) [15,16], Markov random field
(MRF) [17] and Bayesian decision theory [18].

In the past few decades, Deep Learning (DL) methods have promoted the develop-
ment of many image processing problems such as image semantic segmentation, change
detection, target tracking and so on. Additionally, the deep convolutional neural net-
works (DCNN) [19,20] are typical DL methods used in the image semantic segmentation.
Recently, many DL methods have made great progress in road extraction [1,2]. A dual-
generation GAN(DH-GAN) network was proposed to extract the road topologies by D.
Costea et al. [21]. The DH-GAN has significantly improved the topology and accuracy of
the road networks by using SBO (Smoothing-Based Optimization) methods . YY.Xu et al.
proposed a road extraction method by adding both the global and local attention unit into
U-Net and DenseNet [22] (GL-Dense-U-Net) [23]. Z. Zhang et al. proposed a method by
integrating the strengths of residual learning and U-Net [14]. Q. Zhu et al. designed a
Global Context-aware and Batch-independent Network (GCB-Net) to extract complete and
continuous road networks from remote sensing images [24]. The GCB-Net can eliminate the
batch dependency to accelerate learning and further improve the robustness of the model.
Y.X. Xu et al. proposed a spatial attention-based road extraction network and employed
signed distance between roads and buildings to enhance the extraction accuracy for the
potential roads around the thorny occlusion areas of remote sensing images [25]. Z. Chen
et al. modified the architecture of U-Net, and designed an asymmetric encoder-decoder
network for road extraction from remote sensing images [26]. J. Zhang et al. employed a
DenseNet [22]-based network with a data fusion mechanism to conduct low-grade road
extraction from optical and SAR images [27].

Furthermore, the development of road extraction has been promoted rapidly through
competition [28]. For instance, many methods have effectively promoted the perfor-
mance of road extraction [29,30]. L. Zhou et al. won a competition by using a neural
network named D-LinkNet [31], which used an encoder–decoder structure architecture
with dilated convolution.

Although the performance of road extraction has been greatly improved by using these
DL-based methods, there are still limitations owing to the demand for a massive amount of
precisely annotated training data. It is still a labor-intensive and time-consuming process
to generate plentiful high-quality training data, as the performance of DL-based road
extraction methods relies heavily on a large amount of high-quality labelled training data.

2.2. Semi-Supervised and Weakly Supervised Deep Learning Methods

In order to mitigate the dependency on pixel-wise annotation training data for deep
learning-based models, some semi-supervised learning and weakly supervised methods
have been proposed. These models can promote segmentation efficiency instead of using
just fully precise annotated datasets as supervision.

The semi-supervised model learned from limited pixel-wise annotated samples and
utilized huge unlabeled data to improve the performance of remote sensing image segmen-
tation. The most popular semi-supervised models in the remote sensing image semantic
segmentation task are GAN-based and pseudo-labels-based methods. W. Hung et al. pro-
posed a GAN-based network that can learn from unlabelled samples [32]. S. Mittal et al.
proposed a dual-branch semi-supervised approach for semantic segmentation [33], which
can reduce both the low-level and the high-level artifacts when training with a few labels.
J.X. Wang et al. presented an iterative contrastive network for remote sensing image seman-
tic segmentation, which can continuously learn more potential information from labeled
samples and generate better pseudo-labels for unlabeled data [34]. S. Desai et al. employed
active learning techniques to generate pseudo-labels from a small set of labeled examples
which are used to augment the labeled training set, and enhanced the performance of
remote sensing semantic segmentation network [35].

Compared to the pixel-wise annotations, weak annotations (such as scribbles [4,36,37],
bounding boxes [38], points [39,40] and image-level tags [41,42]) were much easier to obtain.
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Therefore, weakly supervised learning was more popular in segmentation tasks [2,43]. S.
Wu et al proposed a novel model named MD-ResUnet, which used only OSM centerline as
weak annotations and achieved good performance in road extraction from remote sensing
images [4]. J. Zhang et al. adopted crowd-sourced GPS trajectory data as weak annotations
to promote the road extraction performance from aerial imagery [44].

These semi-supervised or weakly supervised road extraction methods have truly
reduced the demand for a large number of precisely annotated data. However, there is
still a gap in road extraction performance between these methods and fully supervised
methods.

In fact, for semi-supervised models, the unlabeled data can be replaced by weakly
annotated data, and this type of method is called semi-weakly supervised learning [45].
Compared to conventional semi-supervised models, semi-weakly supervised models are
supposed to obtain better performance, since the weakly annotated data has more potential
information than that of the unlabeled data [46].

To the best of our knowledge, there is still no appropriate semi-weakly supervised
learning method can be used to promote the extraction performance by combining a few
full pixel-wise annotations and lots of weak annotations such as scribble annotations in the
remote sensing image road extraction task. We want to design a semi-weakly supervised
learning model for road extraction, and try to make its performance close to that of fully
supervised models.

3. Methodology for SW-GAN Networks Using in Road Extraction

In this paper, a semi-weakly supervised method named SW-GAN is proposed to
improve the performance of road extraction. For SW-GAN, the input of the training
dataset can be divided into two parts. One is satellite images with high-quality pixel-
wise annotations, which is the fully supervised dataset. The other is satellite images with
weakly scribbled supervision (OSM centerline), the weakly supervised dataset. Usually,
the number of samples of the fully supervised dataset is much smaller than that of weakly
supervised dataset.

The overall view of the SW-GAN method is shown in Figure 2. Unlike the standard
architecture of GAN, SW-GAN consists of three main components: a fully supervised
generator, a weakly supervised generator, and a discriminator. The fully supervised
generator is fed into both the fully supervised dataset and weakly supervised dataset
to learn the road features and produce a realistic road network. The weakly supervised
generator is only fed with the weakly supervised dataset to learn the potential distribution
of road network. The weakly supervised generator can feed the learned features into the
fully supervised generator. The discriminator is used to distinguish whether the produced
road network is a pixel-wise human-annotated road network or whether it was synthesized
by the fully supervised generator. Hence, the fully supervised generator and discriminator
are pitted against each other as adversaries.

As Figure 2 shows, the weakly supervised dataset is fed into both the fully supervised
and weakly supervised generators simultaneously. We try to make the output of the
fully supervised generator and weakly supervised generator similar to each other. This
strategy ensures the consistency of the output of the fully supervised generator and the
weakly supervised generator, and makes effort to feed the learned features from the
weakly supervised generator into the fully supervised generator. The fully supervised
dataset is only fed into the fully supervised generator. The training process is a standard
supervised manner.

This mechanism guarantees that the fully supervised generator can learn features
from both the fully supervised dataset and weakly supervised dataset. Therefore, it can
extract more potential details from the road and prevent the algorithm from over-fitting.

The details of the components of SW-GAN and how to make the weakly supervised
dataset are illustrated in the following subsections.
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Generator

Try to be equal

Small full-supervised dataset

Large weakly-supervised dataset
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Figure 2. Overall framework of the proposed approach.

3.1. The Weak Road Annotation Inference from OSM Data

Although OSM data is a widely used crowdsource open data set, it still includes
some incorrect or incomplete road centerlines (not always in the center of the real road).
Therefore, we cannot obtain accurate weak annotations using only the OSM road centerline.
We need to do some preprocessing for OSM data to form weak annotated data for road
extraction. Firstly, we project the remote sensing images and corresponding OSM road
centerline data to the same geographic coordinates system to keep them geographically
consistent. Secondly, the initial road annotations are inferred from the centerline using the
prior knowledge of the image resolution and the grade of a road. Since different grades of
roads usually correspond to different road widths, the upper bound of road width can be
inferred from road grades.

As shown in Figure 3, the road and non-road are inferred by the grade and centerline
of a road. Additionally, the other pixels that cannot be determined by the distance to the
road centerline are labeled as unknown. In this paper, we set the pixels within 7 m of the
road centerline as road and the pixels beyond 50 m as nonroad.

Background

Unknown

Road

Inference

Figure 3. Weak road annotation inference.
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3.2. The Components of SW-GAN

We denote the fully supervised generator as G f , the weakly supervised generator
as Gw, the discriminator as D, the images with weak annotation as Xw and the images
with full annotation as X f . The corresponding annotations of Xw and X f are Yw and Yf ,
respectively.

Like most GAN models, the discriminator is used to distinguish the composite data
and real data, while the fully supervised generator is used to generate road networks
and deceive the discriminator. The fully supervised generator and the discriminator form
a conditional GAN model. The objective of the conditional GAN in this paper can be
described as Equation (1):

LcGAN(G f , D) = EX f ,Yf [logD(X f , Yf )] + EX f [log(1− D(X f , G f (X f )))]. (1)

From Equation (1), we can see that the fully supervised generator and the discriminator
play a two-player mini-max game. Equation (1) consists of two parts: the first term is
the loss function for discriminator, and the second term is the loss function for the fully
supervised generator.

3.2.1. The Fully Supervised Generator

The fully supervised generator uses the D-linknet [31] as backbone in this paper, which
adopts an encoder–decoder structure, dilated convolution and pre-trained encoder for the
road extraction. Furthermore, this has been used in road extraction works [31,47]. As the
fully supervised generator of SW-GAN is tasked with approaching the ground truth of
fully supervised dataset X f (Yf ), we employ cross entropy to measure the fully supervised
loss L f as Equation (2):

L f (G f ) = − ∑
x(i)f ∈X f

y(i)f log(G f (x(i)f )), (2)

where y(i)f is the corresponding label of x(i)f .

3.2.2. The Weakly Supervised Generator

To make full use of the weak annotations, the weakly supervised generator refers to
the method used in weakly supervised road extraction [4] and weakly supervised semantic
segmentation [48]. These methods use the high-order information and the relationship
between pixels of the image. The weakly supervised generator of SW-GAN is shown in
Figure 4.

The weakly supervised method improves the road extraction performance by using
the normalized cut loss to reflect the high-order information [4]. Additionally, we add a
learnable pyramid dilation network to weakly supervised generator to expand the recep-
tive field of convolution of conventional ResUnet. The weakly supervised generator is
supervised by the road weak annotations. We adopt the loss function in [4] for the weakly
supervised generator, and noted it as Lw(Gw) in this article.

Additionally, the fully supervised generator of the network is required to output the
same results as that of the weakly supervised generator. We design a loss called consistency
loss, which can be defined as Equation (3):

Lcnst(G f , Gw) = − ∑
x(i)w ∈Xw

Gw(x(i)w )log(G f (x(i)w )). (3)

Equation (3) ensures the consistency between the fully supervised generator G f and
the weakly supervised generator Gw on the weakly supervised dataset Xw.
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Figure 4. The architecture of the weakly supervised generator.

3.2.3. The Discriminator

Unlike the most discriminators of typical GANs, we adopt a fully convolutional
network as our discriminator, since it can take inputs of arbitrary sizes. The input of the
discriminator is the original satellite images and the road segmentation maps generated by
the fully supervised generator (or the ground-truth road network labels). The output is
a probability map of size H ×W × 1.The pixel of the output probability map represents
the possibility to be a real label. To train the discriminator, we minimize the loss Ld(D) as
Equation (4):

Ld(D) = − ∑
x(i)f ∈X f

(1− yn)log(1− D(G f (x(i)f ), x(i)f )) + ynlog(D(y(i)f ), x(i)f ), (4)

where yn = 0 if the sample is from the fully supervised generator network; yn = 1 if the
sample is from the ground truth label. y(i)f is the corresponding label of x(i)f . Equation (4) is
derived from Equation (1).

3.3. Loss Function and the Training Algorithm for SW-GAN

The final objective of SW-GAN can be formulated as Equation (5):

G∗f = arg min
G f

max
D
LcGAN(G f , D) + λ1L f (G f ) + λ2Lcnst(G f , Gw). (5)

To minimize the loss for training SW-GAN, the proposed algorithm is shown in
Algorithm 1. To balance the generators and the discriminator of SW-GAN, Gw and G f are
pre-trained using only the Lw and L f independently when the iteration is less than the
generator learning iteration ItGl . When the iteration is larger than ItGl , the Gw, G f and
D are trained using Lw, LcGAN + λ1L f + λ2Lcnst and Ld, respectively. This pre-trained
mechanism can be regarded as a warm up process, which can effectively prevent the model
from collapsing during the progress of training.
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Algorithm 1: Training SW-GAN
input :

Input datasets for Xw; X f ; Yw; Yf ;
The weight parameter of λ1; λ2;
The learning rate α;
warm up times of training iteration ItGl ;
the maximum times of training iteration Itmax ;

output :
The model parameters of the ωG f , ωGw , ωD ;

1 randomly initialize the model parameter ωG1 , ωG2 , ωD;
2 iternum = 0
3 for iternum < Itmax:
4 i f iternum < ItGl :

5 L(ωGw)← Lw
6 ωGw ← ωGw − α∇L(ωGw)

7 L(ωG f )← L f

8 ωGw ← ωG f − α∇L(ωG f )

9 else :
10 L(ωGw)← Lw
11 ωGw ← ωGw − α∇L(ωGw)

12 L(ωG f )← LcGAN + λ1L f + λ2Lcnst

13 ωGw ← ωG f − α∇L(ωG f )

14 L(ωD)← Ld
15 ωD ← ωD − α∇L(ωD)

16 iternum+ = 1

4. Experiment
4.1. Dataset Description

To prove the effectiveness of the proposed semi-supervised road extraction method,
we conduct experiments on three separate datasets. The details for all these datasets are
shown in Table 1.

Dataset 1 was collected from the real world in Seattle. There were 315 aerial images
and corresponding centerline annotations and pixel-wise annotations in the dataset. The
aerial images were collected from Google Earth, the centerline annotations were from the
OSM, and we manually labelled the pixel-wise annotations pixel-by-pixel. This dataset
covered both urban and rural regions. In the experiment, the whole dataset was divided into
two parts. One part has 285 images, which are used as training dataset, and the remaining
30 images are used for testing. The resolution in the satellite images is 1.2 m. Most of
satellite images are covered by a complex terrestrial environment such as occlusions, trees
or shadows of buildings. Therefore, it is difficult to distinguish the background and roads.

The images and the full annotations of dataset 2 were released by Tao Sun et al. [47].
They manually generated the pixel-wise labels by labelling road pixels in the images. As
the geographical coordinate of the images was given, the centerlines of roads were collected
from OSM. There were 350 images, and the resolution of these images was 0.5 m.

Dataset 3 was released in the competition in the CVPR 2018 deep globe challenge [28].
There are 2048 training images and 300 testing images. The resolution of these images was
1 m. The precise annotations were manual labelled. As the geographical coordinates were



Remote Sens. 2022, 14, 4145 9 of 16

unknown, the centerlines of roads were generated by thinning the precisely annotated
annotations.

As the DL methods require a large amount of training data, and the size of dataset 1
and dataset 2 is small, we generate synthetic datasets by altering original ones using
diagonal flipping, horizontal flipping, scaling and image shifting. The training dataset is
6∼8 times larger than the original one after the augmentation. This can prevent the training
processing from over-fitting.

Table 1. Dataset Description (For dataset 1 and dataset 2, the numbers in parentheses are the amount
of data after augmentation).

Dataset Resolution Area Train Test Image
Origin

Full
Annotation Centerline

dataset 1 1.2 m Seattle 285 (1995) 30 (155) Google Earth manual OSM

dataset 2 0.5 m Beijing 350 (2100) 27 (135) Gaode Map manual OSM

dataset 3 1 m America 2048 300 Google Earth manual image

4.2. Baselines and Experiment Setting

Our proposed SW-GAN is implemented using Pytorch [49]. We train the model using
2 GTX1080Ti GPUs.

In this paper, ResUNet [14], D-Linknet [31], DeeplabV3 [50] and weakly supervised
road extraction algorithm MD-ResUnet [4] are selected as our baseline. ResUNet [14] was
built with residual units and had similar architecture to that of U-Net; D-linknet [31] was
leading in CVPR2018 Digital Road Extraction Challenge which was proved to be efficient
in road extraction. DeeplabV3 [50] is a very widely used network for image semantic
segmentation, and has a good performance in the road extraction task from remote sensing
images. MD-ResUnet [4] used only weak OSM centerline as annotation, which added the
normalized cut loss to reflect the high-order information and a multi-dilation network to
conventional ResUnet [14] to expand the receptive field of convolution.

All experiments are evaluated based on IoU (Intersection over Union) and mAP (mean
Average Precision). IoU indicates the overlap of the predicted bounding box coordinates to
the ground truth box, and it can be formulated as Equation (6)

IoU =
TP

TP + FP + FN
, (6)

where TP, FP, TN and FN are the number of true positives, false positives, true negatives
and false negatives, respectively. mAP is a metric used to evaluate object detection or
semantic segmentation models. The definition of mAP is depicted in reference [51].

We use SGD [52] as the optimizer to train the proposed network, and initially set the
learning rate as 2× 10−4. The batch size is set to 2, as this is the number of GPUs we used.
Additionally, according to the experiment in Section 4.6, we set the parameter λ1 as 0.1 and
the cor-training hyper-parameter λ2 as 2.

To prove the effectiveness of the proposed method, firstly, an experiment is conducted
to evaluate the performance of SW-GAN. Then, we conduct an experiment to evaluate the
Semi-Weak methods using different ratios of full training images. Finally, we employ an
ablation study to validate the rationality of the design for SW-GAN.

4.3. Evaluation the Performance of SW-GAN

To validate the proposed SW-GAN, we compare the semi-supervised method SW-GAN
with the weakly supervised model MD-ResUnet and fully supervised methods ResUnet,
D-linknet and DeeplabV3. The training datasets include 20% full pixel-wise annotation
samples and 80% weakly supervised annotation samples to train all the different models.
The weakly supervised method MD-ResUnet was trained with the 80% weak annotation
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samples, and the full supervised methods ResUnet and D-linknet were trained using
the 20% full pixel-wise annotation samples. SW-GAN was trained using both the full
supervised data and the weakly supervised data. The results are shown in Table 2 and
Figures 5–7. In Figures 5–7, TN = true negative; FN = false negative; FP = false positive;
TP = true positive.

Table 2. SW-GAN Performance Evaluation (bold: best).

Model MD-ResUnet ResUnet D-Linknet DeeplabV3 SW-GAN

IoU

dataset 1 0.7387 0.7189 0.7293 0.7152 0.778

Dataset 2 0.5852 0.584 0.6028 0.5902 0.637

Dataset 3 0.656 0.6684 0.695 0.6585 0.714

mAP

dataset 1 0.8264 0.8154 0.8562 0.8260 0.895

Dataset 2 0.7356 0.7405 0.7382 0.7154 0.738

Dataset 3 0.705 0.7851 0.799 0.7502 0.812

(a) (b) (c) (d)

TPFPFNTN

(e)

Figure 5. Some qualitative results on dataset 1. (a) The original satellite images; (b) the results of
D-linknet; (c) the results of MD-ResUnet; (d) the results of our method; (e) legend.

The results show SW-GAN achieves better performance in IoU and mAP than the
weakly supervised method MD-ResUNet and the fully supervised road extraction D-
Linknet, ResUnet, and DeeplabV3. This represents that the proposed SW-GAN can make
effective use of the two different kinds of annotations. This model can learn not only the
details of a few full annotations but also the potential information of the weak annotations.

From Figures 5–7, we find that SW-GAN can achieve a better performance than the
fully supervised method D-linknet and weakly supervised method MD-ResUnet. MD-
ResUnet achieves a better performance than the fully supervised method D-linknet in
dataset 1 and dataset 2. Additionally, for dataset 3, the fully supervised D-linknet achieves
a better performance than that of the weakly supervised method MD-ResUnet. This is
because the weakly supervised method MD-ResUnet can extract the distribution and high-
order information of the road networks. SW-GAN, which is a semi-weakly supervised
method, can achieve both sufficient detail and high-order information of the road networks
from both the weak annotations and the full pixel-wise annotations.
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(a) (b) (c) (d)

TPFPFNTN

(e)

Figure 6. Some qualitative results on Dataset 2. (a) The original satellite images; (b) The results of
D-linknet; (c) The results of MD-ResUnet; (d) The results of ours. (e) legend.

(a) (b) (c) (d)

TPFPFNTN

(e)

Figure 7. Some qualitative results on Dataset 3. (a) The original satellite images; (b) the results of
D-linknet; (c) the results of MD-ResUnet; (d) the results of our method; (e) legend.

4.4. Evaluation Using Different Ratios of Full Training Images of SW-GAN

We conduct experiments using different ratios of pixel-wise annotations and weakly
scribbled annotations to evaluate the gap between SW-GAN and the fully supervised
model D-linknet on three datasets. When the ratio is 0, the experiment only uses data
with weakly labelled annotations to train Gw + D. When the ratio is 1, the experiment
uses all data with high-quality pixel-wise annotations to train the full supervised network
G f + D. The column D-linknet represents the road extraction performance of the fully
supervised learning model D-linknet which has been trained with all the high-quality
pixel-wise annotation data. The results are shown in Tables 3–5.
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Table 3. Road Extraction Performance Using Different Ratios of fully supervised Annotation on
Dataset 1.

Ratios 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 (Weak) 1 (Full) 1 (D-Linknet)

IoU 0.761 0.778 0.781 0.789 0.791 0.793 0.795 0.800 0.795 0.743 0.796 0.780

mAP 0.886 0.895 0.900 0.909 0.905 0.912 0.919 0.915 0.919 0.858 0.925 0.902

Table 4. Road Extraction Performance Using Different Ratios of fully supervised Annotation on
Dataset 2.

Ratios 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 (Weak) 1 (Full) 1 (D-Linknet)

IoU 0.618 0.637 0.658 0.669 0.664 0.663 0.6694 0.665 0.671 0.586 0.670 0.652

mAP 0.718 0.738 0.748 0.745 0.757 0.767 0.770 0.772 0.771 0.731 0.779 0.751

Table 5. Road Extraction Performance Using Different Ratios of fully supervised Annotation on
Dataset 3.

Ratio 0.02 0.04 0.08 0.1 0.2 0.4 0.6 0.8 0.9 0 (Weak) 1 (Full) 1 (D-Linknet)

IoU 0.677 0.687 0.698 0.701 0.714 0.716 0.711 0.715 0.716 0.656 0.719 0.710

mAP 0.737 0.779 0.795 0.804 0.812 0.813 0.806 0.804 0.812 0.705 0.806 0.808

The results from Tables 3–5 show that the IoU and mAP of SW-GAN can achieve close
performance to the fully supervised method D-linknet just using 30% full annotations.
IoU and mAP increase rapidly with the increase of the pixel-wise annotations from 0 to
30%. Then, IoU and the mAP stayed unchanged or slightly increased with the increase of
annotations from 30% to 100%. These results prove that adding a few full annotations into
SW-GAN can rapidly improve the performance of the road extraction. Additionally, by
using a small set of the full annotation data, the proposed model can gain almost the same
results as a fully supervised model using all full pixel-wise annotations. This is because
the weakly supervised generator can learn the distribution and high-order information
from weakly supervised annotation data effectively. Furthermore, the fully supervised
generator can learn the details of the road network in a fully supervised learning fashion.
From the experimental results, we can conclude that the semi-weakly supervised method is
of great importance for road extraction from remote sensing imagery, since it can effectively
learn potential information from both a large weakly supervised dataset and a small
fully supervised dataset.

4.5. Ablation Study

To verify the rationality of the proposed network, we conduct ablation experiments in
this section. We choose Dataset 1 to do the ablation experiments with 20% full pixel-wise
annotations and 80% weakly centerline annotations. The experimental results are shown in
Table 6.

Table 6. Ablation experiments on Dataset 1 (bold: best).

Model G f G f +Gw G f +D SW-GAN

IoU 0.7293 0.7627 0.7387 0.7781

mAP 0.8362 0.8851 0.8395 0.8951

Table 6 shows that the network using only the fully supervised generator G f achieves
the lowest performance in IoU and mAP compared to others. When adding the weakly
supervised generator Gw or the discriminator D to G f , IoU and mAP will increase. That is
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because the weakly supervised generator can extract potential information from weakly
annotated data and the discriminator can enhance the performance of the fully supervised
generator by adversarial learning process. The proposed model SW-GAN, which consists
of G f , Gw and D, obtains the best performance.

4.6. The Influence of the Hyper Parameters to the Semi-Weakly Supervised Road Extraction

To find proper value for hyper parameter λ1 and λ2 of SW-GAN, we test different
λ1 and λ2 to evaluate the extraction performance. The candidate values of λ1 are set as
0.0001, 0.01, 0.1, 1, 10 and 100; and the candidate values of λ2 are set as 0.02, 0.1, 0.4, 2,
10, 50, 250 and 1000. We combine the different values of the two parameters and obtain
48 different groups of model hyper parameters. On the one hand, deep learning model
experiments are very time-consuming. On the other hand, dataset 1 is a widely used typical
road extraction data set. The hyper parameters obtained by experiments on dataset 1 can
also be regarded as typical, which can be applied to road extraction data sets with similar
statistical characteristics. Therefore, we test 48 groups of hyper parameters one-by-one only
on dataset 1 and utilize 20% pixel-wise annotations and 80% weak centerline annotations.
The results are shown in Table 7.

Table 7. The IoU performance of the proposed model with different hyper parameters (bold: best).

λ1

λ2 0.02 0.1 0.4 2 10 50 250 1000

0.0001 0.735 0.747 0.766 0.769 0.770 0.763 0.752 0.741

0.001 0.749 0.751 0.771 0.774 0.772 0.769 0.761 0.743

0.1 0.750 0.758 0.775 0.778 0.774 0.770 0.760 0.743

1 0.737 0.742 0.767 0.766 0.763 0.764 0.755 0.741

10 0.721 0.724 0.731 0.738 0.728 0.732 0.713 0.710

100 0.454 0.466 0.463 0.464 0.461 0.462 0.452 0.474

From Table 7 we can see that when λ1 is set as 0.1 and λ1 is set as 2, the proposed
model achieves the best performance. If the value of λ1 and λ2 is too large or too small, the
performance of the proposed model degrades. The reason for this is that when λ1 is too
large, the generator of SW-GAN is only supervised by the fully supervised data set. While
the λ1 is too small, the training process of SW-GAN cannot obtain a strong supervised
signal from the labeled data. Similarly, if λ2 becomes large enough, the results are closer to
the road extraction method using only the weakly supervised network. Additionally, when
λ2 is too small, the results of SW-GAN are almost equal to a typical GAN that only uses the
fully supervised generator G f and the discriminator D.

From the experiments and analysis of Sections 4.3–4.5, we can conclude that:
1. The proposed SW-GAN outperforms both the state-of-the-art fully supervised methods

ResUNet and D-Linknet as well as the weakly supervised method MD-ResUnet in road extraction.
2. Compared with those methods, supervised by large amounts of pixel-wise full

annotations, the proposed SW-GAN can achieve very close performance using only small
amounts of pixel-wise full annotations and large amounts of weak centerline annotations.

3. The more pixel-wise annotations fed into SW-GAN, the better the road extraction
performance will be. However, the performance increases more and more slowly with the
increase of the full annotation data.

5. Conclusions

In this paper, a semi-weakly supervised framework is proposed to extract road net-
works from remote sensing imagery, which uses large amounts of weak annotation data
and only a small number of full pixel-wise annotation data. The performance of the pro-
posed method is evaluated on three datasets in various settings both quantitatively and
qualitatively. The method achieves very close performance compared to the state-of-the-art
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methods using full annotations. In future, to obtain more practical road networks for our
daily life, we would like to focus on road extraction using 3-D data.
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