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Abstract: Unmanned aerial vehicle (UAV) remote sensing technology is gradually playing a role
alternative to traditional field survey methods in monitoring plant functional traits of forest ecology.
Few studies focused on monitoring functional trait ecology of underground forests of inaccessible
negative terrain with UAV. The underground forests of tiankeng were discovered and are known
as the inaccessible precious ecological refugia of extreme negative terrain. The aim of this research
proposal is to explore the suitability of UAV technology for extracting the stand parameters of
underground forests’ functional traits in karst tiankeng. Based on the multi-scale segmentation
algorithm and object-oriented classification method, the canopy parameters (crown width and
densities) of underground forests in degraded karst tiankeng were extracted by UAV remote sensing
image data and appropriate features collection. First, a multi-scale segmentation algorithm was
applied to attain the optimal segmentation scale to obtain the single wood canopy. Second, feature
space optimization was used to construct the optimal feature space set for the image and then the k-
nearest neighbor(k-NN) classifier was used to classify the image features. The features were classified
into five types: canopy, grassland, road, gap, and bare land. Finally, both the crown densities and
average crown width of the trees were calculated, and their accuracy were verified. The results
showed that overall accuracy of object-oriented image feature classification was 85.60%, with 0.72
of kappa coefficient. The accuracy of tree canopy density extraction was 82.34%, for which kappa
coefficient reached 0.91. The average canopy width of trees in the samples from the tiankeng-inside
was 5.38 m, while that of the outside samples was 4.83 m. In conclusion, the canopy parameters in
karst tiankeng were higher than those outside the tiankeng. Stand parameters extraction of karst
tiankeng underground forests based on UAV remote sensing was relatively satisfactory. Thus, UAV
technology provides a new approach to explore forest resources in inaccessible negative terrain
such as karst tiankengs. In the future, we need to consider UAVs with more bands of cameras to
extract more plant functional traits to promote the application of UAV for underground forest ecology
research of more inaccessible negative terrain.

Keywords: karst tiankeng; UAV; canopy; multi-scale segmentation; object-oriented classification

1. Introduction

The karst tiankeng is an extremely massive negative karst terrain with extraordinary
spatial and morphological features, including a large volume, steep and trapped rock
walls, and deeply depressed well or barrel-shaped contours [1–3]. The term “tiankeng”
was originally coined by Zhu Xuewen’s group at the Institute of Karst Geology, Chinese
Academy of Geological Sciences [1]. Tiankengs are developed in soluble rock formations
where the thickness of continuous sedimentation and the width of the vadose zone of the
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aquifer can be particularly large. Moreover, tiankengs connect from the underground to
the surface, with a diameter and depth ranging from more than 100 m to several hundred
meters, and to link the underground rivers at the bottom [3,4]. As the traces and values of
karst tiankengs are constantly discovered and excavated, monitoring and research efforts
on the diversity of tiankeng plant continue to be carried out. Generally, tiankeng plant
species are investigated by manual long-term field surveys (accessible tiankengs), single-
rope technique (SRT) supplemented by multi-angle photography with cameras and UAV
(inaccessible tiankengs) [5,6]. Existing studies suggested that tiankengs possess a unique
ecosystem independent of the tiankeng-outside [6–8]. It was a relatively closed microhabitat
environment with stable temperature, abundant precipitation, sufficient heat, and suitable
humidity [9]. This special environment provides an ideal habitat for plant reproduction
and growth, which could become an important habitat and conservation area for some
species under global change. However, the steep, vertical, enclosed walls of the tiankeng
makes it difficult for researchers to approach. This poses many difficulties in conducting a
comprehensive investigation of the tiankeng.

The tree canopy is an important component of tree growth and physiological activity
and is the basis of plant function trait ecology [10]. Additionally, the canopy can reflect the
plant community’s acquisition of resources, the stability level of the community and the
intraspecies and interspecies competitive relationships [11,12]. Moreover, it also reflects
the adaptation and corresponding strategies of plants to the variability of the habitat
environment, as well as the significance of the influence of environmental factors [13].
The canopy serves to monitor and estimate tree growth, and even determine the timber
properties of wood [14], prevent tree pests and diseases, and other functions [15]. In forest
surveys, traditional methods of canopy size measurement incorporate measuring the radius
of the canopy in different directions (usually 4 or 8 directions are chosen) centered on the
tree trunk and estimating the size of the canopy by circular or elliptical methods [14,16].
However, this method has disadvantages including heavy workload and low accuracy.

Karst tiankeng coupled with underground forests have been known as inaccessible
precious ecological refugia of extreme negative terrain. However, it is difficult to measure
the canopy information by traditional field survey methods. Tiankeng has a complicated
topography, where the underground forests grow on steep slopes, of varying gradients,
shading each other by the forest canopy; hence, it is challenging to obtain the exact canopy
width in all directions in the underground forests. Although far-reaching, large-area
detection can be provided by remote sensing, and whole forest image data can be acquired
completely from a top-down perspective, high-resolution satellite data are limited in many
applications due to high acquisition costs and low flexibility. Similarly, the depth of the
tiankeng reaches at least 100 m, and the underground forest of the tiankeng rests on
the inverted stone slope. This will lead to a large number of shadows in the acquired
remote sensing images. In addition, the tiankengs are fragmented on the karst surface
landscape, with very small patches in the tiankeng area with respect to the satellite remote
sensing image. Therefore, there is an urgent need to find new technical approaches to
accurately measure and obtain information about the tiankeng canopy. UAV remote sensing
technology overcomes the shortcomings of the above measurement methods to a certain
extent. It has the advantages of high accuracy, low cost, lightness and dexterity [17,18]
and has achieved remarkable results in the extraction of tree canopy information [19–23].
Especially for a relatively small study area such as karst tiankengs, the rich texture and
shape information of UAV remote sensing images make it potentially more favorable for
forest canopy information extraction beneath the tiankengs.

The object-oriented image analysis method has widespread applicability in tree canopy
extraction [24–26]. Compared with the traditional classification methods based on image
elements, object-oriented image analysis can eliminate the “pretzel phenomenon” [27–29].
The “pretzel phenomenon” is the black and white noise produced during image processing.
It also means that the same feature is divided into many small patches or even classified into
different types. Object-oriented image analysis holds unique advantages for the recognition
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of complex features, which are being widely used in the classification of UAV remote
sensing images [24]. The principle of the object-oriented image analysis method is to
segment the image into special and meaningful basic classification objects by using spectral,
shape, texture and other information [30]. Combining object-oriented image analysis with
machine learning algorithms can improve classification accuracy, where the k-NN algorithm
is applicable to non-normally distributed data and widely used in remote sensing image
classification [31,32]. Dymond et al. performed object-based forest information extraction
by using the k-NN classification, later confirmed that the nearest neighbor classification
method has higher extraction accuracy than traditional classification methods [33]. Han
et al. extracted information on Phyllostachys edulis using an object-oriented multi-scale
segmentation method, combined with the k-NN algorithm and hierarchical analysis, and
they have obtained better extraction results [34].

UAV remote sensing technology has good applications in monitoring forest informa-
tion. Sun et al. explored the applicability of UAV remote sensing techniques in high-density
forest structures based on UAV imagery [16]. Wang et al. automatically extracted key
forest structure parameter information of a subalpine coniferous forest according to an
object-oriented approach and tested the efficiency and reliability of the automatic extrac-
tion method of canopy parameter information based on UAV remote sensing images [15].
However, most of these studies were conducted in positive terrain such as plains, hills and
mountains. The studies of functional trait ecology of underground forests of inaccessible
negative terrain with UAV were less. It is very difficult to obtain the functional trait param-
eters of the underground forest by traditional methods. UAV remote sensing provides a
new way to explore and discover underground forest plant diversity and functional traits
in karst tiankeng.

The aim of our research is to explore the suitability of UAV technology for extracting
the canopy parameters of underground forests’ functional traits in karst tiankeng. Based on
UAV remote sensing images, orthophotos and the canopy height model of the underground
forest within Shenxiantang tiankeng of varying degradation levels and tiankeng-outside
were obtained. Then, we extracted canopy information by using multi-scale segmentation
and object-oriented classification methods, extracted their densities and canopy width
stand parameters, and combined them with visual interpretation for accuracy verification.
Subsequently, we explored the applicability of high spatial resolution UAV remote sensing
imagery to extract the canopy parameters of tiankeng underground forests and identify the
differences in forest stand parameters inside and outside the tiankeng. The research results
confirmed that UAV technology has great potential and prospects in monitoring functional
trait ecology of underground forests of inaccessible negative terrain.

2. Materials and Methods
2.1. Study Area

We took the Zhanyi Tiankeng Group, located in Haifeng Nature Reserve, Yunnan
Province (25◦35′–25◦57′N, 103◦29′–103◦39′E), as the study area. Here, primary and degraded
tiankengs coexist with varying morphological sizes and degradation levels [Figure 1]. This
area lies in the transition zone from a temperate plateau climate to a subtropical plateau
monsoon climate, with an annual precipitation of 1073.5 mm–1089.7 mm. With the daily
temperature difference but the annual temperature difference is relatively small. The annual
average temperature is about 13.8 ◦C. The total annual solar radiation is 123.8 kcal·cm−2.
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types. Through field surveys of woody plants, we found 19 species of trees in the Shen-
xiantang tiankeng. The main tree types in the underground forests on the south side of 
Shenxiantang tiankeng are Pinus yunnanensis, Keteleeria evelyniana, Quercus variabilis, Alan-
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side, namely SG1–SG3. Other samples were set up in the tiankeng, namely S1 and S2  
[Figure 2]. 

Figure 1. A location map of the karst tiankeng group area. (a) Location map (province, city and
district) where the study area is located; (b) Elevation map of Zhanyi district; (c) Schematic diagram of
Zhanyi Tiankeng Group. Red circled areas are the border of different tiankengs. B means Bajiaxiantang
tiankeng, S means Shenxiantang tiankeng.

Shenxiantang tiankeng was selected for this study on the basis of field investigations,
which is a typical moderately degraded tiankeng in the Zhanyi Tiankeng Group. Its
elevation is 2028 m. The long and short diameter are approximately 422 m and 349 m,
respectively. The depth is approximately 149 m. The Shenxiantang tiankeng is a larger
scale tiankeng with undegraded vertical walls and almost no vegetation on its western
side. The eastern side is a semi-degraded rock wall, with vegetation mainly consisting
of sparse trees and shrubs, and has the main access road to the bottom of the tiankeng,
which was once used by local residents for farming, but is currently fallow. The south
slope is a completely degraded rock walls where form an underground forest with rich
vegetation types. Through field surveys of woody plants, we found 19 species of trees in
the Shenxiantang tiankeng. The main tree types in the underground forests on the south
side of Shenxiantang tiankeng are Pinus yunnanensis, Keteleeria evelyniana, Quercus variabilis,
Alangium chinense, Cyclobalanopsis glauca, Cornus capitata, Quercus guyavifolia, Cornus oblonga,
etc. Samples were randomly set up at areas with dense vegetation, good tree growth, and
little difference in plant type and growth. We set up three samples on the tiankeng-outside,
namely SG1–SG3. Other samples were set up in the tiankeng, namely S1 and S2 [Figure 2].

2.2. Data Collections

We chose the DJI (Da Jiang Innovations) Royal 2 Mavic Pro UAV, which is manufac-
tured by China DJI Innovation Technology Co. The UAV weighs 907 g and possesses a
1/2.3-inch CMOS RGB image sensor with 12.35 million effective pixels. With a lightweight,
and easy to carry, the aerial photos can be obtained in red, green and blue visible bands at
a high definition.
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WSW means the west-southwest slope, NEN means the north-northeast slope, and WS means the
southwest slope. (b) Samples of tiankeng-inside and tiankeng-outside.

The UVA missions were implemented from 11:00 to 12:30 on 4 October 2022. During
the data acquisition period, the weather conditions were favorable, with adequate solar
illumination, calm winds with breeze and no clouds cover. We chose the takeoff point in
the open area outside the tiankengs after route planning [Figure A1 in Appendix A]. Using
the DJI flight planner and Pix4DCapture apps to plan the flight missions. We set the flight
height to 70 m above ground level. The front overlap and side overlap were set to 70% and
63%, respectively. The study area has a special topography, with a large elevation drop,
and no signal inside. Therefore, the ground control points were obtained by RTK in the
open area around the tiankeng-outside and marked with spray paint [Figure A1].

We collected auxiliary data such as DEM and vector boundary data of the study area.
The DEM is a product of ASTER GDEM with a resolution of 30 m from the central geospatial
data cloud platform (http://www.gscloud.cn accessed on 27 July 2022), which were used
to determine the location (slope direction) of the sample outside the tiankeng. The slope
direction of the study area was calculated by ArcGIS 10.5 software.

2.3. Data Processing

The UVA images were processed in the Pix4D mapper software. Firstly, we checked
the photos and got 942 valid photos after deleting the photos with poor quality. Secondly,
we imported the position information of the photos and ground control point in Pix4D
mapper with the default WGS84 coordinates, followed by image adjustment, feature point
matching, aerial triangulation, and image mosaic. Finally, the point cloud data (average
point density 134.72 per m3), digital surface model (DSM) and digital orthophoto map
(DOM) were obtained. After checking the quality report without error tips, we found
no obvious seam lines and blurred features in the orthophoto image. This indicated that
the experimental processing results meet the requirements of this study. The area of
image covered is 860,000 m2 and the ground sampling distance (GSD) of original images
is 0.03 m. Taking into account the data processing efficiency and canopy extraction effect,
we resampled all image data to 0.1 m. The original point clouds were separated into
ground point clouds and canopy point clouds (non-ground points) using cloth simulation
filter (CSF) algorithm in Cloud Compare software [23,35]. The non-ground points of other
ground classes except the canopy point cloud were cleaned manually [23]. Cleaned ground
point clouds were used to produce the Triangulated Irregular Network (TIN), and then
converted to raster with a resolution of 0.1 m to obtain the DEM. Finally, the canopy height
model (CHM) was obtained by subtracting the DSM from the DEM.

http://www.gscloud.cn
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2.4. Multi-Scale Segmentation

To extract single wood canopies, we used the multi-scale segmentation algorithm in
eCognition Developer from Definiens Imaging, Germany. Multi-scale image segmentation
has been widely used in tree canopy extraction as a local optimization process. It is a
top-down regional merging method that ensures minimum intra-object heterogeneity
and maximum average object-to-object heterogeneity [36,37]. The scale parameter is an
important parameter for multi-scale segmentation [38]. Other parameters that affect the
segmentation results are shape parameters and compactness.

The optimal segmentation scale is estimated by using the Estimation of Scale Parameter
(ESP) plug-in of the eCognition software. The ESP algorithm starts with a single pixel as
an object and then iterates up the process species. Smaller image objects are merged to
become larger image objects, and the minimized objects with internal homogeneity are
obtained by continuous optimization [39]. The algorithm determines the best segmentation
scale by calculating the rates of change (ROC) from the local variance (LV) of the image
object [40]. When the ROC value is maximum, the segmentation scale corresponding to the
peak presented is the optimal scale [27]. The shape and tightness parameters need to be
tested repeatedly to obtain the best results. The optimal scale parameters are filtered by
experiments comparing control variables using a multi-scale segmentation algorithm for
optimal values of shape and tightness parameters. During the preliminary tests, we found
that the optimal division scale ranged roughly from 10 to 200. Then we set the starting
scale in the ESP plug-in to 10, the step size to 1, and the shape and tightness parameters to
0.5, with 200 cycles to finally obtain the segmentation parameter evaluation plots.

2.5. Object-Oriented Classification

The classification of object-oriented is mainly based on the different characteristics
of objects. There are many object-oriented classification methods. However, the fuzzy
classification method provided by eCognition software, which included two classifiers,
the k-NN method and the membership function method [41,42]. We selected the k-NN
classifier to extract canopy. The k-NN classifier compared each unknown sample directly
to the original training data, without training to produce a model [43–45]. It is a simple and
efficient non-parametric classification membership for they have obtained [46]. The method
found the nearest neighboring sample object of each image object in the optimal feature
space [47]. The principle consists of calculating the distance d between each object to be
classified and the sample object under the feature set, then to construct a multidimensional
exponential affiliation function based on d [48]. Finally, on the basis of the calculation
result, the object to be divided belongs to the categories where its nearest sample objects
are located. The equation for the feature space distance d between the image object and the
sample is as follows:

d =

√√√√∑
f

∣∣∣∣∣v
s
f − vo

f

σf

∣∣∣∣∣
2

(1)

where, o is the image object; s is the sample; vs
f is the eigenvalue of sample feature f ;

vo
f means the eigenvalue of object feature f ; σf means the standard deviation of sample

feature f .
In the eCognition software, the classification of the image by the k-NN classifier

depends on the degree of membership. The smaller the distance between the image object
and the sample object, the greater will be the membership degree between that object and
its class to which the sample belongs. The k-NN classifier using the eCognition software
method performs classification as follows. Firstly, according to selected object features,
we determined the classification system of the features, and collected the object features,
as well as constructed the optimal feature space set using Feature Space Optimization
tool. Then, the training sample for each feature was selected and the optimal feature
space set was applied to refine the sample for classification. It requires a certain number



Remote Sens. 2022, 14, 4128 7 of 23

of samples for each class of features, and the selection of training samples has a large
impact on the classification results [31,49]. The k-NN is a supervised classification. A small
number of training samples with distinctive features were selected by visual interpretation.
Then, we considered whether to add training samples according to the classification effect.
The classification should be performed by setting the affiliation threshold of the feature
object and selecting the appropriate membership function. Finally, based on the feature
space distance between the image and the sample object, the k-NN classifier will return
the affiliation value. If the membership value outweighs the set threshold, the object
is classified to the feature class to which the corresponding sample belongs. The k-NN
classification method will be suitable for the classification of multiple object features.

2.6. Features Collection

Classification based on spectral information alone cannot be effective, as the low
spectral resolution of UAV images, which may even cause different features with the same
spectral properties to be incorrectly grouped together. Therefore, an alternative selection of
other characteristic indices to participate in the calculation is needed to better distinguish
between different features [50]. The feature set for the k-NN classification generally includes
spectral, textures, shapes, custom indices, etc. However, getting more accurate classification
with more features is not possible. Conversely, an increase in computational effort, or even
decrease in classification accuracy might arise. Therefore, a feature space optimization tool
will be used to construct the optimal set. The optimal feature combinations the feature
combinations represented by the maximum value selected from the average minimum
distance between two classes of the selected classes calculated in each feature space [51].

Our object-oriented feature space set consists of 32 features involving five aspects: vege-
tation indices, spectral features, shape features, texture features, and canopy height features.

2.6.1. Vegetation Index Characteristics

To obtain better extraction results, the following six vegetation indices were used to
characterize the feature space set of vegetation indices: EXG, NGBDI, NGRDI, RGBRI,
RGRI and VDVI (Table 1).

Table 1. A feature space set of vegetation index characteristics.

Vegetation Index Description

Excess green [52,53] EXG = 2G− R− B
Normalized green-blue difference index [52,54] NGBDI = (G− B)/(G + B)
Normalized green-red difference index [54,55] NGRDI = (G− R)/(G + R)
Red-green-blue ratio index [56] RGBRI = (R + B)/2G
Red-green ratio index [57,58] RGRI = R/G
Visible-band difference vegetation index [59] VDVI = (2G− R− B)/(2G + R + B)

Note: Where R, G and B represent the red, green and blue bands, respectively.

2.6.2. Spectral Characteristics

In this study, the spectral features were selected from the mean, standard deviation
(std. dev), brightness and maximum difference (max. diff) of the 3 visible band components
of the remote sensing image: red, green, and blue. Eight spectral features were specifically
selected as follows: mean red, mean green, mean blue, brightness, max. diff, std. dev. Red,
std. dev. Green and std. dev. Blue. Its calculation formulas were as follows (Table 2).
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Table 2. A feature space set of spectral index characteristics.

Spectral Characteristics Description Explanation

Mean CL = 1
n

n
∑

i=1
CLi

The mean
(
CL
)

is calculated from values (CLi ) of all n
pixels that make up an image object.

Brightness b = 1
nL

nL

∑
i=1

CL

The number of the image object divided by the sum of
the mean values that containing spectral information (a
mean of the spectral means of the image object).

Std. dev CL =

√
1

n−1

n
∑

i=1

(
CLi − CL

)2 Standard deviation was calculated from all n pixels
values that make up an image object.

Max. diff ∆CL = CL.Object − CL.SO

The maximum difference between the mean of the Lth

layer of an image object
(

CL.Object

)
and the mean of the

Lth layer of the super object
(
CL.SO ).

2.6.3. Shape Feature

The shape features reflected the aggregate characteristics of the image objects. The
canopy had more obvious shape characteristics than other features. Guided by the actual
situation, the following eight shape features were selected (Table 3).

Table 3. An equation and explanation for the shape feature.

Shape Feature Description Explanation

Area S
For georeferenced object, the area is equal to the number of pixels multiplied by
the area value of each raster pixel; for object without a reference system, the area
is the number of pixels contained.

Border length B = B0 + B1 The sum of the boundary of the image object.

Length/Width γ =
[
a2 + b2(1− f )

]
/S

The ratio of the length of the image object to the width. The index indicates the
narrowness of the object.

Width W The width of image object.

Border index BI = B/2(L + W)
The border length is twice the sum of the upper length and width. The index
reflects the complexity of the object’s boundaries. An object is more irregular, the
larger the value of the boundary index.

Compactness Com = C/
√

S
The index measures the degree of fullness of the image object. Compactness
increases the closer the image object is to a square shape.

Roundness Rou = 4πS/C2 The index indicates the degree to which the image object is close to circular.

Shape index A = C/4
√

S
Describe the degree of smoothness of the image object boundary. The larger the
index, the more broken the boundary; conversely, the smoother the boundary.

Note: S is the area of the image object. B is the boundary length, and B0 and B1 are the inner and outer boundaries
of the image object, respectively. γ is the aspect ratio. a, b are the length and width of the smallest outer rectangle
of the image object, and f denotes the weight. W is the width of the image object. BI is the boundary index and L
is the length of the image object. Com means the compactness and C means the circumference of the image object.
Rou represents the roundness of the image object. A is the shape index of the image object.

2.6.4. Texture Characteristics

The texture features are obtained based on the pixel calculation. We noticed that there
are smaller studies about the texture features of objects in the absolute sense. Considerable
studies have shown that the analysis of texture features is mostly based on the Gray-Level
Co-occurrence Matrix (GLCM), and domestic scholars have experimentally demonstrated
that GLCM worked better [60–62]. We employed 8 well-known texture features, as shown
in Table 4.
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Table 4. An equation and explanation for the texture features.

Texture Features Formula Description

Homogeneity Homogeneity =
n−1
∑

i=0

n−1
∑

j=0
p(i, j)/

[
1 + (i− j)2

] Description of the homogeneity of the image. As image
element values in GLCM are clustered on the diagonal,
the greater the homogeneity of the image and the higher
the homogeneity.

Contrast Contrast =
n−1
∑

i=0

n−1
∑

j=0
p(i, j)(i− j)2

Reflects the depth of the image texture grooves and the
clarity of the image. As the texture grooves are
shallower, the contrast value is smaller, and the clarity of
the corresponding image decreases; conversely, the
contrast is large and the clarity is higher.

Dissimilarity Dissimilarity =
n−1
∑

i=0

n−1
∑

j=0
p(i, j)|i− j|

Similar to contrast. Reflect the degree of difference of the
object. As the value of dissimilarity is larger, the greater
the change in regional contrast indicated by the value.

Entropy Entropy = −
n−1
∑

i=0

n−1
∑

j=0
p(i, j)(log p(i, j))

Measurement the complexity of texture in the image
object. As the texture in the image becomes more
complex, the entropy value increases; conversely, the
entropy value decreases.

ASM ASM =
n=1
∑

i=0

n−1
∑

j=0
(p(i, j))2

Represents the homogeneity and consistency of image
grayscale distribution. The object distribution is
concentrated near the main diagonal, and the image
grayscale distribution is more uniform in the local area,
and the ASM value is larger. On the contrary, if all
values of the matrix are equal, the ASM value is smaller.

Mean Mean =
n−1
∑

i=0

n−1
∑

j=0
i× p(i, j)

Reflect the degree of image texture regularity. As the
mean value is larger, the regularity of the texture is
stronger, and the texture features are easier to describe;
conversely, the texture is more difficult to describe.

Std. dev Std.dev =

√
(i−Mean)2 n−1

∑
i=0

n−1
∑

j=0
p(i, j)

Reflect the degree of deviation that occurs between the
image element value and the mean value. The standard
deviation increase becomes greater as the image
grayscale value becomes larger.

Correlation
Correlation =

n−1
∑

i=0

n−1
∑

j=0
p(i, j)(i− µi)

(
j− µj

)
/
√
(σi

2)
(

σj
2
)

Measurement the similarity of image element values in
the row or column direction, reflecting the local
grayscale correlation in the image. Correlation values
are larger when the values of matrix elements are close
to uniformly equal; conversely, smaller.

2.6.5. Canopy Height Feature

CHM is a model that reflects the vertical distance between the tree canopy and the
ground. It helped to differentiate the tree canopy from other ground cover types. This
study chose 2 canopy height features: mean CHM and std. dev.CHM.

2.7. Extraction Method of Forest Structure Parameters
2.7.1. Canopy Density

Canopy density was calculated by dividing the area of canopy types in the classifica-
tion results by the total area of the sample plots. We obtained the reference value of canopy
density using the sample line method. Such a method for canopy density measurement is
considered as the most reliable among the methods comparing with the results of remote
sensing image-based crown density estimation [63,64]. We used the orthophoto of the
UAV as background image, with the sample lines laid on the diagonal and median lines
(Figure A2). Then, the total length of the canopy on the measurement lines was measured
along the direction of the measurement lines. Next, each canopy densities on each line were
obtained by taking the ratio of the canopy length on each measurement line to the measure-
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ment line. Finally, the average crown density of the four sample lines was considered as
the crown density of the sample sites. The calculation formulas are as follows:

Pi =
li
Li

(2)

P =
1
n

n

∑
i=1

Pi (3)

where: li is the sum of the canopy lengths on a given line, Li is the total length of a given
line, n is the number of lines, and Pi is the ratio of the canopy length to the total line length
along a given line.

2.7.2. Average Crown Width

The crown width is the average width of trees in the north-south and east-west
directions. Li et al. [63] considered the crown width as circular and got better results

by calculating the average crown width (
−
P) from the canopy object area via the circular

equation. This method provided a way to calculate the canopy size inside and outside the
tiankengs. The calculation equation was as follows:

−
P = 2

√
S/π (4)

where, S is the area of each object. The reference value of the crown width is obtained using
the visual interpretation results.

2.8. Precision Verification

In this paper, the confusion matrix (overall accuracy, producer’s accuracy, and user’s
accuracy) and kappa coefficients were used to accuracy verification [65]. The kappa
coefficient is a statistical measure of inter-rater agreement or inter-annotator agreement
for qualitative (categorical) items. The kappa coefficient can objectively evaluate the
classification quality. Larger values of kappa coefficient indicate higher classification
accuracy. In this study, 1500 random validation samples were initially setup to determine
their categories by visual interpretation, and then the classification results of each sample
point were obtained by the identity tool in ArcGIS10.5 to evaluate the accuracy of the
classification results.

The stand parameters include canopy densities and canopy widths. The accuracy of
canopy density extraction was estimated by comparing the extraction results of sample
line method and object-oriented method. Since the sample area of the tiankeng-inside is an
irregular rectangle, the accuracy verification of canopy density extraction results focuses
on the sample area of the tiankeng-outside. The accuracy of the canopy parameter was
verified by comparing the extracted canopy area and the visual interpretation. The complex
terrain of the tiankengs made it dangerous to carry out field ground surveys, while this
measurement method enabled to overcome this problem and eliminated the errors caused
by human factors [65,66].

3. Results
3.1. Canopy Extraction from Tiankengs

The alternative optimal segmentation scale parameters were 72, 79, 97, and 101
(Figure 3). Select default values for shape and compactness parameters to obtain visu-
ally correct segmentation results (Figure 4). Comparing the segmentation line with the
original canopy shape on the image, we found when scale = 79, the edges of the tree canopy
were well outlined. When the scale < 79, there was a case that a tree canopy was divided
into multiple objects, and when the scale > 79, some of tree shadows were mixed with the
canopy. Thus, the optimal segmentation scale parameter was determined to be 79. The best
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shape and compactness factors were then screened by comparison tests of control variables,
which allowed for 17 sets of segmentation results (Figure 5). It was found that the best
results were obtained when the shape parameter was set to 0.5 and the compactness to 0.8.
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Figure 3. An evaluation of the scale parameters of the multi-scale segmentation algorithm for
Shenxiantang. Graphs described changes in local variance (LV) (hollow red) and rate of change (ROC)
(hollow blue) with increasing scale parameter. Four green circles are alternative optimal segmentation
scale parameters (72, 79, 97 and 101).
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Figure 4. An alternative optimal scale segmentation effect of Shenxiantang tiankeng. The order
of parameters is segmentation scale/shape/compactness. Red outlines represented the canopy
contours formed by multi-scale segmentation. Visual interpretation of the overlap between the
segmented outlines in red and the canopy shape of the original image. A high overlap indicated a
good segmentation effect. If multiple canopies are within a red outline, it means under-segmentation;
if a canopy is segmented by multiple red outlines, it means over-segmentation.

According to the actual situation, we classified the Shenxiantang tiankeng into five
types: canopy, grass, road, tree gap and bare land. Then, we selected the training samples
for feature selection, calculated the relationship between the number of features and the
minimum feature distance between objects (Figure 6a). We found that when the number
of features was 7, the objects were well differentiated, and the computation effort was
appropriate. The optimal feature combination was NGBDI, GLCM Correlation, RGRI, area,
std. dev CHM, std. dev Green, and std. dev Blue. The classification results based on the
optimal feature combination using the nearest neighbor classifier are shown in Figure 6b.
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Figure 5. Results of the canopy segmentation under different shape and compactness parameters.
The order of parameters is segmentation scale/shape/compactness. Red outlines represented the
canopy contours formed by multi-scale segmentation. Visual interpretation of the overlap between
the segmented outlines in red and the canopy shape of the original image. A high overlap indicated a
good segmentation effect. If multiple canopies are within a red outline, it means under-segmentation;
if a canopy is segmented by multiple red outlines, it means over-segmentation.
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Figure 6. The canopy information extraction from Shenxiantang tiankeng based on optimal feature
combination. (a) The relationship between the number of features and the separation distance of
Shenxiantang tiankeng. The small blue square is the number of features. (b) Results of canopy
information extraction for Shenxiantang tiankeng.

Using the same method, we also extracted the canopy of another tiankeng (Baji-
axiantang) (Figure 7a). The best segmentation parameters were 63 (scale), 0.5 (shape),
0.2 (compactness). The land cover of classification results based on the optimal feature
combination using the k-NN classifier were shown in Figure 7b. It was divided into six
types: grass, shrub, red land, gap, canopy, and bare land. The training samples were



Remote Sens. 2022, 14, 4128 13 of 23

selected for feature screening. The relationship between the number of features and the
minimum feature distance between objects was calculated. We found that when the num-
ber of features was 7, each object had a good differentiation, and the computation was
appropriate. The optimal combination of features was red, area, std. dev Green, std. dev
CHM, EXG, NGBDI, length/width.
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3.2. Canopy Extraction from the Ground Outside the Tiankeng

We combined the DOM and CHM data and used the object-oriented approach to
extract the canopy information. The extraction results of the SG1–SG3 samples were shown
in Figures A3–A5, and it could be seen that the canopy extraction is in general better. For
samples SG1–SG3, we obtained alternative scales of 41, 63, 71 (SG1); 45, 55, 82 (SG2) and 66,
79, 88 (SG3), respectively, using the ESP2 tool for calculation. We also set the shape and
compactness parameters to 0.5 for each of the three sample squares for comparison, and the
best segmentation scales were obtained for each square as 63, 55 and 79. Then, we obtained
the best segmentation effect by iterating through the shape and compactness parameters:
0.5/0.6; 0.5/0.5; 0.6/0.5, respectively. According to the actual situation of samples SG1–SG3,
they were divided into four categories: canopy, tree slit, bare land and bare rock (among
them, samples SG1 and SG3 had no bare rock), and the relationship between the number
of features and separation distance was calculated to obtain the optimal combination of
features for each sample (Table A1). We thus obtained the optimal feature combinations
and canopy areas for each square as shown in Table 5.

Table 5. An optimal combination of features for surface samples outside the Shenxiantang tiankeng.

Samples Optimal Feature Combination Canopy Area

SG1 Roundness, Mean Red, Mean CHM, Std. dev Green, Std. dev Blue, GLCM Std. dev, EXG 5640.87 (m2)

SG2 Area, Brightness, Mean Red, Mean Green, Std. dev Red, Std. dev Green, Std. dev Blue, EXG,
NGBDI, NGRDI 6545.99 (m2)

SG3 Area, Compactness, Mean CHM, Mean Green, Mean Red, Std. dev Green, Std. dev CHM,
GLCM Homogeneity, EXG, NGBDI, NGRDI 6404.66 (m2)
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3.3. Extraction of Forest Stand Parameters
3.3.1. Forest Canopy Density

Based on the object-oriented canopy extraction results, we found two samples in the
underground forest of tiankeng were dense forests. The canopy densities of samples S1, S2
inside the tiankeng were 0.92 and 0.88, respectively. Outside the tiankeng, all samples were
dense forests, too. Overall, the canopy density in the underground forest was higher than
the tiankeng-outside (Figure 8).
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Figure 8. Extraction results of the crown density. The orange bars are tinkeng-inside samples, and
the blue ones are tiankeng-outside samples. The values below the sample ID are the canopy density
of each sample.

3.3.2. Average Crown Width

We found that the mean canopy width was 5.38 m inside the tiankeng samples and
4.83 m outside the tiankeng samples (Figure 9). The mean canopy width inside the tiankeng
was significantly larger than that outside (p < 0.000). Some tree canopies were split into
multiple objects by the object-oriented segmentation method. This reflected to some extent
the fact that the trees in the underground forest inside the tiankeng had larger canopies
than outside. We observed the canopy width of the samples inside the tiankeng was not
much different.
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3.4. Accuracy Verification Results
3.4.1. Classification Result Accuracy Verification

In this study, we took the Shenxiantang tiankeng as an example, generated 1500 points
randomly within the Shenxiantang tiankeng as a validation sample. Using visual interpre-
tation to classify the sample points for accuracy evaluation of the confusion matrix (Table 6).
We found that the overall classification accuracy was 85.60% and the kappa coefficient
was 0.72. The extraction accuracy of canopy reached 0.91, which was better, and its main
misclassification type was grass. Because, to a certain extent, the image features of canopy
and grass had some similarities.

Table 6. An analysis of the accuracy of classification results of Shenxiantang tiankeng.

Classification
Reference Canopy Bare Land Grassland Road Tree Slit Total User Accuracy

Canopy 865 13 45 13 15 951 0.91
Bare land 9 40 11 0 0 60 0.67
Grassland 86 2 344 1 6 439 0.78

Road 1 0 0 10 0 11 0.91
Tree slit 8 0 0 0 31 39 0.79

Total 969 55 400 24 52 1500
Production accuracy 0.89 0.73 0.86 0.42 0.60

Overall accuracy = 85.6%; Kappa coefficient = 0.72

3.4.2. Accuracy Verification of Canopy Density Parameters

The areas of the canopy on the sample lines were marked in ArcGIS 10.5, as shown in
Figure 10, and the lengths on each sample line were counted, as shown in Table 7. From
the statistical results, the overall accuracy of the object-oriented canopy density extraction
results was above 75%, with an average accuracy of 83.38%. The mean value of canopy
density extraction by the line measurement method was 0.66, and the mean value of object-
oriented extraction was 0.77. The overall result of object-oriented canopy density extraction
was higher than the value extracted by the line measurement method, which was 0.1 higher
on average. The object-oriented method also suffers from the wrong extraction of other
classes as tree crowns. Although the study area is a complex karst topography, results of
canopy parameters extraction are informative.
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Table 7. An accuracy analysis of object-oriented method to extract sample plot canopy density.

Sample Survey Line 1 Survey Line 2 Survey Line 3 Survey Line 4 Line Method to
Extract Values

Object-Oriented
Extraction of

Values
Accuracy (%)

SG1 0.61 0.76 0.57 0.53 0.62 0.70 87.51%
SG2 0.84 0.68 0.54 0.62 0.67 0.81 79.53%
SG3 0.89 0.78 0.47 0.56 0.68 0.79 83.11%

Average - - - - 0.66 0.77 83.38%

4. Discussion
4.1. Application Potential of UAV Technology in Tiankeng-like Underground Forests

The karst tiankeng topography is undulating, with large drop-offs inside and outside
the tiankeng, and surrounded by vertical steep rock walls. Compared to other study
areas, complexity of topography increased uncertainty of the canopy extraction results.
Using high-resolution UAV remote sensing images as the data source and using the object-
oriented classification method to better overcome these problems. UAV remote sensing
images have very high spatial resolution and rich texture and shape features. Thus, the
extraction results of the forest stand parameters based on UAV images better meet the
practical demands [16,67–69].

Existing canopy extraction studies generally focus on plantation forests with small
topographic differences and simple stand structure on positive topography [70,71]. Fewer
studies have been conducted on special forests such as tiankeng underground forests.
Constrained by the topographical factors of the tiankeng itself, the risk factor for carrying
out large-scale forest surveys were high, and UAVs can overcome this obstacle. With the de-
velopment of UAV technology, the quality of UAV aerial images has been improving. This
study showed that UAVs provided reliable means of carrying out tiankeng underground
forest research. The supportive argument was mainly in terms of the following two aspects.
First, the classification accuracy of this study was better than the object-oriented classifi-
cation results obtained in previous studies [16,72]. In tiankengs, the extraction results of
canopy information had the highest accuracy relative to other classes. This is mainly due
to the aggregation of forest tree growth and well-defined characteristics of underground
tiankengs. The extraction accuracy of bare land and grassland was lower. Because the study
focused on tree crowns, and hence the selection of parameters such as scale, shape and
compactness were biased towards the applicability of the extraction effect on tree crowns.
Therefore, the object features of bare land and grassland may not be more consistent. There
was a small amount of grass in the object of bare land, and some tree canopies in the object
of grass, which could cause some errors.

Second, UAVs could carry out deep-scale studies of tiankengs. Previous studies of
tiankeng subterranean forests have been mostly conducted on tiankeng inverted stone
slopes using sampling to study the characteristics of underground forests in vertical gra-
dient, horizontal space, and other directions [9,73,74]. Although studies in these areas
could provide some evidence to reveal the value of tiankengs as reservoir for species
conservation, there are issues that cannot be addressed in this way. Therefore, we needed
to obtain more comprehensive data from a global perspective to reveal its universal rules.
Hence it was necessary and meaningful to use UAV technology to study tiankeng-like
underground forests.

UAV remote sensing technology can promote the study of the plant functional trait
ecology of karst tiankengs, but many issues remain to be further explored. Due to the
special topography, the underground forest of the tiankeng is shaded by vertical cliffs,
resulting in uneven lighting in the tiankeng. Thus, a way to obtain higher quality UAV
images is also a research topic that we need to further explore in the future. We also need
to obtain more bands of data and LIDAR data to study the stand parameters of tiankeng.
Moreover, the poor accessibility of tiankengs made it difficult to acquire data in the field to
verify the accuracy of the results. Finally, we further also need to use more object-oriented
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classification methods (random forests, support vector machines, single decision trees,
artificial neural networks, etc.) to extract plant functional traits from the underground
forest of karst tiankengs.

4.2. Feature Selection Is the Key to Tiankeng Underground Forest Canopy Extraction Based on
UAV Images

Canopy parameters inside and outside the tiankengs can be expressed from the
optimal combination of features for object-oriented classification, and different features
express the information inside and outside the tiankeng to different ways. By counting the
frequency of each feature being classified as the optimal feature combination. We found
that the underground forest features NGBDI, std. dev Green, std. dev CHM and area
contributed more to their classification in the tiankengs. While outside the tiankeng, the
features EXG, mean Red, mean Green, Std. dev Green and area contributed more. As a
whole, the area and green band features in the shape features play an important role in the
classification of tiankengs and beyond. Shaded by the vertical cliffs of the tiankeng, the
circled negative topography creates a local microclimate with a large heterogeneity and
difference in habitat tiankeng-outside [6,7,75]. The inside of the tiankengs had higher air
humidity, lower air temperature and higher concentration of negative oxygen ions [76,77].
This promoted the growth and reproduction of plants. The canopy and height of the trees
inside the tiankengs were larger than outside [78]. The area of the tree canopy is more
uniform and larger. Whereas the area of tree sutures is smaller, the area of bare ground
is irregular. Therefore, the canopy can be well distinguished from other features by the
area index.

In the vegetation index, NGBDI and EXG can better enhance the vegetation informa-
tion and weaken the information of other features. Texture features contributed less to the
identification of canopy information. Many textural features did not appear in the most
characteristic combinations of all samples. This is consistent with the research results of
Jin et al. [79]. They found that the accuracy of depression extraction was reduced by 0.66%
owing to the addition of texture features. The canopy height CHM also played a larger
role in the classification. It is an index of characteristics unique to trees. This indicated
that the canopy height feature is an important parameter feature in forest canopy informa-
tion [80,81]. This paper lacks consideration of terrain features in terms of feature collection,
and terrain slope and roughness can also affect the extraction effect [82]. Non-remote
sensing data such as slope, slope direction, roughness and environmental factors that have
influence on plant growth are incorporated into the classification features. To summarize, a
more suitable canopy classification feature set for negative terrain is the highlight of the
next research work.

Comparing the canopy information extracted from inside and outside tiankengs. We
found that the neighboring canopies in the underground forest tiankeng-inside often appear
to cross each other and were distributed in clusters on the orthophoto. In this case, large
errors would occur if traditional measurement methods were used. However, the image
processing and analysis methods based on high-resolution UAV images not only use the
information of individual pixels, but also make full use of the pixel information and image
texture features to extract the single tree crowns in the form of images. So, the influence of
the crossed tree crowns can be minimized, and the accuracy of the crown extraction can
therefore be improved.

5. Conclusions

In this study, UAV visible images were combined with a canopy height model using
an object-oriented multi-feature classification method to extract stand information such as
canopy, canopy density and canopy width from the tiankeng underground forest and the
tiankeng-outside. We therefore conclude the following:

(1) UVA is a reliable technical tool to extract stand parameters in the underground forests
of tiankeng. UAV could overcome the problem of inaccessibility of tiankengs. This
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helped to further explore the plant functional trait variability of underground forests
of karst tiankengs. Drone technology has promoted plant ecology research.

(2) The forest quality inside the tiankeng underground forest was better than those out-
side the tiankeng. The canopy density of the tiankeng was 0.90 and the average canopy
width was 5.38 m. Outside the tiankeng, the canopy density and average crown width
were 0.77 and 4.83 m, respectively. Compared with outside the tiankeng, the canopy
density and canopy width of the underground forest were significantly larger. The
enclosed tiankeng microhabitat provided a good habitat for plant communities.
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Figure A3. The process of extracting the canopy of sample SG1 based on object-oriented method.
(a) The preparation scales were calculated using the ESP2 tool and obtained as 41, 63, 71; (b) The shape
and compactness parameters were both set to 0.5 for comparison to obtain the optimal segmentation
scale of 63; (c) The shape and compactness parameters are 0.5/0.6 when iterating through the shape
and compactness parameters to obtain the best segmentation effect, respectively; (d) According
to the relationship between feature number and separation distance choose to the optimal feature
combination; (e) SG1 sample classification results.
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Figure A4. The process of extracting the canopy of sample SG2 based on object-oriented method.
(a) The preparation scales were calculated using the ESP2 tool and obtained as 45, 55, 82; (b) The shape
and compactness parameters were both set to 0.5 for comparison to obtain the optimal segmentation
scale of 55; (c) The shape and compactness parameters are 0.5/0.5 when iterating through the shape
and compactness parameters to obtain the best segmentation effect, respectively. (d) According
to the relationship between feature number and separation distance choose to the optimal feature
combination; (e) SG2 sample classification results.
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Figure A5. The process of extracting the canopy of sample SG3 based on an object-oriented method.
(a) The preparation scales were calculated using the ESP2 tool and obtained as 66, 79, 88; (b) The shape
and compactness parameters were both set to 0.5 for comparison to obtain the optimal segmentation
scale of 55; (c) The shape and compactness parameters are 0.6/0.5 when iterating through the shape
and compactness parameters to obtain the best segmentation effect, respectively; (d) According
to the relationship between feature number and separation distance choose to the optimal feature
combination; (e) SG3 Sample classification results.
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Table A1. The area of each square classification results on the surface outside the Shenxiantang tiankeng.

Sample Code Canopy (m2) Tree Slit (m2) Bare Land (m2) Bare Rock (m2)

SG1 5640.8 906.3 1552.3 -
SG2 6545.9 1128.6 125.3 299.9
SG3 6404.6 1033.1 662.2 -
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