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Abstract: Morphodynamic variabilities of tidal flats (e.g., the variations of pattern, area, and topogra-
phy) are a key issue in the management of coastal intertidal zones. In this study, the morphodynamic
variabilities of the Lin-gang (Shanghai) tidal flat were investigated using waterlines extracted from
multi-source satellite images acquired from 2013 to 2020. The waterlines were evaluated against in
situ measurements. The results of our investigation indicated that the tidal flat was in a state of rapid
accretion from 2015 to 2018, and in a state of erosion from 2018 to 2020. We found that the accretion of
the tidal flat was most likely due to the protection of local vegetation, which prevents the sea bottom
from eroding. However, storms have primarily been causing erosion since 2018. The potential mech-
anisms of the geomorphological variations were further analyzed using the empirical orthogonal
function (EOF) method. The analysis revealed that the variation in the tidal flat was dominated by
two modes. The first mode accounted for 55% of the variation, while the second mode accounted
for 18%. The spatial distribution of the first mode was highly related to the artificial vegetation,
indicating that the local variations in the vegetation prevented the sea bottom from eroding, which
was dominant in the accretional phase from 2015 to 2018. The second model reflected the extreme
meteorological events that resulted in potential changes in the tidal flat’s pattern (i.e., transitioning to
an erosion phase from 2018 to 2020). The satellite-derived topographies were demonstrated to be an
effective means of mapping the evolution of a meso-tidal flat.

Keywords: waterline detection; satellite-derived topography; tidal flat monitoring

1. Introduction

Tidal flats (also called intertidal zones or mudflats) are the coastal zone between the
mean higher high water line and the lower low water line [1], and they are also important
margin environments that link the oceanic and terrestrial ecosystems. Understanding the
variations that occur in tidal flats is critical in fields such as coastal disaster prevention
and mitigation, ecosystem management, resource development, and tourism [2–4]. The
topography of a tidal flat can vary rapidly both temporally and spatially as the combined
result of the effects of tides, waves, river flow, and meteorological events [5–7]. This is
one of the reasons why the fundamental mechanism of tidal flat variability is difficult to
determine [8]. In general, one possible method of clarifying the variations and regulation is
to collect the most monitoring topography data with high temporal and spatial resolutions.

The use of frequent measurements is most convincing in studies on tidal flats or
beaches. For example, Van der Werf et al. monitored the nourishment of a tidal flat every
three months for five years to evaluate the effect of the sediment nourishment on mitigating
the negative impacts of tidal flat erosion [9]. To quantify the multi-decade variability of
Narrabeen Beach (Australia), Turner et al. analyzed cross-shore profiles from 1976 to 2016
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(the topographic survey was conducted monthly); the long-term monitoring very clearly
revealed how and why the beach profile changed during the 40 years [10].

With the technological development in satellite remote sensing, more optical satellite
data are being used in coastal studies in recent decades, and such techniques are becoming
important additions to traditional monitoring [11]. The interface between the land and
water, which is defined as the shoreline [12,13], coastline [14], or waterline [15,16], can
be distinguished from satellite imagery and can be extracted automatically. Based on the
waterline data, many of the characteristics of a tidal flat (e.g., tidal flat pattern, profile
slope, and intertidal zone topography) can be calculated [17–20]. Compared to traditional
methods (e.g., real-time kinematic in situ), deriving the topography from multi-satellite
optical images is much more economical and can also be conducted on wider spatial and
temporal scales, providing researchers with another (maybe the only) method of studying
past changes in areas of interest. Turner et al. considered that satellite remote sensing is the
only source of information that complements the much more limited in situ instrumentation
used for land and sea monitoring [21].

In this study, a case study of the inter-annual evolution of a tidal flat with a gentle slope
(~0.0045 on the muddy flat and ~0.009 on the sandy beach) in a vigorous area of Shanghai
(China) was conducted to describe the variation tendency and explore the reasons why it
changed rapidly during a short period. Due to the low frequency of the field measurements
(i.e., once per year (at each end of 2015–2019)), satellite images were used to extend the
historical digital elevation model (DEM) data for the study area. The results are expected
to reveal the main patterns of the changes that occurred in the past decade and to play an
important role in coastal protection and management.

2. Methodology
2.1. Study Area

The study area (Figure 1) is situated on the artificial coast of the Lin-gang New Area
of the Shanghai Free Trade Zone (hereinafter referred to as Lin-gang), and is located at
the intersection of a mega estuary (the Yangtze River Estuary) and a semi-closed bay
(Hangzhou Bay). The land area was reclaimed by building a seawall in 2003. The coastal
vegetation includes local vegetation (Phragmites), artificial vegetation (Scirpus triqueter),
and invasive vegetation (Spartina Alterniflora Loisel).

The tidal current is characterized by reciprocal flow, and the tidal range reaches ~4.5 m
during the spring tide and ~1 m during the neap tide, with a mean tidal range of 2.75 m.
According to the in situ measurements, the significant wave height on the tidal flat during
normal climate is less than 0.3 m. The sub-tidal currents are mainly from the Yangtze River,
which carries a huge amount of suspended sediment [22–24]. Typhoons are typical seasonal
meteorological events and may lead to extreme erosion [25]. The abundant sediment supply
and strong tide and wave effects result in a dynamic tidal flat.

Figure 2 shows a satellite image of the study area and aerial photos acquired using an
unmanned aerial vehicle (UAV). There is a wide muddy beach (~1 km wide in the cross-
shore direction) in the intertidal zone, and the median grain size in this area is ~140 µm (fine
sand). Due to the sorting processes, a sandy beach has been generated rapidly in the recent
decade. Between the sandy beach and muddy tidal flat, a tidal creek has formed through
erosion, and it strikes parallel to the coast. Since most of the coastal zone in Shanghai is
composed of muddy tidal flats, the localized natural sandy beach is considered to be a
valuable coastal resource.

It should be noted that after August 2019, the inland region adjacent to the study
area was renamed the Lin-gang New Area of the Shanghai Free Trade Zone, which is
expected to lead the development of Shanghai in the next few decades. According to the
statistical data provided by the government, the population of Lin-gang (central region)
reached ~140,000 in June 2021, which was an increase of 54.6% compared to February 2020
(http://www.pudong.gov.cn, accessed on 12 December 2021). Under the above situation,

http://www.pudong.gov.cn
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the study area is becoming a popular tourism destination (Figure 2C), which is another
motivation to understand the variability in the study area.

Figure 1. The location and topography of the study area. The study area is adjacent to the Yangtze
(Changjiang) River Estuary and Hangzhou Bay. The base level of the elevation datum is the local
mean sea level. The triangle and star symbols represent the locations of the tide gauge and wave
monitoring station, respectively.

Both the monitoring data and satellite images have revealed that the pattern of this
tidal flat has changed rapidly over the last decade. Figure 3 shows the tidal flat patterns at
the high and low water levels in recent years, respectively. The differences between each
water level at high water level or at low water level were less than 2 cm; therefore, we can
compare the satellite images at the high or low tide levels. For the high water situations,
visible accretion occurred along the coast after 2014. In 2020, the area of the supratidal zone
reached ~198,000 m2. For the low water situations, the tidal flat accreted in the southeastern
direction from 2013 to 2017, and then the pattern shifted to the opposite direction.
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Figure 2. (A) A satellite image of the LGTF acquired on May 2021 from Google Earth and (B,C) aerial
photos at low tide (the positions are shown in panel A).

Figure 3. The satellite images acquired at the high tidal level in (A) 2014, (B) 2016, (C) 2018, and
(D) 2019 and the corresponding range of the tidal levels from 2.42 m to 2.43 m (based on the mean sea
level) and at the low tidal level in (E) 2013, (F) 2015, (G) 2017, and (H) 2019, and the corresponding
range of the tidal levels from −1.22 m to −1.20 m.
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In summary, the Lin-gang tidal flat is an important coastal resource in Shanghai. The
annual satellite images reveal that the tidal flat pattern has changed a lot at both the high
and low water levels. To quantify the inter-annual variability of the Lin-gang tidal flat, but
limited by the low-frequency (annual) of the available profile surveys, the workflow of this
study was designed as follows: (1) historical optical images taken at different tidal levels
were acquired; (2) waterlines were extracted; (3) the tidal levels measured at the nearest
tidal gauge were assigned to each waterline and a quarterly DEM of the tidal flat was
constructed; and (4) the variations in the area were calculated, and the empirical orthogonal
function (EOF) mode of the tidal flat was analyzed.

2.2. Satellite Imagery, Algorithms, and Validations

The sources of the satellite imagery, which was freely available (e.g., Landsat 7, Land-
sat 8, and Sentinel-2), are common and frequently reported [26]. One challenge is deter-
mining the method to extract the waterlines based on a certain algorithm when hundreds
of waterlines need to be extracted. There are several open source codes for detecting
waterlines automatically (e.g., CASSIE [27], CoastSat [28], OBRGIE [29], and SHOREX [30]).
The workflows of these methods and software packages are similar: (1) the images are
filtered (e.g., remove cloud-covered images); (2) the interface between the land and water is
located using an algorithm (e.g., normalized difference water index, modified normalized
difference water index [31]); (3) the tidal level is corrected (optional, depending on the
study area); and (4) the time series of the waterline data is analyzed (e.g., quantifying the
annual change on a decadal time scale).

The assessment of the accuracy of the waterline detection is also a key index that
influences the results. Commonly, sub-pixel extraction is an acceptable method [11,32].
According to the calculations in the above references, the root mean square errors (RMSEs)
of CoastSat and CASSIE are 7.2 m and 7.79 m, respectively, when they are used to analyze
a similar database (i.e., Landsat and Sentinel-2). That is, these methods can study coastal
variability on a long-timescale, especially when the spatial scale of the study area is much
greater than the resolution of the images.

The applications of the above methods have been reported in studies of many beaches
worldwide, particularly micro-tidal sandy beaches (tidal range of <2 m) [11,28,30,32,33].
For instance, Vos et al. captured the multi-timescale shoreline changes by detecting the
sand/water interface in publicly available satellite images, and they assessed the shore-
line variabilities of four typical sandy beaches in Europe, Australia, the USA, and New
Zealand [28]. For tidal flats, the variability of the cross-shore width of the waterline
is probably larger than for sandy beaches, especially in regions with large tidal ranges
(i.e., macro-tidal coasts). Therefore, if the waterline and tide data are sufficient, an intertidal
DEM can be constructed [15,34]. In this case, the number of waterlines at different tidal
levels in a short period will affect the quality of the constructed DEM.

Based on the water-line method proposed by Mason et al. [15], two DEMs of the
Western Wash (the UK, maximum tidal range of ~5 m) were described using shorelines
extracted from 33 images acquired during 1992–1994, and the results were used to study
the sediment transport [35]. However, limited by the number of satellite images, the time
range of the waterlines was set to ~18 months. As the number of available satellite images
increases, this method of extracting DEMs has been applied in many other macro-tidal
zones, and the outputs are in good agreement with the measured data [36–38]. Furthermore,
according to Mason et al., the uncertainty of the DEM’s accuracy is negligible compared to
the tidal range on flatter beaches (e.g., a slope of 1/500) [15].

2.2.1. Image Extraction

The satellite images used in this study were Landsat-8 (L8), Sentinel-2 (S2), and
Gaofen-1 (GF1) images, with resolutions of 30 m, 10 m, and 16 m, respectively. The
duration was mainly from February 2013 to June 2021. Figure 4 shows the acquisition
times of all of the available satellite images with no cloud cover and the corresponding
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tidal levels. The tidal levels ranged approximately from −1.5 m to 2.8 m during each year,
which likely records most of the tidal flat patterns. The data were denser near the periods
with the highest and lowest tidal levels due to the relatively slower tidal currents.

Figure 4. The satellite image time series and the corresponding tidal levels, the top and right panels
show the trends of the relative data density. GF1: Gaofen-1; L8: Landsat-8; S2: Sentinel-2; and
Submerged: The entire tidal flat is submerged.
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In this study, the waterlines were extracted using CoastSat, which was developed by
Vos et al. as an open-source python toolkit [28]. The modified normalized difference water
Index (MNDWI) was employed to distinguish the shorelines as follows:

MNDWI =
ρ(G)− ρ(NIR)
ρ(G) + ρ(NIR)

(1)

where ρ(G) is a band that encompasses the reflected green light (wavelengths of S2, L8,
and GF-1 are 560 nm, 530–590 nm, and 520–590 nm, respectively), and ρ(NIR) is the
near-infrared radiation (wavelengths of S2, L8, and GF-1 are 842 nm, 850–880 nm and
770–890 nm, respectively). The selected extractions are shown in Figure 5.

Figure 5. The selected outputs of CoastSat. (A1–A3) are the original satellite images at three different
moments; (B1–B3) are the results of MNDWI. Red and blue regions represent the land and water,
respectively. The black solid lines are the waterlines calculated using this toolkit.

2.2.2. Evaluation of Waterline Detection Error

To evaluate the extraction accuracy of the above method, a UAV was employed to
map the waterline. The UAV-derived waterline was compared with the results obtained
from a Sentinel-2 image acquired at the same time. The drone was a DJI Phantom4 RTK
Multispectral, which carried a multi-frequency global navigation satellite system (GNSS)
receiver and a multispectral sensor (Figure 6). The shooting times of the UAV and satellite
were 10:40 am and 10:39 am on 31 December 2020, respectively. The time difference
was neglected.

The comparison of the two waterlines is shown in Figure 6A. Following Eiter and
Mannila [39] and Wylie and Zhu [40], the discrete Fréchet distance (DFD) was defined as a
parameter to identify the similarity of the two discrete curves:

δdF(P, Q) = min{‖L‖} (2)

‖L‖ = max
i=1,...,m

d(uai, vbi) (3)

where P and Q are polygonal curves and σ(P) =
(
u1, . . . , up

)
and σ(Q) =

(
v1, . . . , vq

)
are the corresponding sequences. The coupling L between P and Q is a sequence:
(ua1, vb1), (ua2, vb2), . . . , (uam, vbm). The ‖L‖ of the coupling is the length of the longest link
in L.
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Figure 6. (A) The waterline positions derived from the Sentinel-2 and UAV images acquired on
31 December 2020. (B) The left panel shows the photo when the drone was used for the monitoring.

The DFD between the satellite and UAV waterlines was ~4.5 m, indicating that the
waterline detection had a reliable accuracy.

2.2.3. DEM Validation

The level of accuracy achieved for the intertidal DEM depends on the accuracy of the
tidal level, the local slope of the inter-tidal zone, and the resolution of the remote sensor [15].
The tidal range in the LGTF is ~4.5 m, with an average tidal flat width of ~1000 m, and
thus, the average slope is ~0.0045. Therefore, if the resolutions of the satellite images range
from 10 m to 30 m, the uncertainty of the topography should be 4.5–13.5 cm.

To generate the tidal flat DEM or intertidal topography, the measured tidal levels
were assigned to the extracted waterlines. The waterlines from October 2018 to Novem-
ber 2018 were used to reconstruct the DEM of the Lin-gang tidal flat, which was then
compared to the topography measured in November 2018 to evaluate the performance
of the waterline-derived DEM. As shown in Figure 7, the DEM derived from the satellite
data, although asynchronous, coincided well with the measured data in terms of both
the tidal flat pattern and the magnitude of the topography. After interpolating onto the
same grid and comparing with the measured data from 2016 to 2019, the RMSEs were
0.0563 m, 0.1248 m, 0.0887 m, and 0.0952 m, respectively. Therefore, we assumed that
the change in the tidal flat in such a time interval could be neglected when investigating
long-term changes.
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Figure 7. (A1), (B1), (C1) and (D1) are the topography data measured in 2016, 2017, 2018, and 2019,
respectively; (A2), (B2), (C2), and (D2) are the reconstructed topography of each corresponding
year. The horizontal coordinates were derived from the satellite images acquired within two months,
and the vertical elevations are the tidal level data from the nearest tide gauge. (E) Comparisons
of the measured data and reconstructed data obtained via interpolation of the above data onto the
orthogonal grids.

3. Results
3.1. General Geomorphological Changes over Time

Figure 8 presents all of the waterlines from 2013 to 2021, in which the lighter lines are
closer to the current year. The western boundaries during the low tidal level only varied
within a small range because there was an artificial channel, which connected to a sluice on
the coast. Since the waterline positions did not contain tidal level information, we could
only roughly assume that the tidal flat accreted rapidly during 2016–2020. The shorelines
changed to an asymmetric pattern after 2018 for both the high and low tidal levels.

The waterlines were relatively looser in the eastern region (ER) of the entire tidal flat,
which indicates that the slope in the ER was smaller than that in the western region (WR).
Additionally, the waterlines in the ER did not change gradually, which may have been
controlled by the more energetic wave conditions.

3.2. Relationship between Tidal Level and Tidal Flat Area

The tidal flat area (TFA) can be used as an index to quantify the potential land re-
sources [41,42]. In this section, the area was calculated according to the plane encircled by
the seawall (see Figure 2A for position) and the waterline. When the entire tidal flat was
submerged, the TFA was zero.

Figure 9A presents the TFA time series at the higher and lower tidal levels relative
to the mean sea level (MSL = 0 m). For a tidal level of higher than 2 m, before 2019, the
seawater could cover the entire tidal flat and the corresponding area was zero. After 2019,
the satellites did not capture the above situation, even when the tidal level was higher than
2.5 m. For a tidal level lower than −1 m, there was very obvious accretion from 2013 to
2019. In 2018, the largest area of the entire tidal flat (including the supratidal and intertidal
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zones) reached ~4 × 106 m2. After this, the TFA transitioned to the rapid reduction phase.
In 2021, at a similar tidal level, the largest TFA had decreased to ~3 × 106 m2.

Figure 8. All of the waterlines derived from the satellite images. The darkness and line width
represent time (i.e., darker and thicker indicate older). WR and ER are the eastern and western
regions of the tidal flat, respectively.

Figure 9. Temporal variations in the tidal flat area (the envelope formed by the waterlines and
seawall). (A) Variations in the tidal flat area with time. The red and blue dots represent the shorelines
at the moments of the high and low tidal levels, respectively. (B) The relationship between the tidal
level and the tidal flat area.

Figure 9B shows the negative relationship between the tidal levels and TFAs. The
gradient was quite a bit larger under the MSL than below the MSL. The TFA exhibited the
widest range (1.0–4.0 × 106 m3) with time at tidal levels of −1.5 m to −1 m, indicating that
the position and slope of the edge of the LGTF changed significantly during the last decade.

3.3. Mechanisms of the Geomorphological Variations Derived via EOF Analysis

To investigate the possible spatial patterns and the corresponding temporal variabili-
ties in the study area in recent years, EOF analysis was employed. EOF is very efficient in
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calculating the evolution patterns of the spatial distribution in a time series, especially in
atmospheric and oceanic research [43,44]. A set of orthogonal functions can be calculated
as follows:

DEM(x, y, t) =
N

∑
k=1

EOF(x, y)k·PC(t)k (4)

where the left side is the original time series of DEM, and EOF(x,y)k and PC(t)k represent
the spatial pattern and temporal component of each mode (k), respectively.

To guarantee enough data to reconstruct the DEM, the quarterly waterlines in the
LGTF from 2015 to 2020 were considered. Figure 10 shows the domain of the EOF mode,
which was statistically significant and explained 55% of the total variation. Regarding the
spatial pattern, most of the regions of the tidal flat were positive, which means the tidal flat
accreted or eroded simultaneously. It should also be noted that there was an opponent belt
zone (NE–SW direction, parallel to the sandy beach), which coincided with the location of
the tidal creek (Figure 2C). Since the bulks of the two opponent regions did not match, the
sediment in this belt zone should not be the main source or sink for the rest of the regions.

Figure 10. (A) First EOF spatial pattern and (B) the associated temporal coefficients. Red and
blue represent the opponent phases. In detail, accretion occurred in the blue regions when erosion
occurred in the red regions, and vice versa. Q1, Q2, Q3, and Q4 are the four quarters of each year (the
same hereinafter).

The temporal variations revealed a generally increasing trend with the seasons. In
particular, the value was lowest in Q1 of 2015, increased to zero in Q3 of 2016, approached
the highest value in Q4 of 2017, and then decreased slightly after 2018. The rate of change
of the temporal mode was most significant during 2016 and 2017.

Considering the spatial and temporal distributions of the first EOF mode together,
it was found that the entire tidal flat accreted as the tidal channel eroded in the last five
years, and the fourth quarter of 2017 was the turning point at which the entire tidal flat
stopped accreting rapidly. The fundamental mechanism of the first EOF mode may have
been controlled by the sediment input into the LGTF or the sand fixation capacity.

The second EOF mode contributed ~18% (Figure 11). The spatial distribution indicates
that the phases were opposite in the ER and WR, which may reflect the local balance of the
sediment transport. In particular, after the second quarter of 2018, in the ER of the LGTF,
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the phase changed to erosion and lasted until the end of 2019, which led to an increase in
the slope. The factors controlling the domain are discussed in the next section.

Figure 11. (A) Second EOF spatial pattern and (B) the associated temporal coefficients.

4. Discussion
4.1. Topography Changes Based on Annual Monitoring Data

To discuss the necessity and reasonability of the above studies, the geomorphological
measurements conducted at the end of each year from 2015 to 2019 were compared year by
year (Figure 12). Gradual accretion occurred throughout the entire tidal flat from 2015 to
2017. After this, the LGTF transitioned to the erosion phase, mainly in the ER. The temporal
trend of the geomorphological changes based on the monitoring data was consistent with
the results obtained from the satellite images.

Figure 12. (A–D) are the annual monitored changes in the topography from 2015 to 2019. The black
dashed line marks the approximate location of the waterline corresponding to the lowest tidal level.

The differences between the bathymetries monitored in 2015 and 2019 are shown
in Figure 13. Most of the tidal flats experienced accretion based on the comparison of
the bathymetry in 2015 and 2019, but a belt region was eroded. The changing pattern is
consistent with the first mode of the above EOF results, and the erosion location corresponds
to the position of the tidal channel (Figure 2).
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Figure 13. (A) The satellite image. (B) The first spatial mode of the EOF results; and (C) the differences
between the topography field measurements in 2015 and 2019 (2019 vs. 2015), where the red and blue
represent accretion and erosion.

The satellite-derived topography provides a method to fill the gaps in the available in
situ data to study the evolution of the tidal flat in the past, and to investigate the dynamic
mechanism of this evolution by analyzing data with higher spatial and temporal resolutions.

4.2. What Are the Dominant Factors That Control the Variability?

Coastal vegetation plays an important role in sedimentation processes [45]. To explain
the dramatic accretion (Figures 9A, 10B and 12A,B) that occurred from 2016 to 2017, the
normalized difference vegetation index (NDVI) values in the central supratidal zone (based
on the year 2020) were calculated via the algorithm provided in the Google Earth engine.
The dataset employed was the Landsat 8 Top-Of-Atmosphere (TOA) dataset, and the
calculation was conducted using the following equation:

NDVI =
ρ(NIR)− ρ(R)
ρ(NIR) + ρ(R)

(5)

where ρ(R) is a band that encompasses reflected red light. The NDVI results range from 1 to
−1, and the place locations with higher photosynthetic activity have higher NDVI values.

Figure 14 shows the two main temporal patterns of the NDVI variations. One is the
seasonal change, which exists in each profile, revealing that the NDVI is much higher
during the summer due to the stronger sunlight and fresher seawater. The other is
the annual change. There was a remarkable increase in the NDVI from 2016 to 2017
(Figure 14(B1,B2,C1,C2,D1,D2)), which may have been caused by artificial emergent veg-
etation. Because they occurred during the same period (Figure 14G), the variance in
the vegetation concentration should be considered to be a significant factor affecting the
nearshore accretion.

Another significant response of the tidal flat topography was caused by tropical
cyclones. For instance, Typhoon Mitag made landfall in Shanghai on 1 October 2019. The
photographs taken before and after the typhoon revealed that obvious coastal erosion
occurred and that the beach face moved westward (Figure 15). This change pattern is
very similar to the spatial distribution shown in Figure 11. In addition, the typhoons that
significantly influenced Shanghai are listed in Table 1. The typhoon frequencies were
quite low from 2015 to 2017, and increased significantly from 2018 to 2020. In 2018, the
nearest distances between three typhoon tracks and LGTF were particularly less than 50 km.
Considering that LGTF turned to an eroding phase after 2018, the frequency, intensity, and
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track of the typhoon may play an important role. Investigating the impacts of typhoons is
ongoing work.

Figure 14. (A1–F4) The temporal variations in the NDVI from 2013 to 2020. The black points represent
the monitored NDVI from the satellite images, and the red lines are the harmonic modeled data.
(G) The elevation variations of point (D3), black lines represent the topography derived from the
reconstructed DEMs, gray bars are the annual average elevations of (D3).

Figure 15. The ortho aerial photographs obtained using the DJI drone (A) on 30 September 2019
(before the typhoon) and (B) on 31 October 2019 (after the typhoon). The location is shown in Figure 2
(bottom panel). The dike shown in the right panel was buried by sediment before the typhoon
occurred and is marked by the dashed line in the left panel.
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Table 1. List of the significant typhoons (nearest distance ≤ 400 km) occurred from 2015 to 2020
based on the China Meteorological Administration tropical cyclone database [46,47].

Year 2015 2016 2017 2018 2019 2020

Typhoon 1509 1618 1810 1812 1818 1819 1825 1905 1909 1913 1918 2004 2008

Category 4 5 3 2 3 4 4 2 2 5 3 2 5

Nearest distance *
(km) 109 372 36 35 44 381 392 233 162 298 88 135 261

* The nearest distance was calculated by the nearest spherical distance between the typhoon track and LGTF.
The typhoon category was recorded according to the national standard (GB/T 19201-2006) issued by the China
Meteorological Administration, and the typhoon intensity is directly proportional to the number of the category.

4.3. Limitation and Assumption of the Method

The water elevation associated with the detected water includes the tidal level, and
wave runup (including setup and swash) [48]. Previous studies on the applications of
remote sensing on the waterline extraction or coastal evolution have evaluated the effect of
wave runup [49,50]. To discuss the limitation of the method employed in this study, in situ
measured wave data were used to estimate the magnitude of the wave runup. The formula
to calculate the wave runup is as follows [51]:

ξ =
tan β√

H/L
(6)

L = gT2/2π (7)

R2 = 0.043
√

HL, ξ < 0.03 (8)

where β is the beach slope; T is the wave period; H is the significant wave height; L is the
wave length; ξ is the surf similarity parameter; R2 is the wave runup exceeded by only 2%
of the waves.

Figure 16 shows the measured significant wave height (SWH) under normal and
strong wind conditions. Here, we assumed that SWH takes the value of 0.3 m (which is the
peak value during normal condition), so the corresponding wave period is ~3 s. The wave
runup (R2) is 0.0882 m, which is much smaller than the tidal range (~4.5 m).

Figure 16. The significant wave height and water depth measured during a flood–ebb tide period
on 8 December 2020 (left panel) and 15 December 2020 (right panel). The wind conditions of the
former and later measurements were normal condition (less than 5 m/s) and strong wind (more than
10 m/s). The location of the wave station is shown in Figure 2.

In addition, according to Ruggiero et al., the wave runup is small and increases with
increasing wave height as for a gentle slope [52]. Therefore, we assumed that the wave
runup could be neglected in this study.
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4.4. Another Motivation for Quantifying the Variability in the Study Area

As was previously mentioned, numerous people (including residents and tourists) go
down to the edge of the tidal flat during the ebb tide, which is a coastal traditional habit
in China (Gan Hai in Mandarin). However, due to the gentle slope and the existence of
tidal creeks, there is a threat to these people. In detail, the tide floods the lower tidal flat
from the tidal creek (Figure 2). Based on this phenomenon, the potential risk should be
considered, and it may be closely related to the bathymetry and pattern of the entire tidal
flat. This is also currently being investigated by the authors.

5. Conclusions

This paper presented a case study of the inter-annual variability of a densely populated
tidal flat on the southeast coast of Shanghai. The satellite images acquired at the same tidal
levels indicated the obvious differences in the tidal flat pattern at both the nearly highest
and lowest tidal levels. To quantify the variability, over 300 waterlines were detected using
a publicly available satellite dataset from 2013 to 2020 and were automatically extracted.
The measured water levels corresponding to the acquisition times of each satellite image
were collected from the nearest tidal gauge.

The spatial patterns of the waterlines on the tidal flat in the time series exhibited
significant variance. After assigning the tidal levels to the extracted waterlines, the DEMs
of each quarter from 2015 to 2020 were reconstructed. The reconstructed DEMs and
topographic surveys were in good agreement. The variations in the tidal flat area with time
and the relationship between the tidal level and the tidal flat area revealed that the tidal flat
was in a rapid accretion phase before 2018, which then changed to erosion (Figure 9). The
dominant EOF mode also indicated that accretion mainly occurred from the end of 2015 to
2017, but a channel was eroded (Figure 10).

In summary, the LGTF has experienced obvious accretion during the last decade;
however, during recent years from 2018 to 2021, it faces the risk of erosion. Since the study
area is becoming a new tourist attraction in Shanghai, the variability of the tidal flat could
increase the uncertainty of the potential risk. As such, it is necessary to evaluate how the
tidal flat will change in the future.
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