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Abstract: When the BepiColombo spacecraft arrives at Mercury in late 2025, it will be able to measure
the orbit of the planet with unprecedented accuracy, allowing for more accurate measurements of the
perihelion advance of the planet, as predicted by the Theory of General Relativity (GR). A similar
effect is produced by the gravitational oblateness of the Sun through the zonal coefficient J2�. The
gravitational field of the Sun has been hard to determine despite centuries of observations, causing
great uncertainties in experiments on GR. Recent publications in heliophysics suggest that J2� is
not a constant, but a dynamic value that varies with solar magnetic activity. The aim of this paper
is to analyse what the effect is of suggested higher-order effects of the solar gravitational field on
experiments of the perihelion advance of Mercury as predicted by GR. The orbit of Mercury and
observations of the MESSENGER and BepiColombo spacecraft are simulated, and parameters corre-
sponding to gravitational theory, as well as the oblateness J2� including a time-variable component
are estimated using a least-squares approach. The result of the estimation is that the amplitude of a
periodic component can be found with an uncertainty of 3.7× 10−11, equal to 0.017% the value of
J2�. From analysis of published experiments that used MESSENGER tracking data, it can already be
deduced that the amplitude of the periodic variation cannot be higher than 5% of the value of J2�. It
is also found that if a periodic component exists with an amplitude greater than 0.04% the value of
J2� and it is not considered, it can lead to errors in the experiments of GR using BepiColombo data to
the point that results falsely confirm or contradict the Theory of General Relativity.

Keywords: Sun; solar oblateness; Mercury; BepiColombo; MESSENGER; general relativity;
perihelion precession

1. Introduction

The solar system has always been a suitable laboratory for testing gravitational theory.
An often-used test is the secular precession of Mercury’s perihelion, for which it was
discovered in the 19th century that it could not be explained just by using Newtonian
gravity and third-body interactions of other planets [1]. Albert Einstein used the observed
precession of Mercury’s perihelion as a key test to confirm his Theory of General Relativity
(GR, [2]). Ever since, experiments on gravitational interactions have only confirmed General
Relativity with increasing accuracy. GR is, however, not able to provide all the answers
about gravitational interactions yet in fundamental physics, especially on the scales of
quantum mechanics or cosmology [3–5]. Therefore, more than one hundred years after the
theory was introduced, testing GR and its underlying principles is still a hot topic. Finding
correctness with increasing precision or microscopic deviations of GR is of high relevance in
the search for a universal theory in fundamental physics. The current state, future outlook
and relevance of experiments on GR is provided in great detail by [5]. In this paper, the
relativistic influence on the secular precession of Mercury’s orbit will be the focus.

The commonly used tool for experiments on gravity is the Parameterised Post-Newtonian
(PPN) framework [6], which uses ten parameters (γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3, ζ4). In GR,
these parameters take on the values γ, β = 1 and ξ, α1, α2, α3, ζ1, ζ2, ζ3, ζ4 = 0, however,
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many alternative theories of gravity have been formulated which predict different values
for the parameters (see [5]). The determination of the PPN parameters through experiment
is a method to test which gravitational theories are viable.

The orbit of Mercury is a test subject for such an experiment. The first-order post-
Newtonian perturbation is the perihelion advance, which can be expressed as a function of
the PPN parameters. Per orbit of Mercury around the Sun, the precession is equal to ∆ω̃
(Equation (66) of [5]):

∆ω̃ =
6π

p

[
1
3
(m� + mM)(2 + 2γ− β) +

1
6
(2α1 − α2 + α3 + 2ζ2)

(
m�mM

m� + mM

)]
(1)

where m� and mM are the masses of the Sun and Mercury and p is the semilatus rectum of
the orbit of Mercury around the Sun. With accurate observations of the orbit of Mercury
the values of the PPN parameters can be constrained. However, the second-order zonal
effect of the Sun, caused by the mass bulge at the equator, produces a similar effect which
has to be considered (Equation (3) of [7]):

∆ω̃ =
6π

p

(
J2�R2

2p

)(
1− 3

2
sin2 i

)
(2)

J2� is the normalised zonal coefficient of degree 2 of the Sun, R is the mean radius of the
Sun and i is the inclination of the orbit of Mercury with respect to the solar equator. A major
source of uncertainty in experiments of the PPN parameters is caused by the uncertainty of
coefficient J2�.

Attempts to determine the shape of the Sun date back to the 19th century. The
determination of the visual oblateness (the visual difference in radius between equator and
poles) has turned out to be challenging, because among other reasons, the interior (i.e., mass
distribution) is unknown, the surface rotation is not the same for all latitudes and the visual
shape of the Sun is hard to observe due to magnetic surface activity. A comprehensive
overview of experiments and their challenges is provided by [8], see also discussions
by [9,10]. Zonal coefficient J2�, which influences bodies orbiting the Sun, appears to not
relate directly to its visual shape and its rotation rate [8,11], and therefore, the field of
heliophysics has faced difficulty in coming up with constraints on J2� that are useful as
input for tests on gravitational physics. It is for that reason that in experiments that use
planetary orbits, parameter J2� is usually estimated alongside the PPN parameters. This
limits the precision of the experiment, as γ, β and J2� are all linearly proportional to the
precession rate of Mercury’s perihelion. γ can be distinguished through other experiments
due to its effect on the propagation of light (see [12]), but for β or J2�, no other experiment
is available. This causes a high correlation between β and J2� in their estimation. As a
result, unmodelled variability of J2� may pollute estimates of β and other parameters for
testing GR. In light of the numerous near-future missions equipped with high-accuracy
tracking systems which will contribute to improving solar system tests of relativity [13],
analysing the influence of J2� is highly pertinent, and it is the focus of this manuscript.

To illustrate the challenge of determining J2�, Figure 1 shows selected attempts to
determine the value of J2� both by estimation using planetary orbits and by the field of
heliophysics. It can be observed that uncertainties are often quite optimistic and results
are not consistent with each other, presumably due to the correlation of J2� and other
parameters, or other assumptions that are made in the determination of the parameter and
its uncertainty.



Remote Sens. 2022, 14, 4139 3 of 21

Figure 1. Selected attempts to determine J2� over the last 25 years. Error bars indicate the 2σ

uncertainty, corresponding to a 95% confidence level. Where no error bars are drawn, uncertainties
were not provided. All entries in this plot are provided at the end of the paper in Table A1.

To complicate matters further, it is suggested that higher-order zonal effects such as
J4� could also be of significant value to affect planetary orbits at a measurable level [8,14].
In addition, publications in heliophysics state that the visual solar oblateness varies along
the 11-year solar activity cycle, and a similar periodic variation in the value of J2� is
suggested [15,16], although this theory has also been contested [17]. The effect that a
dynamic value of J2� would have on the planetary orbits has been calculated by [18] and
the importance of considering it in gravitational experiments has been stressed by [19], in
both cases, it is concluded that the dynamic effect can have a relevant influence on tests of
GR. Nevertheless, a dynamic oblateness has so far never been considered in publications
about solar system ephemerides or experiments of gravitational physics.

The aim of this study is to bridge the gap between heliophysics and gravitational
physics, by investigating the different configurations that are suggested for the solar gravity
field. The central question of this study is: with the observational capabilities of Mercury
missions that are expected in the foreseeable future, can the various hypotheses about the
solar gravity field be confirmed or rejected, and do they have a relevant influence on tests
of GR? If certain hypotheses can be confirmed or rejected, it is of great value to both fields
to refine their theoretical models further.

To date, the best experiments on the orbit of Mercury use data from the MESSENGER
spacecraft by NASA which orbited Mercury from 2011 until 2015, see e.g., [7,20,21]. The best
next opportunity will be the BepiColombo mission by ESA and JAXA, which is currently
in cruise phase and will be inserted into Mercury orbit in 2025 for a nominal mission of
one year. It will provide tracking data with unprecedented accuracy with its dedicated
experiment, the Mercury Orbiter Radioscience Experiment (MORE, [22]), due to its dual-
frequency tracking in the X and Ka bands. Simulations of relativity experiments using
simulated BepiColombo tracking data show improvements of 1 to 2 orders of magnitude
for constraints on β, e.g., [23–30]. Neither the experiments with MESSENGER data, nor the
simulations of experiments with BepiColombo data have considered perturbations due to
higher-order effects due to the solar shape besides a constant J2�. In this work, a similar
simulated experiment will be set up which will consider such higher-order effects. Tracking
data of both MESSENGER and BepiColombo will be simulated, resulting in one combined
data set which will span 20 years, allowing to track the effects of small perturbations on the
orbit of Mercury over this duration.

2. Method

In this section, we describe the setup of our numerical experiments. First, we create
a synthetic truth model by integrating the orbit of Mercury from 2008 to 2028, with the
acceleration models described in Section 2.1 and all parameters set according to values
consistent with GR. Using this numerically integrated state of Mercury, range observations
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are simulated according to the methods described in Section 2.2. A realistic error on the
simulated observations is generated based on a simulation of the precise orbit determination
of Mercury orbiters. The observations are used as input to estimate a set of parameters in
a least-squares algorithm, which will be explained in Section 2.3. The software used for
simulation and estimation is the TU Delft Astrodynamics Toolbox (Tudat, [31]).

2.1. Accelerations Acting on Mercury

For the numerical integration of Mercury’s orbit, the dynamical model takes into
account relevant perturbations that can produce a measurable effect in the MESSENGER
and BepiColombo tracking data. These perturbations are:

• Central gravity accelerations by celestial bodies in the solar system;
• Figure effects of the Sun;
• First-order post-Newtonian relativistic effects caused by the Sun;
• Deviations from GR, i.e., effects predicted by alternative theories of gravity that could

have a measurable impact on the orbit of Mercury.

The point mass accelerations are included of all relevant solar system bodies which
are the Sun, the 7 planets and the Moon. In addition, the 300 most influential asteroids
are included. This selection of asteroids is often included in ephemerides due to their
significant gravitational contribution, see, e.g., [32,33]. For smaller asteroids, as well as
Trans-Neptunian Objects (TNOs) and other minor solar system bodies, the contribution
is observed to be negligible in this study. The positions of all bodies are obtained from
ephemeris DE430 [33] using SPICE kernels as the data source [34,35].

For the accelerations due to figure effects of the Sun, the largest effect is caused by
zonal spherical harmonic coefficient J2�, of which the acceleration can be expressed as [36]:

aJ2� = −∇
GM�R2

�
r3 P̄20 J2� sin (φ) cos (2λ) (3)

where P̄n0 is the normalised Legendre polynomial at degree n and order 0, φ is the longitude
and λ is the latitude of Mercury with respect to the body fixed reference frame of the Sun,
i.e., the frame that rotates with the ‘surface’ of the Sun, which is called IAU_SUN in
SPICE [34,35]). the coefficient J2� is in the order 10−7, see Figure 1 and Table A1.

We model a time-varying J2� by adding a time-variable correction to the mean value of
J2�. The sunspot number is commonly accepted as the measure for solar magnetic activity.
Therefore, under the assumption that the variations in oblateness mainly depend on solar
magnetic activity, as also shown in [16], a sinusoidal variation is a reasonable first-order
correction. The time-variability of J2 is therefore modelled as:

cJ2(t) = AJ2� sin
(

2π

P
t + ϕ

)
(4)

Here, AJ2� is the amplitude of the periodic variation and will be included in the parameter
estimation (see Section 2.3). The period P and phase ϕ are chosen such that the correction
aligns with the solar activity cycle. In Figure 2, the monthly smoothed sunspot number is
plotted, and the mission durations of MESSENGER and BepiColombo (nominal mission)
are indicated on the horizontal axis. A period of 11 years is chosen with a phase tuned such
that the correction cJ2(t) reaches a minimum in December 2008 and December 2019.
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Figure 2. Monthly smoothed sunspot numbers from January 2008 to August 2020 in blue [37] and the
prediction of solar cycle 25 in orange [38], which expects the next solar maximum in July 2025 with
an uncertainty of 8 months. The periods that MESSENGER and BepiColombo are in orbit around
Mercury are indicated in red on the x-axis. The period indicated for BepiColombo is the nominal
mission duration of 1 year.

The next zonal coefficient J4� provides the next largest perturbation due to figure
effects, of which the acceleration can be expressed as [36]:

aJ4� = −∇
GM�R4

�
r5 P̄40 J4� sin (φ) cos (4λ) (5)

For J4�, values in the range from 10−9 to 10−7 are suggested from heliophysical analy-
ses [8]. Even though suggested values for J4� can become as high as the values of J2�,
the perturbation is much smaller as it drops off much more quickly with distance from
the Sun (see Equation (5) in comparison to Equation (3)). If both zonal coefficients are in
the order of magnitude 10−7, the perturbation of J4� results in an acceleration acting on
Mercury in the order of 10−15 m/s2, whereas J2� produces an acceleration in the order of
10−12 m/s2. The maximum value of J4� suggested in literature is 6.3× 10−7 [39], which
causes a change in orbit after 20 years of a few meters, equal to the 1σ noise of MESSENGER
range observations. The effect that the perturbation produces on the orbit of Mercury is
equal to or smaller than the state determination uncertainty for realistic values of J4�. In
several runs in this study, J4� was included in the parameter estimation, but the zonal
coefficient could not be estimated with any relevant uncertainty. Omitting the J4� effect
did not impact the estimation of the other parameters. Therefore, it can be safely neglected
in this experiment.

For the gravitational force exerted by the Sun, the post-Newtonian relativistic accel-
eration is implemented according to Equation 7.42 of [11]. To simplify this equation, the
assumption is made that the mass of Mercury mM is negligibly small with respect to the
mass of the Sun (m� + mM ≈ m�, which is only off by a relative factor in the order of 10−7,
an immeasurable amount in this experiment). Furthermore, we only consider gravitational
theories that comply with conservation laws for total momentum, meaning that PPN pa-
rameters α3, ζ1, ζ2, ζ3 and ζ4 are all zero. The resulting acceleration term exerted on the Sun
by Mercury is then:
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aPN =
Gm�
c2r3

{[
2(β + γ)

Gm�
r
− γ(v · v)

+ (2 + α1)
GmM

r
− 1

2
(6 + α1 + α2)

mM
m�

(v · v)

+
3
2
(1 + α2)

mM
m�

(
v · r

r

)2
]

r

+

[
2(1 + γ)− mM

m�
(2− α1 + α2)

]
(r · v)v

}
(6)

where r and v are the relative position and velocity vectors of Mercury with respect to the
Sun, G is the universal gravitational constant and c is the speed of light in vacuum.

Furthermore, the angular momentum of the Sun S� produces the perturbation known
as the Lense–Thirring effect, which is included as follows [40]:

aLT = (1 + γ)
Gm�
c2r3

[
3
r2 (r× v)(r · S�) + (v× S�)

]
(7)

In addition, possible violations of the Strong Equivalence Principle (SEP) are consid-
ered in the dynamical model. The SEP, a cornerstone of GR, states that the inertial and
gravitational masses of a body are considered to be equal in any experiment in a gravity
field, e.g., planets in the gravity field of the Sun, and that the self-gravitational energy Ωi of
the bodies themselves only play a role on the same footing as the other energy forms [41].
To quantify the influence of possible violations of the SEP, the Nordtvedt parameter η is
used, which can be expressed as a function of PPN parameters (see Section 8.1 of [11]):

η = 4(β− 1)− (γ− 1)− α1 −
2
3

α2 (8)

where it is again assumed that α3, ζ1, ζ2, ζ3, ζ4 = 0. If the SEP is violated, η has a nonzero
value. It was determined by [21,25] that for Mercury the dominant perturbation induced
by a SEP violation, is equivalent to a change of the effective location of the Solar System
Barycenter (SSB). This means that the the position of the Sun with respect to the SSB has to
be redefined:

rSEP
� = − 1

µ�
(

1− η Ω�
m�c2

) ∑
j 6=�

(
1− η

Ωj

mjc2

)
µjrj (9)

The difference in SSB is at maximum in the order of decimetres for η in the order of 10−5

(the current upper constraint from experiments, see Table 1), and the only measurable effect
is a slight difference in the point-mass acceleration exerted on Mercury by the Sun.

Finally, the variation of the solar gravitational parameter µ� = Gm� is considered. GR
predicts that the gravitational constant G is constant across space and time, but other gravi-
tational theories have suggested that G may vary with the evolution of the universe [5,42].
In addition, the solar mass m� changes over time due to the radiative output of the Sun
and solar wind. The combination of the variation of these two parameters is expressed as:

µ̇�
µ�

=
˙Gm�

Gm�
=

Ġ
G

+
ṁ�
m�

(10)

In this study, a linear time variation ˙Gm�/Gm� is assumed as a first-order approximation
to constrain the effect of a changing solar gravitational parameter.
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The final equations of motion for acceleration aM acting on Mercury is a sum of the
defined accelerations in this section:

aM =
n

∑
i=1

aCG,i + aPN + aJ2� + aLT (11)

where aCG,i is the central gravity (point mass) acceleration for body i which is taken for all
n relevant bodies, the other terms apply for the Sun only. Equations (9) and (10) affect the
calculation of the solar acceleration terms.

2.2. Simulated Observations

To perform the estimation of parameters of interest (see Section 2.3), observations
of the dynamics of planet Mercury over time are required. During the missions, these
observations are realised by spacecraft tracking data, which provide two-way range and
Doppler measurements between ground stations on Earth and the spacecraft. In this study,
range and Doppler observations are both considered, but they are incorporated into the
estimation in a decoupled manner. Range observations are sensitive to longer-period
signals in the dynamics, such as those from planetary ephemerides. Doppler data, on the
other hand, are best suited to measuring shorter period variations, such as the spacecraft
orbit and planetary gravity field coefficients. The characteristic period of a signal for which
range data will be better suited than Doppler is on the order of several days and higher [43].
Taking this into account, we perform the following, decoupled analyses:

1. Simulated multi-arc estimation of the spacecraft orbit around Mercury using only
Doppler data, with characteristic signatures in the dynamics on the order of hours;

2. Mercury ephemeris estimation using only range data, with characteristic signatures
on the order of months.

This second step constitutes our simulated relativity experiment. The first step allows
us to generate spacecraft orbit uncertainties which we use as input to our measurement
error budget for our second step. To generate observations for our simulated ephemeris
estimation, we recenter the original range observation between Earth and the spacecraft,
denoted dE−S/C, making it a range observation between Earth and Mercury’s centre of
mass, denoted dE−M.

The error level of dE−M (the simulated observation of Mercury with respect to Earth)
is a combination of the direct uncertainty in the range observation of the spacecraft, and
the spacecraft orbit uncertainty w.r.t. Mercury, projected along the Earth–spacecraft unit
vector uE−S/C [44]:

σdE−M = σdE−S/C
+ |uE−S/C · σrS/C−M | (12)

where σrS/C−M is the time-varying orbit uncertainty of the spacecraft with respect to Mercury,
obtained from simulated Doppler data analysis. The errors σdE−M of the simulated Earth–
Mercury range observations are an important input for our numerical experiments, as they
in part drive the uncertainty at which parameters can be estimated.

For the two-way range observations from Earth to the spacecraft (dE−S/C), the follow-
ing inputs were taken. For MESSENGER, the range precision depends on the Sun-Probe-
Earth (SPE) angle. The errors increase considerably at lower angles due to interference
caused by solar plasma [21]. A two-way noise level of 0.5 to 3.0 m is used, depending
linearly on the SPE angle with minimum noise at 180 degrees and maximum noise at
35 degrees. Observations are not simulated when the SPE angle is below 35 degrees, as
their errors are too high to be of use in this experiment. BepiColombo range data do not
suffer from this solar plasma effect due to its multi-frequency radio links and, therefore,
the noise level is constant and data at any SPE angle can be used [27], even at extremely
low SPE angles there is no problem, providing the capability to conduct superior solar
conjunction experiments with the data of BepiColombo [45]. The target two-way noise level
for BepiColombo is 20 to 30 cm [46], first reports from the cruise phase of BepiColombo
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even give centimetre-level errors [47]. A conservative range noise level of 30 cm was chosen
for range simulations in this work.

The distance from the spacecraft to Mercury and its projected error uE−S/C · σrS/C−M

are determined through Doppler-based orbit determination of the spacecraft with respect to
Mercury. To incorporate this into the simulation, we simulated Precise Orbit Determination
(POD) for the MESSENGER and BepiColombo spacecraft, using tracking data schedules
and uncertainties similar to those in [21,48] for MESSENGER and [23,49] for BepiColombo.
The purpose of this part of our work was to determine how spacecraft position errors vary
along the mission duration, which we require as input to Equation (12).

It was found that the position errors of the spacecraft with respect to Mercury are
largely based on two factors: the geometry between the spacecraft and Earth in the solar
system (which varies over months) and the true anomaly of the spacecraft in its orbit
around Mercury (which varies over minutes). Using simulated POD of both spacecraft
from their entire mission, a database of orbit geometries and subsequent orbit determination
error levels was generated as input for our Mercury ephemeris simulation experiment.
During the generation of observations in the experiment, orbit determination errors σrS/C−M

are calculated through interpolation of this benchmark database, using as independent
variables the true anomaly of the spacecraft and the orbit geometry between the Sun,
Mercury and Earth.

The results for the obtained orbit determination error levels match with error levels
reported for MESSENGER (e.g., [20,21] and error levels expected for BepiColombo [50].
The validation of the complete simulation setup in Section 2.4 indicates that these simulated
errors are an accurate representation of the real situation, since past experiments could be
reliably reproduced.

2.3. Parameter Estimation

The goal of the estimation is to determine the accuracy with which the initial state of
Mercury and parameters γ, β, η, ˙Gm�/Gm�, J2� and AJ2� can be constrained using the
observations. The estimation is performed using a batch non-linear least-squares algorithm.
There are two different numerical integrations which are performed in one run of this
simulation experiment:

1. A true orbit has to be generated. A numerical integration of the orbit of Mercury
is performed using as input a true initial state of Mercury and set of parameters.
This true orbit is used to calculate the observations using the method described in
Section 2.2.

2. The initial state and parameters are perturbed, and a model orbit is generated through
numerical integration. With the modelled orbit, model observations are calculated.
The difference between the model observations and the true observations is what
is minimised in the least-squares estimation, after which the model orbit can be
generated again and this process repeats iteratively until the parameter estimation
converges.

The least-squares algorithm calculates a correction on the perturbed initial state and
parameters according to the following equation:

∆xlsq
0 = PHT

x W∆z (13)

where P is the covariance matrix:

P =
(

P−1
0 + HT

x WHx

)−1
(14)

∆xlsq
0 is the update on the parameter vector x which includes the initial state of Mercury

and the estimated parameters, P0 is the a priori covariance matrix, Hx is the design matrix
with partial derivatives of the observations with respect to the parameters and ∆z is the
difference between the true observations and modelled observations. W is the observation
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weight matrix, which represents the measurement error covariance. To fill W, we assume
uncorrelated measurement errors. Having obtained the typical error levels in Section 2.2,
a random Gaussian error sample is generated and added to the state of the spacecraft,
which will result in an error in the range observation. The tracking schedules (frequency
of observations) are taken similarly to [48] for MESSENGER and [49] for BepiColombo.
For both missions, one range observation is simulated as well for each Mercury flyby that
was performed during the cruise phase, as one tracking arc is considered during the orbit
determination of a flyby [32,51].

2.3.1. Least-Squares Error Analysis

The square root of the diagonal entries of covariance matrix P (Equation (14)) are
the formal uncertainties (σ) of the parameters, which is the main result of the simulation
that will be analysed in Sections 2.4 and 3. The formal error is generally an optimistic
representation of the true error of the estimation, the difference between the true and
estimated parameters, a quantity which is not known in a real experiment, but we can
analyse in this simulation experiment. Comparing the formal error to the true error
provides an important piece of information as to how valid the assumptions underlying
the covariance analysis are, which can be used to assess whether the formal confidence
levels are realistic. It is assumed that:

i Observation uncertainties are Gaussian and uncorrelated;
ii The “reality” (from which the observations are simulated) and the estimation model

(which is used during the least-squares estimation) are identical.

The covariance of a set of parameters (from which the formal errors are extracted)
defines the probability distribution of the true errors of those parameters. Under these
assumptions, the true errors will, therefore, be merely a realisation of the parameter
covariance. In our simulations, we know exactly whether these assumptions are true: all
physical effects used to simulate observations are known and, therefore, it is known exactly
whether the model complies with the above assumptions, and where these assumptions
may be broken.

When differences are introduced between the true orbit and the modelled orbit, e.g.,
when a certain gravitational effect is not taken into account in the modelled orbit, assump-
tion ii will be violated. The true errors on estimated parameters can be expected to be high
with respect to the formal errors to systematically compensate for the difference between
real orbit and modelled orbit. In this case, the formal error can be too optimistic, which
would lead to a false sense of confidence when only having the formal errors to look at,
which is the case when using real MESSENGER and BepiColombo tracking data.

2.3.2. A Priori Information

To stabilise the numerical solution, and incorporate results of past gravitational exper-
iments, the estimation is provided with a priori information about the uncertainties on the
parameters, through the a priori covariance matrix P0. Current state-of-the-art results for
our parameters of interest are given in Table 1. The value that we use for each parameter
as a priori information is indicated in bold. The choice made is usually the most accurate
experiment to date, except that using past results based on MESSENGER data is avoided
and the next best result is used instead, as results by MESSENGER would inherently be
(re)produced by our models.
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Table 1. Results of parameters from recent experiments. 1σ values are given for uncertainties. For
each parameter, the line in bold indicates what is used in this study as a priori information, the other
values are included for reference.

Parameter Result Method

γ 1 + (2.1± 2.3)× 10−5 Cassini solar conjunction [12]

β

1 + (1.2± 1.1)× 10−4 Lunar Laser Ranging [52]
1 + (−2.7± 3.9)× 10−5 MESSENGER tracking data [7]
1 + (−1.6± 1.8)× 10−5 MESSENGER tracking data [21]
1 + (0± 7)× 10−5 INPOP13c [53]

α1
(0.8± 4)× 10−6 Planetary perihelion precession [54]
(−0.4± 1.9)× 10−5 Small-eccentricity binary pulsars [55]

α2
(0± 8)× 10−10 Millisecond pulsars [56]
(4± 6)× 10−6 Planetary perihelion precession [54]

η
(3.1± 3.6)× 10−4 INPOP17a & Lunar Laser Ranging [57]
(−6.6± 7.2)× 10−5 MESSENGER tracking data [21]

Gm�
[
m3·s−2] (132, 712, 440, 040.042± 0.010)× 109 INPOP19a [51]

S�
[
kg·m2·s−1] (190± 1.5)× 1039 Helioseismology [58]

˙Gm�
Gm�

[
year−1] (0± 7)× 10−14 INPOP13c [53]

(−6.3± 2.2)× 10−14 EPM2011 [59]

For PPN parameter γ, the present known accuracy is 2.3× 10−5 from the Cassini
solar superior conjunction experiment [12]. BepiColombo will carry out similar superior
conjunction experiments during its mission [45], of which it is expected that at best an
uncertainty of 1.1× 10−6 can be attained for γ [24], a factor 20 increase in accuracy with
respect to the Cassini experiment. For both the current known value and hypothetical value
of the a priori uncertainty, results will be presented in Section 3.

For parameter J2�, choosing the ’correct’ result from a particular previous experiment
is not directly possible. The various reported values are often mutually incompatible, as
is apparent from Figure 1. We choose a value of 2.25× 10−7, which is about the average
of the recent results. A very conservative a priori uncertainty of 1× 10−7 is taken, which
is large enough that it does not unduly bias the estimation, and an uncertainty of J2� is
determined largely from the data.

2.3.3. Consider Covariance Analysis

There are various physical parameters that are used for calculations in the integration
or estimation, which are not known to perfect accuracy. Assuming that they are constant in
this experiment could lead to optimistic covariance for the parameters that we do estimate.
In this study, all variables used in calculating orbital dynamics were tested in terms of
the influence of the uncertainty by running the simulation with different settings. The
following parameters were identified to have a significant effect on the experiment:

• The gravitational parameter of the Sun Gm�;
• PPN parameters α1 and α2;
• Solar angular momentum S�;
• The gravitational parameters of the 300 most influential asteroids (interesting discus-

sions on the effect of asteroids on this type of experiment are presented in [7,26]).

To incorporate the uncertainty of such parameters into our analyses, we apply a con-
sider covariance analysis [36]. This method propagates the uncertainty of input parameters
to the uncertainty in the estimated parameters. The effect of the consider parameters
on the orbit of Mercury is assessed by means of partial derivatives. This operation is a
post-processing step: it happens after the parameter estimation itself is completed and
increases the covariance matrix.



Remote Sens. 2022, 14, 4139 11 of 21

The parameter covariance matrix including consider covariance matrix is expressed
as follows:

Pc = P +
(

PHT
x W
)(

HcCHT
c

)(
PHT

x W
)T

(15)

where P is the covariance matrix that is output of the least-squares estimation, Hc is
the design matrix for the consider parameters and C is the covariance matrix of the
consider parameters.

For the first three parameters, the consider uncertainty is taken from Table 1, for the
asteroids, the consider knowledge is taken from INPOP19a [51]. We assume a diagonal
consider covariance matrix. Taking this approach allows us to incorporate a number of
known sources of systematic error into our covariance analysis.

2.3.4. Incorporating the Nordtvedt Constraint

The Nordtvedt constraint (Equation (8)) provides an extra piece of information that
can guide the estimation algorithm. In particular, exploiting this relation prevents high
correlation between the PPN parameters with each other and other parameters in the
estimation [21,24]. To implement this equation, parameter η is not estimated in the least-
squares algorithm, but is calculated through the Nordtvedt constraint. In the results in
Sections 2.4 and 3, the formal error of η is calculated using the property that the variance of
a linear combination of parameters is [60]:

Var

(
m

∑
i=1

aiXi

)
=

m

∑
i=1

n

∑
j=1

aiaj Cov
(
Xi, Xj

)
(16)

The formal variance of η can be calculated by applying this property to the
Nordtvedt constraint:

Var(η) = Var(γ) + 16Var(β) + Var(α1) +
4
9

Var(α2)

− 8Cov(γ, β) + 2Cov(γ, α1) +
4
3

Cov(γ, α2)

− 8Cov(β, α1)−
16
3

Cov(β, α2) +
4
3

Cov(α1, α2)

(17)

However, the covariance terms with one or both of α1 and α2 (last 5 terms) are neglected,
as these terms cannot be calculated from the estimation output if α1 and α2 are excluded
from the parameter estimation. The consequence is that the formal error of the Nordtvedt
parameter is slightly overestimated, as the largest neglected covariance term is the one
between β and α1. This covariance term was analysed and was found to be positive in
value for our simulation, which causes a negative term in Equation (17), decreasing the
variance of η.

2.4. Validation

Before presenting the results of this study, a short description will be given of the
validation of the methodology. Our numerical integration error of Mercury’s orbit (i.e., the
numerical error due to approximation errors due to the integration scheme or (propagated)
machine precision errors) is approximately 1 cm after 20 years of integration, which is as-
sumed to be sufficient considering the noise level of BepiColombo observations. Validation
has been performed by comparing the simulation to selected publications for MESSEN-
GER [21] and BepiColombo [23,24]. For the validation, the same inputs and acceleration
models are used as much as possible. For BepiColombo, there are many comparable studies
[25–30] with comparable results, the two indicated articles were chosen because the inputs
and methods were elaborated upon very extensively, allowing for closer validation.

The formal errors of our estimations can be seen in Table 2, as well as those from
literature. Our reproduction of these publications presents uncertainties within a factor ∼2
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for all parameters when compared to the result from the publication itself, and within 1.5 in
most cases. As there are various design choices to be made in the setup of such a simulation,
and it is not unusual to see differences of a factor 2 or more between similar experiments in
literature, this reproduction is considered successful. This validation procedure shows that,
despite the simplifications that had to be made in the simulation of observations, our setup
serves as a valid method for simulating a gravitational experiment using Mercury tracking
data, which can reliably estimate parameters in various situations.

Table 2. Formal uncertainties (1σ) reported by recent gravity experiments using tracking data of
MESSENGER in the case of [21], or simulated tracking data of BepiColombo in the case of [23,24].
Below each result from literature, a reproduction of the formal uncertainties (1σ) of the publications
is given, using our software and similar inputs, compared for validation purposes.

γ β η J2�
˙Gm�

Gm�

[
year−1]

results from [21] 2.3× 10−5 1.8× 10−5 7.2× 10−5 2× 10−9 1.5× 10−14

reproduction of [21] 2.3× 10−5 2.0× 10−5 8.4× 10−5 3.4× 10−9 2.1× 10−14

ratio reproduction/literature 1.00 1.11 1.17 1.70 1.40

results from [23] 8.9× 10−7 3.8× 10−7 2.0× 10−6 3.7× 10−10 2.0× 10−14

reproduction of [23] 2.0× 10−6 7.7× 10−7 4.5× 10−6 3.8× 10−10 9.1× 10−15

ratio reproduction/literature 2.25 2.03 2.25 1.03 0.46

results from [24] 1.1× 10−6 1.0× 10−6 3.3× 10−6 3.2× 10−9 2.9× 10−14

reproduction of [24] 1.1× 10−6 7.5× 10−7 4.8× 10−6 2.5× 10−9 3.4× 10−14

ratio reproduction/literature 1.00 0.75 1.45 0.78 1.17

3. Results

In this section, the results of the simulations will be presented. The simulations are set
up with the method and inputs described in Section 2, using the same settings that lead
to the successful validation of the algorithm. In the various simulations described in the
following subsections, only two settings are changed:

1. We simulate our virtual reality with a static or dynamic solar oblateness;
2. We try to estimate a static or dynamic oblateness in the parameter estimation.

We start out in Section 3.1 with the typical approach: we assume the real solar oblate-
ness is static and it is only attempted to estimate a constant coefficient J2�. In Section 3.2,
we analyse the situation as suggested in the introduction of this paper: the solar oblateness
is dynamic, and a mean value J2� as well as the amplitude of the oscillation is estimated. Fi-
nally, in Section 3.3, the situation is analysed that in reality, the solar oblateness is dynamic,
however, this effect is neglected and only a static coefficient J2� is estimated.

In Section 2.3.1, it was explained what the expectations considering the true and formal
errors when the true situation (point 1 above) and the modelled situation (point 2 above) are
the same or different. In Sections 2.4, 3.1 and 3.2 results are presented of simulations where
the virtual reality and modelled situation are the exact same, hence, the two assumptions
of Section 2.3.1 hold. In the simulation performed to generate the results in Section 3.3, the
virtual reality and modelled situation are different, hence, the assumptions are broken. In
that case, a thorough analysis is performed of the true errors.

3.1. Estimation with a Static Solar Oblateness

We first present the results of an estimation with settings that are conventional in
comparable experiments (e.g., [21,23,24]): J2� is a constant parameter and the only solar
spherical harmonics coefficient taken into account, it is a static parameter, the dynamic
variation of the solar oblateness is not considered. Formal uncertainties of estimated
parameters, for MESSENGER-only, BepiColombo-only, and the combined data set, are
reported in Table 3.
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Table 3. Formal uncertainties (1σ) of estimated gravity parameters and solar oblateness when using
the method described in Section 2, except that only a static J2� is included in the virtual reality and
the estimation and no other spherical harmonics effects. Simulations are performed for various types
of inputs, as indicated in the first column.

γ β η J2�
˙Gm�

Gm�

[
year−1]

only using MESSENGER data 2.3× 10−5 1.9× 10−5 7.2× 10−5 4.8× 10−9 2.9× 10−14

only using BepiColombo data 4.0× 10−6 1.2× 10−6 4.8× 10−6 7.9× 10−10 5.0× 10−15

combined data, a priori σγ = 2.3× 10−5 3.8× 10−6 1.2× 10−6 4.9× 10−6 7.4× 10−10 6.6× 10−16

combined data, a priori σγ = 1.1× 10−6 1.1× 10−6 7.1× 10−7 5.0× 10−6 3.0× 10−10 6.5× 10−16

For the combined data set, formal errors for γ, β and η are comparable to the estimation
when using BepiColombo data, indicating that the post-BepiColombo solution does not (or
hardly) benefit from the MESSENGER data. γ and β cause a perihelion shift in the orbit of
Mercury. The short but accurate data set of BepiColombo is well suited to detect this effect.
Even though the cumulative perihelion advance builds up further when observing over the
long term, the errors of the MESSENGER observations are too high to be able to provide a
better estimate than just with the BepiColombo data on the short term. The formal error of
η is influenced by the formal errors of γ and β through Equation (17) and, therefore, the
same behaviour is observed.

The long-term data set does, however, have an advantage for estimating the time
variable gravitational parameter ˙Gm�/Gm�, as an improvement of one order of magnitude
can be found with respect to the estimation that only uses BepiColombo tracking data. The
effect caused by the time variable gravitational parameter is a weakening of gravitational
interactions causing Mercury to slowly drift away from the Sun, which is different to the
perihelion shift, which only changes the orientation of the elliptical orbit compared to the
Sun but does not change it. Moreover, the linear reduction in Mercury’s mean motion as
a result of ˙Gm�/Gm� will manifest itself as a quadratic signature in time on Mercury’s
position. We observe that using the combined data set helps to decorrelate this effect from
other parameters: correlation coefficients of ˙Gm�/Gm� with γ, β and η parameters are
around 0.1 compared to 0.5–0.6 in the case of only using BepiColombo data.

To show the potential of the suggested BepiColombo superior conjunction experiment
(see Section 2.3.2), results are also shown in Table 3 when an improved a priori uncertainty
of γ is used corresponding to the expected outcome of such an experiment: σγ = 1.1× 10−6.
The formal uncertainty that can be obtained for γ using the parameter estimation in this
study (relying on dynamics only) is 3.8× 10−6, worse than the formal uncertainty that
can be obtained with this suggested superior conjunction experiment. The value of this
experiment is clear: improvements of a factor two can be obtained for both β and J2�.

3.2. Estimation with a Dynamical Solar Oblateness

Here, we report formal uncertainties of the estimated parameters when the amplitude
of the periodic component of J2� is implemented in our truth model and this amplitude is
included as a parameter to be estimated. A nominal amplitude A = 0.563× 10−7 was used,
a quarter of the value of J2�, as suggested by [18], and it was attempted to estimate AJ2�
alongside the parameters that were estimated in Section 3.1. Perturbations due to J4� are
not considered. The results for the formal uncertainties are reported in Table 4.
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Table 4. Formal uncertainties (1σ) of estimated gravity parameters and solar oblateness when using
the method described in Section 2. For the solar spherical harmonics, the time-variable J2� is
implemented in the virtual reality and the estimation as dictated by the amplitude AJ2� . Simulations
are performed for various types of inputs, as indicated in the first column.

γ β η J2�
˙Gm�

Gm�

[
year−1] AJ2�

only using MESSENGER data 2.3× 10−5 1.9× 10−5 7.2× 10−5 4.8× 10−9 6.0× 10−14 3.1× 10−10

only using BepiColombo data 3.8× 10−6 1.1× 10−6 4.8× 10−6 8.1× 10−10 5.4× 10−15 1.0× 10−10

combined data, a priori σγ = 2.3× 10−5 3.8× 10−6 1.2× 10−6 4.9× 10−6 7.4× 10−10 1.7× 10−15 3.7× 10−11

combined data, a priori σγ = 1.1× 10−6 1.1× 10−6 7.0× 10−7 5.0× 10−6 3.0× 10−10 1.8× 10−15 3.8× 10−11

The resulting formal uncertainty for AJ2� is 3.7× 10−11, 0.017% the value of the zonal
coefficient J2� itself. The simulation and estimation in this section have been tested for a
range of other amplitudes, from AJ2� = 0 to unrealistically high values of AJ2� = 1000× J2�.
The resulting formal errors of all estimated parameters are virtually identical for any value
of AJ2� . Even if a time-variable component does not exist, the constancy of J2� can be
constrained to a level of 0.017%, given the hypothesised values J2� = 2.25× 10−7 and
A = 0.563× 10−7, and under the assumption of a purely sinusoidal variation with a fixed
phase lag. Compared to the estimation of a static J2� in Section 3.1, the formal uncertainties
of PPN parameters γ and β and Nordtvedt parameter η are unaffected.

The matrix of the estimated parameters (excluding the Mercury initial state, which is
correlated with itself, but only negligibly so with these parameters) is shown in Figure 3, for
a priori σγ = 1.1× 10−6. The a priori uncertainty cannot be improved upon by estimating γ
from its dynamical signature (see Section 3.1). Consequently, in this case the determination
of γ is decoupled from Mercury’s dynamics in the simulation, and, therefore, does not
occur in the correlation matrix. In previous studies, which do not consider a dynamic J2�,
the PPN parameters are mainly correlated with J2�. Including the amplitude AJ2� in the
estimation yields a correlation with the zonal coefficient variation amplitude.

Figure 3. Correlation matrix between estimated parameters in the case that the amplitude AJ2� is
estimated with a priori σγ = 1.1× 10−6 (corresponding to the Table 4). The correlation matrix is
constructed using covariance matrix P (Equation (14)).

The time variable gravitational parameter of the Sun ˙Gm�/Gm� has a formal error
double in value in Table 4 with respect to Table 3. The reason is the correlation of 0.92
between ˙Gm�/Gm� and AJ2� , indicating that the separate effects are more difficult to
distinguish as they have a similar perturbation on the orbit of Mercury. It is expected
that these effects cannot be distinguished due to the coincidental timing of the two space
missions to Mercury, see Figure 2. Both spacecraft orbit Mercury during a solar maximum.
As there are no data in the solar minimum, the estimation algorithm is not able to deduct
from the observations that the correction due to the time-varying J2� is a sinusoidal effect,
but might consider it a linear effect instead.



Remote Sens. 2022, 14, 4139 15 of 21

3.3. What If J2� Is Periodic, but It Is Not Estimated?

With the suggestion that the value of J2� is dynamic, with periodicity following the
solar activity cycle, the question can be raised: what happens if a periodic variability exists,
but it is not considered in an estimation? In fact, this is the approach that has been taken
thus far, and it is natural to consider what the consequences of this choice have been for
tests of GR.

Here, we present simulation results to test this, by setting a dynamic J2� in the truth
model with a static value of 2.25× 107, while omitting the effect of time-variable J2� in the
estimation model. The simulation is performed for a range of amplitudes AJ2� from 0.1%
to 100% the value of J2�.

The resulting true errors of the estimated parameters are plotted against the used
value of AJ2� in Figure 4. In addition, the formal error level is indicated for each separate
mission, and the combined missions (which are practically independent of the chosen value
of AJ2� ).

Figure 4. True estimation errors (absolute values) of parameters when not taking into account a
dynamic J2�, versus the amplitude AJ2� taken relative to J2�, with a priori σγ = 2.3× 10−5. The
dashed horizontal lines indicate the formal errors, of which the value remains unchanged (up to a
relative change of 10−5) independent of amplitude. In all plots except the one considering ˙Gm�/Gm�,
the formal errors of only BepiColombo (orange) and combined data (green) are very similar and,
therefore, the dashed horizontal lines overlap.

In all of the plots, two distinct regions can be identified. For lower values of AJ2� , the
true error is around the formal error, as would be expected. This indicates that the time-
variable perturbation of J2� has a negligible effect and no problems will be encountered
in the estimation if it is omitted in the dynamical modelling. In the case of only using
MESSENGER data, this behaviour is in most cases observed for larger values of AJ2� as
well, as the change in orbit caused by the time-variability is small enough to go undetected.

When increasing AJ2� , the formal errors stay the same while the true errors rise. When
using only the BepiColombo or combined data, a clear linear trend in true error can be seen
on the right side of the plots. High true to formal error ratios are a sign of a poor estimation
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result, as the true value of the parameter is far outside the confidence interval given by the
least-squares algorithm.

As an indication of where formal uncertainties are no longer a good representation of
the true error, and the influence of the unmodelled AJ2� therefore becomes significant, we
look at the point at which the true error is three times higher than the formal uncertainty.
This means that the true value of the parameter lies outside of the 99% confidence interval
(3σ) given by the least-squares estimation, specifically due to the effect of the periodic J2�
effect, which gets absorbed into other parameters. Table 5 indicates where this point is
reached for all the cases of Figure 4.

Table 5. Amplitudes (AJ2� taken relative to J2�) at which the true to formal error ratios exceed 3 in
the linear regions in Figure 4. For parameter β using only MESSENGER data, the true-to-false error
ratio never exceeds 3 for the implemented amplitudes and the linear region does not appear.

MESSENGER BepiColombo Combined

γ 20% 2% 0.8%

β - 2% 4%
˙Gm�/Gm� 0.5% 0.8% 0.04%

J2� 44% 6% 1%

η 44% 20% 3%

4. Discussion

In this study, the combined analysis of simulated BepiColombo and MESSENGER
data was performed, to assess whether a time-variable J2� is observable in the long-term
tracking data, and whether it will influence tests of GR. The results in Table 3 show that the
results for parameters γ, β, η and J2� do not benefit from the combined data set compared
to an estimation which only uses BepiColombo data. However, for the time-variable
gravitational parameter of the Sun ˙Gm�/Gm�, an improvement of one order of magnitude
was found when using the combined data set. An improvement in this parameter can be
used to test gravitational theories that predict a varying value for the Newtonian constant
G, such as scalar-tensor theories, and provide deeper insight into possible deviations from
GR [5,42]. In addition, the results in Tables 3 and 4 show the relevance of conducting a
solar superior conjunction experiment with the BepiColombo spacecraft to determine PPN
parameter γ.

It is shown in Section 3.2 that the amplitude of the variation of J2� can be determined
to a formal uncertainty of 3.7× 10−11. Considering that currently no reliable constraint
is available for the temporal variation of J2�, any estimated value for the amplitude with
this formal uncertainty will be a very valuable result. Many temporal variations suggested
in heliophysics (e.g., recent examples by [8,14,16,18,19]) could be rejected based on this
experiment. In the same manner, if the temporal variation is too small to measure or
does not exist (as, e.g., suggested by [17]), an upper limit for the temporal variation can
be determined with the obtained formal uncertainty. Any answer will allow the field of
heliophysics to refine their theoretical models of the solar shape and interior further.

Finally, in Section 3.3, the results of a parameter estimation are shown when a temporal
variation is ignored and constant J2� coefficient is assumed. This mirrors the current
situation in data analysis, where we stress that we do not perform any direct estimate of
how big the J2� variability may be. It is seen in Figure 4 that especially the estimation
of parameter ˙Gm�/Gm� is sensitive to not estimating a temporal variation, as relatively
high true errors appear for low amplitudes of the periodic J2� compared with the other
estimated parameters, i.e., the linear region is in the plot is present at lower amplitudes.
This result can be used to already analyse possible amplitude size of J2�, when combining
two pieces of information:
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1. This study shows that if the amplitude of J2� is larger than roughly 1 × 10−6, there
should be true errors in the estimation of ˙Gm�/Gm� of 10−12 or higher;

2. Several independent experiments show the following constraints on ˙Gm�/Gm�.
Using MESSENGER data alone, ˙Gm�/Gm� was estimated to be (−6.130± 1.47) ×
10−14 by [21]. The variation of the gravitational constant Ġ/G has also been tested
in numerous experiments that are independent of the shape of the Sun [5]. The best
experiments to date are from Lunar Laser Ranging [61] and from cosmological Big
Bang Nucleosynthesis [62,63]. Constraints can be derived for ˙Gm�/Gm�, using both
of these experiments by applying Equation (10), where it is assumed that the mass
loss of the Sun is ṁ�/m� = (−10.0± 2.5) × 10−14 as also used by [21]. Lunar Laser
Ranging yields ˙Gm�/Gm� = (30± 90) × 10−14 and Big Bang Nucleosynthesis yields

˙Gm�/Gm� = (−10± 40) × 10−14.

It is unlikely that the estimate for ˙Gm�/Gm� from [21] has a true error that is in the
order of 10−12 or higher, caused by ignoring a temporal variation of J2�. If such a high true
error would be present, it would have manifested itself in the residuals and/or estimates
of other parameters, such that the result of the MESSENGER experiment would be in
disagreement with the other experiments, which are independent of the gravity field of the
Sun. From this observation, and our results, it can already be deduced using Figure 4 that
the amplitude of a temporal variation of J2� cannot be higher than roughly 1× 10−6.

As formal uncertainty levels will decrease by one to two orders of magnitude with
the introduction of the BepiColombo tracking data, the risk becomes even higher that
parameters will be estimated with high true errors compared to their formal uncertainty.
Table 5 indicates that for an amplitude as low as 0.04%, the results of the estimation of

˙Gm�/Gm� will be significantly wrong (true error > 3σ) due to the ignored temporal
variation of J2�. If this situation occurs, the parameter estimation will result in false
parameter values, while giving relatively high confidence in the results. The consequence
is that, if GR is the true theory of gravity, the result of tests of the theory will be a false
negative one. This could lead to confusion and controversy in the field of gravitational
physics, similar to the situation in the 1960s when measurements of the solar oblateness
seemed to contradict GR as well [8,64]. This study shows how to prevent the unnecessary
confusion: take notice of the potential temporal variation of the solar shape and estimate it
alongside other gravity parameters.

5. Conclusions

The aim of this study was to investigate the impact of a temporal variation of the
solar gravitational field on experiments of gravitational theory that exploit the relativistic
perturbations on the orbit of Mercury. A simulated reality and parameter estimation
algorithm were used to simulate the experiment that can be conducted by estimating
relevant parameters using the MESSENGER mission and upcoming BepiColombo mission.
The simulation of the experiment is thoroughly validated and tested and shows comparable
results to similar studies.

Combining the MESSENGER and BepiColombo data sets is advantageous for deter-
mining the time variable gravitational parameter of the Sun ˙Gm�/Gm�. In addition, it
allows us to estimate the amplitude of a periodic variation of the solar zonal coefficient
J2� with a formal uncertainty of 0.017% the value of the coefficient itself. Considering that
currently no reliable estimate is available for this periodic variation, this result will be very
valuable for gravitational physics and heliophysics.

Our analysis showed that if a periodic variation of J2� has an amplitude higher than
5%, constraints on ˙Gm�/Gm� which were obtained using MESSENGER tracking data
would contain high true errors to the point that it would contradict results of independent
experiments. As this has not been the case, it is expected that the temporal variation is
lower than 5%.

It is also shown in Figure 4 that if a periodic variation exists that is higher than 0.04%
of the value of J2�, but it is ignored during the parameter estimation using BepiColombo
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data, it will lead to spurious conclusions in data analysis. Specifically, doing so will result
in true errors of gravitational physics parameters which are substantially higher than heir
formal errors, due to the signature of AJ2� leaking into these parameters. It is, therefore,
highly recommended that when performing these types of experiments using the upcoming
BepiColombo tracking data, note should be taken of possibility that a temporal variation
of the solar gravitational field could significantly affect the outcome of their experiments.
The method to avoid this situation is to include the temporal variation in the parameter
estimation.

It should be noted that the sinusoidal model for the variation of the J2� coefficient is
only a first-order approximation, and it is recommended to test more realistic and diverse
representations of the temporal variation, for instance, such that it better corresponds to
the magnetic solar activity cycle (e.g., based on sunspot numbers).
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Appendix A. Prior Estimations of the Solar Oblateness

Table A1. Selected attempts to determine J2� over the last 25 years, as shown graphically in Figure 1.
For comprehensive lists of attempts, see [8,19].

Publication Field J2� 1σ

[51] Planetary orbits 2.01× 10−7 1× 10−9

[21] Planetary orbits 2.25× 10−7 2× 10−9

[7] Planetary orbits 2.25× 10−7 9× 10−9

[65] Planetary orbits 2.37× 10−7 -
[20] Planetary orbits 2.4× 10−7 2× 10−8

[53] Planetary orbits 2.3× 10−7 2.5× 10−8

[33] Planetary orbits 2.11× 10−7 -
[66] Planetary orbits 2.22× 10−7 2.3× 10−8

[67] Planetary orbits 2.4× 10−7 2.5× 10−8

[68] Planetary orbits 1.82× 10−7 4.9× 10−8

[69] Heliophysics 2.21× 10−7 -
[70] Heliophysics 1.65× 10−7 9.73× 10−8

[14] Heliophysics 2.22× 10−7 9× 10−10

[71] Planetary orbits 1.9× 10−7 3× 10−5

[72] Heliophysics 2.21× 10−7 -
[73] Heliophysics 1.6× 10−7 4× 10−9

[74] Heliophysics 2.22× 10−7 -
[58] Heliophysics 2.18× 10−7 6× 10−9
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