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Abstract: Recent advances in computer vision and camera-equipped unmanned aerial systems (UAS)
for 3D modeling enable UAS-based photogrammetry surveys with high spatial-temporal resolutions.
To generate consistent and high-quality 3D models using UASs, understanding how influence factors
(i.e., flight height, image overlap, etc.) affect the 3D modeling accuracy and their levels of significance
are important. However, there is little to no quantitative analysis that studies how these influence
factors interact with and affect the accuracy when changing the values of the influence factors.
Moreover, there is little to no research that assesses more than three influence factors. Therefore,
to fill this gap, this paper aims to evaluate and predict the accuracy generated by different flight
combinations. This paper presents a study that (1) assessed the significance levels of five influence
factors (flight height, average image quality, image overlap, ground control point (GCP) quantity, and
camera focal lengths), (2) investigated how they interact and impact 3D modeling accuracy using the
multiple regression (MR) method, and (3) used the developed MR models for predicting horizontal
and vertical accuracies. To build the MR model, 160 datasets were created from 40 flight missions
collected at a site with a facility and open terrain. For validating the prediction model, five testing
datasets were collected and used at a larger site with a complex building and open terrain. The results
show that the findings of this study can be applied to surveyors’ better design flight configurations
that result in the highest accuracies, given different site conditions and constraints. The results also
provide a reasonable prediction of accuracy given different flight configurations.

Keywords: unmanned aerial systems; UAS; photogrammetry; surveying

1. Introduction

Small unmanned aerial systems (UAS) in conjunction with photogrammetric tech-
niques have been widely used as they offer affordable operable costs and efficient and
safe aerial data acquisition [1]. The technological development in advanced software and
hardware has led to automatic data collection using UAS with different sensors based
on user requirements [2]. These sensors include RGB digital cameras, thermal infrared
cameras [3,4], multispectral camera [5,6], and Light Detection and Ranging (LiDAR) [7,8].
Nex et al. [9] reviewed the most prominent developments on UAVs for remote sensing and
mapping applications using onboard sensors mentioned above. The best practices to follow
using the existing technologies and their limitations have been reported.

UAS-based photogrammetric surveying and mapping applications are broadly applied
in various fields to provide an accurate 3D point cloud model with a high spatial resolution.
Studies on UAS range from forest and biomass [10,11], construction industry [12,13], crop
and agriculture [14,15], coastline and riverbank [16,17], archaeologic [18,19], facility and
road [20,21], inspection [22,23], to emergency mapping [24].

The accuracy of UAS-based photogrammetric surveying largely depends on the accu-
racy of structure-from-motion (SfM) techniques that reconstruct 3D scenes and estimate
camera poses (location and orientations) from 2D images [25]. Förstner and Wrobel [26]

Remote Sens. 2022, 14, 4119. https://doi.org/10.3390/rs14164119 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14164119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5166-7150
https://orcid.org/0000-0002-2995-8381
https://doi.org/10.3390/rs14164119
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14164119?type=check_update&version=3


Remote Sens. 2022, 14, 4119 2 of 28

provides a statistical treatment and algorithms of the geometry of multiple view analysis
useful for camera calibration, orientation, and geometric scene reconstruction.

Previous research has shown that the accuracy is influenced by numerous factors,
such as flight heights [27], UAS-equipped camera sensors and settings [27–30], image
overlaps [11,31], ground control points (GCP) quantities and distributions [30,32], georef-
erencing methods [14,33], and processing SfM software utilization [30,34]. To generate
consistently high-quality 3D models from UAS-based photogrammetric surveying and
mapping, understanding how these influence factors affect the model accuracy and their
levels of significance is important. Moreover, since the site conditions change, under-
standing what accuracy can be achieved and designing optimal flight paths based on site
constraints or limitations is an essential procedure to produce high-quality 3D models.

However, most previous research only focuses on the influence of no more than three
important factors [12,35]. No research uses a quantitative method to analyze more than
three influence factors, discuss which factors have a higher or lower impact on accuracy,
and predict the level of accuracy based on the site conditions and flight configuration
influence factors. Moreover, some surveyors do not know what accuracy to expect and
largely make guesses based on their prior knowledge. Those without experience cannot
even guess what accuracy to expect other than good accuracies that software providers use
in marketing which often do not translate to reality [36].

Thus, to fill this research gap, the main objective of this paper is to (1) assess five
major influence factors, (2) identify their levels of significance on horizontal and vertical
accuracies, and (3) predict the horizontal and vertical accuracies of different combinations of
influence factors using the multiple regression (MR) method. The influence factors include:

(1) flight height,
(2) flight overlap,
(3) the quantity of GCPs,
(4) the focal length of the camera lens, and
(5) the average image quality of each image dataset.

To assess the influence factors and build the MR model, UAS-based surveying images
using different sets of flight configurations were collected at a facility with an open field in
Raleigh, NC. To validate the MR model, another set of images was collected at a test site that
has a larger facility and open terrain in Butner, NC. The horizontal and vertical accuracies
are evaluated through the positional comparison of checkpoints (CPs) by following the
industry standards [37]. The main contributions of this paper are as follows:

(1) Evaluation of five main influence factors of UAS-based photogrammetric surveying
and their significance level using the MR method.

(2) MR modeling for prediction of the UAS-based photogrammetric accuracy with differ-
ent flight configurations.

With these contributions, this study can help surveyors better deal with different
site constraints that affect the influence factors, design optimal flight configurations, and
estimate the accuracy.

2. Background

This section presents the related studies on the impact of influence factors on UAS-
based photogrammetric surveying accuracy.

Table 1 summarizes the area of the work and influence factors for accuracy checking.
41 articles from major journals in the related field are summarized. Additionally, the highest
accuracy achieved for each article is also summarized in Table 1. The highest accuracy
values were reported using mean absolute error (MAE) or root mean square error (RMSE).
N/A presents there is no highest value reported in the article. The following subsections
are broken down by these influence factors that impact UAS-based photogrammetric
surveying accuracy.
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Table 1. Overview of the Related Research.

Number of
Influence

Factors
Factors Authors Research Description

Highest
MAE/RMSE
Horizontal

Highest
MAE/RMSE

Vertical

Single
Influence
Factors

Flight Height

[27]

Evaluate the influence of flight height
and area coverage orientations on the

DSM and orthophoto accuracies for flood
damage assessment.

N/A
(consistently
lower than

0.05 m, i.e., not
more than
1–2 pixels)

N/A

[30]
Provide a solution of data collection and

processing of UAS application in
complex forest environment

N/A N/A

GCP Quantity and
Distribution

[10] Assess the influence of numbers of GCPs
on DSM accuracy. N/A 0.057 m

[19]
Propose an algorithm to calculate the
sparse point cloud roughness using

associated angular interval.
N/A N/A

[28]
Evaluate the impact of GCP quantities on
UAS-based photogrammetry DSM and

orthoimage accuracies.
0.053 m 0.049 m

[35]

Assess the influence of different grades of
tree covers and GCP quantities and

distributions on UAS-based point cloud
in forest areas.

0.031 m 0.058 m

[2]
Evaluate the influence of additional

GCPs on spatial accuracy when AAT is
applied for georeferencing.

N/A N/A

[38]
Identify the GCP quantities and

distributions to generate a high accuracy
for a corridor-shaped site.

0.027 m 0.055 m

[39]
Evaluate the effect of the location and

quantity of GCPs on UAS-based DSMs in
Glaciers.

N/A N/A

[40]

Evaluate the impact of GCP quantities
and distributions on UAS-based

photogrammetry DSM and orthoimage
accuracies.

0.035 m 0.048 m

[41]
Provide a solution about the optimal

GCP quantity to generate high precision
3D models.

N/A N/A

[42]
Provide information of the optimal GCP

deployment for dam structures and
high-rise structures.

0.057 m 0.012 m

[43]
Analyze the influence of the quantities

and numbers of GCPs on 3D model
accuracy.

N/A N/A

[44]
Analyze the influence of GCP quantities

on UAS photogrammetric mapping
accuracy using RTK-GNSS system.

N/A 0.003 m

[45]
Analyze 3D model and DSM accuracies
to determine the optimal GCP quantities

in various terrain types.
0.044 m 0.036 m
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Table 1. Cont.

Number of
Influence

Factors
Factors Authors Research Description

Highest
MAE/RMSE
Horizontal

Highest
MAE/RMSE

Vertical

Camera Setting

[32]

Analyze the influence of
photogrammetric process elements on

the quality of UAS-based
photogrammetric accuracy to identify

artificial lighting at night

N/A N/A

[34]

Evaluate the influence of camera sensor
types and configurations and SfM
processing tools on UAS mapping

accuracy.

N/A N/A

[46]
Analyze the influence of the ground
control quality and quantity on DEM

accuracy using a Monte Carlo Method.
N/A N/A

[47] Generate a larger virtual image from five
head cameras 2.13 pixels N/A

[48]

Investigate three issues of corridor aerial
image block, including: focal length error,

a gradually varied focal length, and
rolling shutter effects.

0.007 m 0.008 m

Image Acquisition

[29]
Evaluate the impact of image parameters

on the close-range UAS-based
photogrammetric inspection accuracy.

N/A N/A

[49]
Evaluate the impact of image formats

and levels of JPEG compression in
UAS-based photogrammetric accuracy.

N/A N/A

[50]
Evaluate the influence of low-height UAS

photogrammetry systems on stable
images, data processing and accuracy.

N/A 0.059 m

Georeferencing
Methods

[1] Introduces a custom-built multi-sensor
system for direct georeferencing. 0.012 m 0.020 m

[14]
Evaluate the impact of GNSS receivers of
techniques features and working modes

on positioning accuracy.
N/A N/A

[15] Evaluate the geometric accuracy of using
four different georeferencing techniques 0.023 m 0.03 m

[33]
Evaluate the quality of photogrammetric
models and DTMs using PPK and RTK

modes in coastline areas.
N/A 0.016 m

[51]
Analyze the impact of UAS blocks and

georeferencing methods on accuracy and
repeatability.

0.016 m 0.014 m

[52]

Evaluate the influence of image block
orientation methods on the accuracy of

estimated forest attributes, especially the
plot mean tree height.

N/A N/A

[53]
Analyze the influence of different UAS

platforms on positional and
within-model accuracies without GCPs.

N/A N/A
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Table 1. Cont.

Number of
Influence

Factors
Factors Authors Research Description

Highest
MAE/RMSE
Horizontal

Highest
MAE/RMSE

Vertical

[54]
Provide operational guidelines and best

practices of direct georeferencing
methods on positional accuracy.

N/A 0.019 m

[55]
Assess the influence of GNSS with PPK
on the UAS-based accuracy in building

surveying applications.
N/A 0.01 m

[56]
Assess the influence of RTK/PPK on

geospatial accuracies of photogrammetric
products in forest areas.

0.003 m 0.006 m

Flight Height and
Image Acquisition [11]

Provide scientific evidence of the impact
of flight height, image overlap, and

image resolution on forest area
reconstruction.

N/A N/A

Multiple
Influence
Factors

GCP Quantity and
Distribution and
Georeferencing

Methods

[12]

Evaluate the impact of cross flight
patterns, GCP distributions, and

RTK-GNSS on camera self-calibration
and bundle block adjustment quality.

N/A N/A

Camera Setting
and Image
Acquisition

[31]
Evaluate the impact of image resolution,

camera type, and side overlap on
predicted biomass model accuracy.

N/A N/A

Flight Height and
GCP Quantity and
Distribution and

Image Acquisition

[57]

Evaluate the impact of flight heights,
terrain types, and GCP quantities on

DSM and orthoimage accuracy in
UAS-based photogrammetry

0.000169 m 0.047 m

[58]

Evaluate the impact of flight height,
image overlap, GCPs quantities and

distribution, and time of survey on snow
depth measurement.

N/A N/A

[59]
Analyze the impact of flight heights and
quantities and distribution of GCPs on

survey error.
N/A N/A

GCP Quantity and
Distribution and
Camera Setting

[60]

Evaluate the influence of camera
calibration methods as well as quantities

and distributions of GCPs on UAS
photogrammetry accuracy.

1.3 mm 5.1 mm

Flight Height and
GCP Quantity and
Distribution and
Camera Setting

[61]

Assess the impact of flight height, image
overlap, GCP quantities, and

construction site conditions on
measurement accuracy.

N/A 0.085 m

2.1. Flight Heights

Studies indicate that flight heights can impact the accuracy of the UAS-based pho-
togrammetry. Research conducted by [27] assessed the accuracy of UAS image data using
different flight heights (126–235 m) in a semi-arid and medium-relief area with flood dam-
age. The assessment was with respect to the MAE of the vertical and horizontal accuracies
of the generated digital surface model (DSM). The results indicated that the MAE in the
vertical direction was increased with the increase in flight heights, while the MAE in the
horizontal direction was maintained stable (consistently lower than 0.05 m, i.e., not more
than 1–2 pixels).



Remote Sens. 2022, 14, 4119 6 of 28

2.2. Image Overlap

Previous research showed that varying image overlaps could influence the accuracy
of UAS-based photogrammetry. The influence of image overlap on the accuracy of UAV-
photogrammetry-based snow depth distribution maps was studied by [48]. This research
applied three different image overlaps were applied in this research, including 90% front
overlap by 81% side overlap, 80% front overlap by 72% side overlap, and 70% front overlap
by 63% side overlap. The results demonstrated that accuracy would be improved when
increasing the image overlap.

2.3. GCP Quantities and Distribution

The reports show that less than 1/4 ground sample distance (GSD) accuracy can be
achieved when the pre-calibrated camera-equipped UAS is flying over 100 m above ground
level (AGL), even if using the minimum GCP quantities. Due to the low stability of
the optical system, a large number of GCPs were required for the UAS using the direct
orientation method. A pre-calibrated camera is a type of camera calibration method which
is performed prior to the bundle adjustment in the SfM workflow. When pre-calibration
is performed, all camera settings should be fixed. The camera can be calibrated using a
chessboard to observe it from different angles [62].

Previous research showed consistent results regarding the influence of the number and
location of GCPs used to assess accuracy. Increasing the number of GCPs would improve
accuracy in both horizontal and vertical directions. Additionally, well-distributed GCPs
could generate more accurate results than using randomly distributed GCPs. Research
conducted by [10,19] determined that using GCPs would yield better accuracy than without
using GCPs. The research conducted by [19] used 39 GCPs in a 0.22 ha size. The study
conducted by [10] compared the results of using zero, five, and ten GCPs in an 80 ha study
area. The results showed that the RMSE of using zero, five, and ten GCPs were 2.255, 0.072,
and 0.057 m. The study conducted by [54] used 3465 different combinations of GCPs in
bundle adjustment to answer the question about the best displacement of GCPs to achieve
the desired accuracy. 102 targets were evenly distributed throughout a highland and min-
ing area with 1225 ha. Among all the targets, the numbers of GCPs used in this research
were from three to 101. Results demonstrated that the accuracy achieved by using evenly
distributed GCPs could be twice as good as that of poorly distributed GCPs. Additionally,
utilizing the medium to high numbers of GCPs (i.e., 3 GCPs per 100 photos), could obtain
the desired accuracy. The research conducted by [38] investigated the impact of various
numbers of GCPs on DSM and orthoimages. This research was conducted on a sloping site
with a size of 18 ha. The numbers 4, 5, 6, 7, 8, 9, 10, 15, and 20 GCPs were used. The optimal
accuracy was derived using 15 GCPs. Optimal results for RMSEX, RMSEY and RMSEXY
mean ± standard deviation values were reached for 15 GCPs: 3.3 ± 0.346, 3.2 ± 0.441,
4.6± 0.340 and 4.5± 0.169 cm, respectively. Similar conclusions were derived for vertical ac-
curacy: lower RMSEZ mean ± standard deviation values were reached for 15 and 20 GCPs:
5.8 ± 1.21 cm and 4.7 ± 0.860 cm, respectively. The generated accuracies from 15 GCPs had
no noticeable difference.

2.4. Georeferencing Methods

In addition to the aforementioned influence factors, some research investigated how
georeferencing methods affect UAS-based photogrammetric surveying accuracy. The
study studied by [14] compared the positional accuracy using various global navigation
satellite systems (GNSS) receivers for mapping in agriculture. Their study demonstrated
that the GNSS receivers with an external antenna could yield better positioning accuracy.
The accuracy and repeatability of UAV block orientation by GNSS-supported orientation
were researched by [40]. The impact on the checkpoint errors of the precision given to
the projection centers had been studied. The results showed that with at least one GCP,
the geocoding accuracy of GNSS-supported orientation was almost as good as that of
a traditional GCP orientation in the horizontal direction and only slightly worse in the
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vertical direction. The highest accuracy in horizontal and vertical directions were 0.016
and 0.014 m. The research studied by [46] compares three image orientation methods on
the accuracy of forest inventory attributes. The three image orientation methods were the
Indirect Sensor Orientation (ISO) with five irregularly distributed GCPs, GNSS -supported
Sensor Orientation (GNSS-SO) using non-Post Processed Kinematic (PPK) single-frequency
carrier-phase GNSS data (GNSS-SO1), and GNSS-supported Sensor Orientation (GNSS-SO)
using PPK dual-frequency carrier-phase GNSS data (GNSS-SO2). The results GNSS-SO2
produced the highest accuracy while the ISO method generated the lowest accuracy. A
custom-built multi-sensor system for direct georeferencing was proposed by [1] enabled
georeferencing to be performed without access to the mapping area. This system combined
GNSS receiver with Real-Time Kinematic (RTK) and inertial navigation system (INS) to
achieve high accuracy. This system was tested using 30 test points and reported using RMSE.
The results showed that this system with micro or light UASs could ensure centimeter-level
object accuracy. The highest accuracies in horizontal and vertical directions were 0.012 and
0.020 m using six well-distributed GCPs and the indirect georeferencing method.

2.5. Multiple Factors

Out of those 40 papers, eight analyzed the influence of multiple influence factors on
UAS-based photogrammetric surveying accuracy. None of them studied relative influences
among these factors. The impact of image resolution, camera type, and side overlap on
the prediction accuracy of biomass terrain types using multiple linear regression models
was evaluated by [31]. Two different image resolutions (10 and 15 cm ground sampling
distance), two camera types (NIR and RGB), and two different side overlap levels (70 and
80%) were assessed in their research. The results indicated that using the NIR camera could
generate higher prediction errors than the RGB camera. A fine resolution improved the
prediction accuracy regardless of the camera types. Additionally, increasing the side overlap
decreased the prediction accuracy. However, there is no significant difference in image
resolution, camera type, and side overlap on the accuracy of the 95% confidence level.

The research was conducted by [57] assessed the accuracy of the positional errors
under various flight parameters, consisting of four flight heights (18 m (30 ft), 27 m (60 ft),
37 m (90 ft), and 46 m (150 ft)), two overlaps (70% and 90%), six different quantities of
GCPs (zero, one, four, eight, twelve, and sixteen), and varying construction materials (sand,
clay, fine grade gravel, and coarse grade gravel). In their research, multiple comprehensive
comparisons and multiple regression analyses were used to observe the significance of
the influence factors. The results showed that increasing the numbers of GCPs and image
overlap would improve the accuracy. When the image overlap was low, increasing flight
height could reduce the errors. Moreover, this research indicated that the quantity of GCPs
had the most significant influence on the accuracy of the 95% confidential level. The highest
accuracy of DSM (0.085 m) was achieved using low flight height (18 or 27 m) with high
image overlap (90–60%) using more than twelve GCPs.

The study conducted by [11] researched the influence of image overlap, flight height,
and camera sensor resolution on accuracy using a multivariate generalized additive model
to set flight parameters for UAS-based surveying in forest areas optimally. Five different
flight heights ranging from 25 m to 100 m (25 m, 40 m, 50 m, 75 m, and 100 m), four
different image-side overlaps (67%, 55%, 45%, and 35%), and five various image resolu-
tions (3840 × 2160 (100%), 2880 × 1620 (75%), 1920 × 1080 (50%), 960 × 540 (25%), and
768 × 432 (20%)) were utilized in this research. The results showed that low flight heights
and high image overlaps could generate high accuracy with great reconstruction details
and precision.

A case study carried by [28] evaluated the influence of flight heights, terrain mor-
phologies, and the number of GCPs on DSM and orthoimage accuracies. Five terrain
morphologies, four flight heights (50 m, 80 m, 100 m, and 120 m), and three different
numbers of GCPs (3, 5, 10) were considered in this research. The results of this research pre-
sented that the quantity of the GCP was the most important factor affecting both horizontal
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and vertical accuracies. Increasing the number of GCPs would improve both horizontal and
vertical accuracies. However, the result of terrain morphology was the opposite. The terrain
morphology did not influence either horizontal or vertical accuracies. Although flight
height did not influence horizontal accuracy, it impacted vertical accuracy. Vertical accuracy
decreased as flight altitude increased. Moreover, this research found the most accurate
combination of flight altitude and number of GCPs was 50 m and 10 GCPs, respectively,
which yielded RMSEX, RMSEY, RMSEXY, and RMSEZ values equal to 0.038, 0.035, 0.053,
and 0.049 m, respectively

The research conducted by [61] used three different flight heights (67 m, 91 m, and
116 m), six different quantities of GCPs (5, 7, 9, 11, 13, and 15), and nine different types of
GCP distributions on DSM accuracy in a complex and developed coastline. The results
indicated that both horizontal and vertical accuracies increased as flight heights or the
number of GCPs increased. For the GCP distributions, the accuracy was highest when
GCPs were located in the corner, both high and low elevations of the study site.

Moreover, the research performed by [44] was about the accuracy assessment of the
quantities of GCPs and the camera calibration methods. Similar to other research, their
results also showed that accuracy would be improved with increasing GCP quantities.
Moreover, the results presented that when capturing nadir images, there was no noticeable
difference between using pre-calibration and self-calibration. However, when processing
oblique images, adopting self-calibration could yield higher horizontal accuracy than
pre-calibration.

A method proposed by [63] predicted the mapping quality from the information that
was available prior to the flight, such as the flight plan, expected flight time, approximate
digital terrain model, prevailing surface texture, and embedded sensor characteristics.
They compared the quality prediction with the actual mapping accuracy in various geo-
metrical configurations and the quality of the airborne GNSS positioning in the mountain
environment. The results showed a satisfactory agreement.

According to the above literature, most previous research focused on flight height,
GCP quantities, and image overlap but not image quality and focal length of the camera
lenses. Additionally, most previous research simply assessed the accuracy through results
comparisons using different influence factors values.

3. Methodology

Figure 1 shows the workflow of the methodology. An experiment was designed by
selecting a site for a case study and planning data collection strategies. A case study was
conducted at a facility site with open terrain. The indirect georeferencing method with GCPs
and CPs was used. UAS flight missions were designed before data collection. A terrestrial
laser scanning (TLS) was used for generating the coordinates of CPs for spatial accuracy
evaluation. Pix4DMapper (one of the most widely used 3D reconstruction software by the
company Pix4D founded in Swiss in 2011) was used to process the image data that was
collected by a camera-equipped UAS. Next, the RMSE at the CPs was used to calculate
spatial accuracy in horizontal and vertical directions. An MR model was developed to
statistically analyze the factors’ significance and influence and predict the UAS-based
photogrammetry accuracy based on the information of influence factors. Finally, the results
of the MR model were validated using another test site. The following subsections here
steps in detail.
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3.1. Experimental Design

A track facility site on the North Carolina State University (NCSU) campus in Raleigh,
North Carolina, was selected to assess the influence factors. The size of this site is 0.49 ha.
Figure 2 shows the site condition. This site contains a building facility, open space, and
vegetation. The study area is shown in the yellow rectangle.

1 
 

 

  Figure 2. Study Site Conditions.

According to [37], no fewer than 20 CPs should be used in all accuracy observations
since it might cause inaccurate results. Thus, 20 CPs are adopted to assess the RMSE errors
in horizontal and vertical directions. Figure 3 shows the layout of the GCPs and CPs on
the study site. As shown in the figure, 10 GCPs and 20 CPs were distributed around the
site using PK nails and checkerboards (see Figure 4). The size of the checkboard marker is
24′′ × 24′′. There are four corner anchor points included to affix to the ground.

The coordinate system for the horizontal direction was the North American Datum
(1983) (NAD83) (National Adjustment of 2011), State Plane Coordinate System, North
Carolina Zone. The North American Vertical Datum (NAVD) of 1988 was used for the
vertical coordinate system.

To assess influence factors, multiple flight configurations with different values of
influence factors were designed. For instance, the flight heights were determined to be
between 40 m and 70 m, and the GCP quantities between 4 and 10, which is reasonable as
the size of the track facility site at NCSU was only 0.49 ha. Moreover, image overlap was
decided to be from 50% to 90%. A short (25 mm) and a long (17 mm) focal length of camera
lenses were needed to investigate the influence and significance. Thus, four different flight
heights, five different image overlaps, four various quantities of GCPs, two different focal
lengths of camera lenses were chosen. The average image quality was calculated based
on all the images in each dataset. The quality of each image was calculated based on the
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comparison of the contrast gradients in the most peculiar areas between the original image
and the Gaussian blur filter applied image through the Agisoft Photoscan Estimate Image
Quality tool.

 

2 

 

  Figure 3. Layout of GCPs and CPs in NCSU track facility site.
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3.2. Data Collection

The UAS data and laser scan data collection at the NCSU track facility site took place
from 19 January 2021, to 24 January 2021, from 10 a.m. to 3 p.m. to obtain optimal light
conditions. The temperature ranged from 5 ◦C (41 ◦F) to 17 ◦C (57 ◦F). The wind speed was
between 0.56 m/s (1.2 mph) and 3.61 m/s (8.0 mph) with a westerly wind direction. The
information was obtained from Finding the Past weather through the National Weather
Service website. The UAS image data was collected using a DJI (Da-Jiang Innovations, a
Chinese technology company) Inspire II drone with a DJI Zenmuse X5S camera and an
Olympus M.Zuiko (a Japanese manufacturer of optics and reprography products) 25 mm
and 17 mm focal length lenses (Figure 5).
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Figure 5. DJI Inspire II UAS: (a) DJI Inspire II drone, (b) DJI Zenmuse X5S camera and an Olympus
M.Zuiko lens.

The flight missions were conducted by Pix4DCapture (a mobile app used to collect
data) using autopilot mode. A double grid path was used as the flight path. The angle
of the camera was 80◦ (oblique images). The autopilot mode allows an unmanned aerial
vehicle, such as a drone, to perform entire missions autonomously without the need for
manual remote control [64]. The UAS speed was Normal plus mode to save flight time. The
white balance of the image was sunny. The following are the detailed flight configurations
used to collect the data at the track facility site.

• Flight Heights: 40 m (131 ft), 50 m (164 ft), 60 m (197 ft), and 70 m (229 ft)
• Image Overlap: 50%, 60%, 70%, 80%, and 90%
• Focal Length: 17 mm and 25 mm

40 flight missions were conducted using different flight heights, image overlaps, and
focal lengths of lenses. A total of 4425 images were collected for all flight missions. The
number of collect images for every flight mission was 20 to 539. The average image quality
of every image data set was between 0.18 and 1.01. Table 2 lists those 40 flight missions
with detailed information.

FARO Focus S70 3D scanner (shown in Figure 6) was used to collect laser scans to
produce the coordinates of CPs since the accuracy of laser scan registration was 2 mm,
which was much less than the UAS photogrammetric surveying accuracy [65]. The field
of views (FOV) in vertical and horizontal directions were 300◦ and 360◦. FARO Focus S75
3D scanner was fit to a 1/5 resolution and 4× quality for scanning. Four setups (yellow
squares S1–S4 in Figure 3) were adopted to cover the study area.
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Table 2. Detailed Flight Mission Information.

Flight No. Focal Length (mm) Flight Height (m) Overlap (%) Average Image Quality No. of Image

1 25 40 90 0.88 539
2 25 40 80 0.23 161
3 25 40 70 0.30 94
4 25 40 60 0.22 57
5 25 40 50 0.96 48
6 25 50 90 0.29 473
7 25 50 80 0.90 156
8 25 50 70 0.24 64
9 25 50 60 0.63 48
10 25 50 50 0.25 39
11 25 60 90 0.60 391
12 25 60 80 0.34 86
13 25 60 70 0.95 47
14 25 60 60 0.28 30
15 25 60 50 0.18 22
16 25 70 90 0.32 171
17 25 70 80 0.40 98
18 25 70 70 0.31 39
19 25 70 60 0.33 30
20 25 70 50 0.58 20
21 17 40 90 0.49 345
22 17 40 80 1.01 148
23 17 40 70 0.48 55
24 17 40 60 1.01 46
25 17 40 50 0.63 35
26 17 50 90 0.92 321
27 17 50 80 0.37 77
28 17 50 70 0.37 48
29 17 50 60 0.63 31
30 17 50 50 0.63 21
31 17 60 90 0.43 226
32 17 60 80 0.63 85
33 17 60 70 0.65 48
34 17 60 60 0.92 28
35 17 60 50 0.51 23
36 17 70 90 0.49 120
37 17 70 80 0.40 75
38 17 70 70 0.50 30
39 17 70 60 0.39 30
40 17 70 50 0.42 20

3.3. Data Processing

When processing the images for 3D reconstruction, 4, 6, 8, and 10 GCPs were used,
leading to 160 combinations of datasets (40 flight configurations × 4 sets of GCPs). The
data were processed based on the flight missions with different GCP quantities. UAS
photogrammetric data were processed by Pix4DMapper version 4.4.6. Optimal settings
were used in Pix4DMapper to achieve a high quality of accuracy.

Laser scans were processed in FARO SCENE (software to process and register all the
laser scans) [66]. The laser scans were manually registered and georeferenced using the
same coordinate system (North American Datum (1983) (NAD83) (National Adjustment of
2011), State Plane Coordinate System, North Carolina Zone).
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Figure 6. FARO Focus S 3D scanner.

The first step was to import the surveyed points into the workspace level in FARO
SCENE as a reference. The surveyed points were the same set of ground control points
used in UAS data processing. Those coordinates of surveyed points were collected using a
GNSS receiver from the North Carolina Department of Transportation (NCDOT). Then, a
three-point alignment method was used to match the coordinate system of the laser scans
with the reference data (the imported surveyed points). A surveyed point was chosen
as the new origin, and the X, Y, and Z values were entered for this point. After that, the
coordinates of a second surveyed point were selected and entered to define the direction of
the first axis. Next, the coordinates of another surveyed point were selected and entered to
define the direction of the second axis. Finally, after applying all the changes, the coordinate
system of the registered scans was automatically changed.

The registration error of the laser scans was 5.06 mm. The following Tables 3 and 4
show the detailed settings of Pix4DMapper and SCENE.

Table 3. Pix4DMapper Setting Parameters.

Processing Step Parameters Value

Alignment
Key points Image Scale Full

Image Scale for Alignment Original Size
Matching Image Pairs Aerial Grid or Corridor

Calibration
Targeted Number of Key points Automatic

Calibration Method Standard

Camera Optimization Internal Parameters Optimization All
External Parameters Optimization All

Dense Point Cloud Generation
Image Scale for Point Cloud Densification Original Size with Multiscale

Point Density High
Minimum Number of Match 3
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Table 4. SCENE Setting Parameters.

Processing Step Parameters Value

Processing Setting Colorization Colorize Scans
Find Targets Find Checkerboards

Registration Automatic Registration Target Based
Optimization and Verify Cloud to Cloud

3.4. Data Analysis

Data analysis includes two steps: spatial data analysis to assess the accuracy re-
sults of each dataset produced from Pix4DMapper, and statistical analysis to evaluate the
level of significance and impact of influence factors and build the MR models to predict
the accuracy.

3.4.1. Spatial Data Analysis

The [37] provides spatial accuracy metrics for reporting horizontal and vertical ac-
curacy. The spatial accuracy was evaluated in easting (X), northing (Y), horizontal (R),
and height (Z). Thus, the RMSE at CPs generated from Pix4DMapper showed the easting
RMSE (RMSEX), northing RMSE (RMSEY), horizontal RMSE (RMSER), and vertical RMSE
(RMSEZ). These values were computed as follows:

RMSEX =

√
1
n

n

∑
i=1

(
Xi(ortho) − Xi(survey)

)2
(1)

RMSEY =

√
1
n

n

∑
i=1

(
Yi(ortho) − Yi(survey)

)2
(2)

RMSER =
√

RMSEX
2 + RMSEY

2 (3)

RMSEZ =

√
1
n

n

∑
i=1

(
Zi(DEM) − Zi(survey)

)2
(4)

where n is the number of CPs; i = integer ranging from 1 to n; Xi(ortho), and Yi(ortho) are
the X (easting) and Y (northing) coordinates, respectively for the ith CPs as measured in
the orthophoto; Zi(DEM) is the Z (height) coordinate for the ith checkpoint as measured in
the Digital Elevation Model (DEM); and Xi(ortho), Yi(ortho), and Zi(DEM) are the X, Y, and Z
coordinates for the ith checkpoint as surveyed in the field.

3.4.2. Statistical Analysis

In this paper, RMSER, RMSEz, and pixels in ground units (GSD) were used to evaluate
the model accuracy in statistical analysis. The MR analysis was used to quantitatively ana-
lyze the relationships among all the influence factors and outcomes to further identify the
level of significance of influence factors on horizontal and vertical accuracies. Moreover, a
prediction model was constructed to predict the RMSE in horizontal and vertical directions.
The reason for choosing the MR method was that all the input and outcome variables were
quantitative variables, and there were multiple input variables.

The level of significance of influence factors was assessed using the significance value,
also known as the p-value, at a 95% confidence level. If the p-value of an impact factor
is less than 0.05, that means this impact factor is statistically significant. Otherwise, the
impact factor has no significance in statistics.

When developing the MR prediction model, the relationships between influence
factors and the distribution and skewness of the dependent variables (RMSER and RMSEz)
were checked and considered. The reason to check the relationship between influence
factors was to observe if there was an interaction existing. Interaction presents a particular
type of non-linear relationship, which means the influence of an independent variable on
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the dependent variable varies at different values of another independent variable in the
model. The reason to check the distribution of the dependent variables was to identify if
the dependent variables followed a normal distribution. Although it was not required that
the distribution be a normal distribution, it could eliminate the harmful effects and develop
more accurate MR prediction models using a transformation when the distribution was
very skewed.

Two MR prediction models were built based on the value of influence factors to
predict the RMSER and RMSEz. IBM SPSS Statistics (a statistical software suite devel-
oped by IBM for data management, advanced analytics, multivariate analysis, business
intelligence, and criminal investigation. Long produced by SPSS Inc) and R-Studio (an
integrated development environment for R, a programming language for statistical com-
puting and graphics) were used to conduct the statistical analysis. The MR models were
computed using the following regression equation for RMSER and RMSEz, separately, for
each flight configuration:

y = β0 + (
m

∑
1

βm × xm + ε) (5)

where y is the dependent variable, which is the values of RMSER and RMSEz, or the value
of transformed RMSER and RMSEz, respectively, in this case. m represents the independent
variables, which are influence factors in this paper, and m ranges from 1 to 5 since we have
five influence factors. xm is the input variable of independent variables. β0 is the intercept
of y (a constant). βm is the regression coefficient. ε means the model’s error term, also
known as the residuals, which is negligible.

The slope coefficients βm represents the slope of the line between the independent
variable and the dependent variable. It indicates how much the dependent variable varies
with an independent variable when all other independent variables are held constant (β0).
Following is the Equation (6):

βm =
∑(xim − xm)× (yi − y)

∑(xim − xm)
2 (6)

where i is dataset configurations, which is from 1 to 160 in this case. xm is the average value
of independent variables. y represents the average value of the dependent variables.

For the collected data with 160 flight configurations for training, the total of 320 ‘y’s
for RMSER and RMSEz of 160 flight configurations and xm are known values. With them,
βm can be computed followed by β0. With these two coefficients, ‘y’s for RMSER and
RMSEz that are expected accuracies can be computed for newly collected datasets and are
presented in the next section.

3.5. Validation

The last step is to validate the results of the MR models using the data collected at
another study site with similar terrains.

Data Collection

The validation site was a North Carolina Department of Transportation (NCDOT)
UAS Test Site in Butner, North Carolina (see Figure 7). The size of this site was 5.31 ha.
Similar to the track facility site, the Butner site also contained a building facility, open space,
and vegetation. The study area was shown in the yellow rectangle. The slope in this site is
0.05, which means this site is flat.
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  Figure 7. Butner Site Conditions (Flat surface with buildings, open spaces, and vegetation).

13 GCPs and 20 CPs with the same coordinate systems were evenly distributed (see
Figure 8). The data collection took place on 25 February 2021, from 10 a.m. to 3 p.m. to
obtain optimal light conditions. The temperature ranged from 3 ◦C (38 ◦F) to 13 ◦C (55 ◦F).
The wind speed was between 2.5 m/s (5.5 mph) and 3.4 m/s (7.5 mph) from west to east.
The same UAS collected the UAS image data with the same camera and lenses. Two flight
missions with two different flight heights and two different overlaps were conducted by
Pix4DCapture using an autopilot mode with the same setting.

A total of 964 images were collected from the two flight missions. The numbers of
collected images for two flight missions were 684 and 280. The average image qualities of
both image datasets were 0.85 and 0.48. Ten, twelve, and thirteen GCPs were used for data
processing. Table 5 lists all the flight configurations used for the validation.

Table 5. Detailed Flight Configurations for Data Validation.

Flight
Mission

Flight
Height (m) Overlap (%) Focal Length

(mm)
GCP

Quantities
Average Image

Quality
No. of
Images GSD (cm)

1 116 90 25 13 0.85 684 1.6
2 86 80 17 12 0.48 280 1.65
3 116 90 25 10 0.85 684 1.6
4 86 70 17 12 0.48 280 1.65
5 86 70 17 10 0.48 140 1.65
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Figure 8. Layout of GCPs and CPs in NCDOT UAS test site.

4. Results and Discussion
4.1. Influence and Significance of Five Influence Factors

This section summarizes the results of the aforementioned analysis and analyzes the
impact of influence factors and their level of significance. Figure 9 shows the mean of
RMSEZ, RMSER, average errors in pixels in the horizontal direction (average GSDR), and
average errors in pixels in the vertical direction (average GSDZ) for the five influence
factors. Average GSD was calculated through divided the mean RSME in (m) by average
GSD. As can be seen in the subfigures for all influence factors, the mean of RMSEZ and
average GSDZ are more sensitive to changes in influence factors than the mean of RMSER
and average GSDR. In other words, the influence factors have a stronger influence on
vertical accuracy than horizontal accuracy.

As shown in Figure 9a, the change in the focal length of the camera lens from 17 mm
to 25 mm had a greater impact on the mean of RMSEZ and average GSDZ than that of
RMSER and average GSDR. Using a shorter focal length of the camera lens produced higher
accuracies in both horizontal and vertical directions. Figure 9b shows that the mean of
RMSER is more susceptible to the change in flight height than RMSEZ. A lower flight height
yielded a higher accuracy in the horizontal direction. However, a higher flight height
yielded a high vertical accuracy.
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As shown in Figure 9c,d, increasing the image overlap and the number of GCPs
improved horizontal and vertical accuracies. However, there is no noticeable difference in
RMSER using more than eight GCPs. Additionally, Figure 9e shows that the datasets with
higher image qualities tend to yield higher accuracies in both directions, although there are
some variations.

Table 6 below lists the p-values of the flight height, the focal length of lenses, image
overlap, average image quality, and GCPs quantity for RMSEZ and RMSER. The overlap
and the GCP quantity have significant impacts with a 95% confidence level on RMSEZ
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since the p-values are smaller than 0.05. Compared to other factors, the image overlap
has a substantial impact with the 95% confidence level on RMSER since the p-values are
smaller than 0.05. The focal length, flight height, and average image quality have a low
significant influence on both RMSEZ and RMSER. Both p-values of constant β0 for RMSEZ
and RMSER are smaller than 0.05, which means it is essential to be included in the MR
model to guarantee that the mean of residuals can be zero.

Table 6. Level of Significance of Influence Factors.

p-Value for RMSEZ p-Value for RMSER

Constant β0 0.009 <0.001
Focal Length 0.773 0.057
Flight Height 0.438 0.367

Image Overlap 0.015 <0.001
GCP Quantity 0.027 0.126

Average Image Quality 0.427 0.103

The following figures (Figures 10–15) show the relationships between two influence
factors with respect to RMSEZ and RMSER. The X-axis shows the values of an influence
factor. The Y-axis shows the values of estimated marginal means of the other influence
factor. The estimated marginal mean represents the average response (RMSE values) of the
influence factor on the Y-axis for each level of the influence factor on the X-axis.
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As seen in the figures, there are interactions between influence factors since the
estimated marginal means of RMSEZ and RMSER for influence factors are not parallel. That
means the impact of one influence factor on RMSEZ and RMSER is affected by varying the
other influence factor.

Figure 10 shows the interactions between the focal length and the flight height. It
shows the influence of flight heights on accuracy when varying focal lengths. As seen in
the figure, the accuracy of middle heights (50 m and 60 m flight heights) has the highest
slope and, therefore, are more likely to be affected by changes in focal length.

Figure 11 shows the interactions between focal length and image overlap in horizontal
and vertical directions. Compared to the high image overlap, such as 90% (lowest slope),
the accuracy of the low image overlaps is more sensitive to change in focal length, especially
for the 50% (highest slope) image overlap.
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Figure 12 describes the interactions between flight height and image overlap. Similar
to the results from Figure 11, the results show that low image overlap accuracy is more
easily impacted by varying flight heights, especially for 50% image overlap. When the
image overlap was high (i.e., 80% and 90%), the influence was relatively small, which
indicates that successful feature detection and matching due to high image overlap ensures
good quality 3D reconstruction and is less affected by flight heights.

Figure 13 shows the interactions between focal length and GCP quantity. Generally,
a short focal length can produce high horizontal and vertical accuracy. As can be seen
from the figures, the slopes except for four GCPs for RMSEz are very similar, which
indicates that the influence of change in focal length on different quantities of GCPs is not
notably different.

Figure 14 shows the interactions between flight height and GCP. As can be seen in
Figure 14a, the influence is more significant when six GCPs were used. Figure 14b shows
that the influence is more significant with four GCPs. In both cases, with eight and ten
GCPs, there was a relatively lower influence.

Figure 15 shows the interactions between image overlap and GCP quantity. The
accuracy of using a low quantity of GCPs (e.g., 4 GCPs) is more susceptible to change in
image overlap. Additionally, increasing both GCP quantity and image overlap decreases
the vertical and horizontal errors.

According to the above results, higher accuracy can be expected when using a high
image overlap (e.g., 80% or 90%) and a high number of GCPs (e.g., more than eight). The



Remote Sens. 2022, 14, 4119 22 of 28

GCP quantity and image overlap had higher level of significances than other influence
factors. However, even with a low GCP quantity and image overlap are used due to
undesired data collection circumstances (i.e., limited time or battery), good values of other
influence factors can significantly help improve accuracy.

In addition to identifying the relationship between dependent and independent vari-
ables and independent variables, MR models can be used to estimate dependent variables
based on independent variables. Moreover, this MR model can be extended to predict the
accuracy that can be achieved given a set of influence factors and site constraints. Thus, the
following section introduces the development and validation of the MR prediction model.

4.2. MR Prediction Model Development and Validation

This section focuses on an MR model development using the five influence factors for
the prediction of accuracies and validation.

4.2.1. MR Model Development

The distributions of RMSEZ and RMSER of the 160 flight combinations are right-
skewed (the values of skewness of RMSEZ and RMSER are 0.918 and 2.801, respectively).
To improve the MR prediction model fitness, the distributions of RMSEZ and RMSER
need to be transformed to normal distributions, which can be performed by applying a
logarithmic transformation. The following equations show the logarithmic transformation:

lgRMSEz = lg(RMSEZ) (7)

lgRMSER = lg(RMSER) (8)

After transformation, the skewness of the distribution of the value of lgRMSEZ and
lgRMSER are −0.024 and 1.098, separately, which means the new distributions are closer to
a normal distribution. Thus, the MR prediction models are established using the values of
lgRMSEZ, lgRMSER, influence factors, and the interactions between the influence factors.
By plugging these values into Equations (5) and (6), the following MR prediction models
are developed for vertical and horizontal directions (yz and yr):

yz = −4.234 + 0.161× xi1 + 0.017× xi2 + 0.022× xi3 + 0.025× xi4 + 2.399× xi5
−0.001× xi1 × xi2 − 0.001× xi1 × xi3 − 0.049× xi1 × xi5
+6.609× 10−5 × xi2 × xi3 − 0.014× xi2 × xi5 − 0.001× xi3 × xi4
−0.011× xi3 × xi5 + 0.003× xi4 × xi5

(9)

yz = −1.353 + 0.027× xi1 − 0.003× xi3 − 0.021× xi4 − 0.387× xi5
−4.066× 10−5 × xi1 × xi2 − 0.001× xi1 × xi5
−4.549× 10−5 × xi2 × xi3 + 5.933× 10−5 × xi2 × xi4
+0.005× xi3 × xi5 − 0.011× xi4 × xi5

(10)

where yZ is the estimated value of lgRMSEZ, yZR is the estimated value of lgRMSER. xi1 is
the value of focal length; xi2 is the value of flight height; xi3 is the value of image overlap;
xi4 is the value of the GCP quantity; and xi5 is the value of average image quality. –4.234
and –1.353 are the constant (β0 of the MR prediction models). The rest of the constants are
the parameters (βm) of influence factors.

4.2.2. MR Prediction Models Applied to Test Site

The values of influence factors from the test site are imported into the MR prediction
models (Equations (9) and (10)) to produce the predicted lgRMSEZ and lgRMZER for flight
missions 1 and 2. The predicted lgRMSEZ and lgRMZER for flight mission 1 are −2.753 and
−1.577, respectively. The predicted lgRMSEZ and lgRMZER for flight mission 2 are −1.534
and −1.643, respectively. Then, an exponential function with the base of 10 is used to
convert the values of predicted lgRMSEZ and lgRMZER to the values of predicted RMSEZ



Remote Sens. 2022, 14, 4119 23 of 28

and predicted RMSER. The following are the exponential function for predicted RMSEZ
and predicted RMSER.

RMSEz = 10lgRMSEZ (11)

RMSER = 10lgRMSER (12)

Table 7 shows the validation results using these two MR prediction models with
the data collected from the Butner UAS Test site. The differences between RMSEZ from
Pix4DMapper and the predicted RMSEZ from the MR model for all flight missions are
0.3 cm and 0.7 cm, respectively. The differences between RMSER from Pix4DMapper and
predicted RMSER from the MR model for all flight missions are from 0.2 cm to 0.5 cm.
The differences between pixel error in the Z direction from Pix4DMapper and predicted
MR model for all flight missions are 0.06 GSD and 0.49 GSD, respectively. The differences
between pixel error in the R direction from Pix4DMapper and the predicted MR model
for all flights are from 0.13 GSD to 0.3 GSD. Table 8 shows the Prediction Error Rate and
Accuracy of the Butner UAS Test Site from Pix4DMapper and MR Models. The error rates
of the RMSEZ are 16.67% and 27.59%, which leads to the prediction accuracies of the MR
prediction model being 72.41% and 83.33%, respectively. The MR prediction model has a
lower error rate when estimating horizontal accuracy. The error rates of the RMSEZ are
7.69% and 8.7%, and the prediction accuracies of the MR prediction model are 92.31% and
91.30%, respectively. The following equations show the error rate and prediction accuracy.

Error Rate =
|Predicted Values−Actual Values|

Actual Values
× 100 (13)

Prediction Accuracy = 100%− ErrorRate (14)

Table 7. Results of Butner UAS Test Site from Pix4DMapper and MR Models.

Flight
Mission

RMSEZ
from Pix4D

(cm)

Z Direction
Pixel Error
from Pix4D

RMSER
from Pix4D

(cm)

R Direction
Pixel Error
from Pix4D

Predicted
RMSEZ

from MR
Model (cm)

Predicted Z
Direction

Pixel Error
from MR

Model

Predicted
RMSER

from MR
Model (cm)

Predicted R
Direction

Pixel Error
from MR

Model

1 2.1 1.27 GSD 2.4 1.50 GSD 1.8 1.13 GSD 2.6 1.63 GSD
2 2.1 1.27 GSD 2.5 1.52 GSD 2.9 1.76 GSD 2.3 1.39 GSD
3 2.7 1.69 GSD 2.9 1.81 GSD 2.6 1.63 GSD 3.1 1.94 GSD
4 3.2 1.94 GSD 3.1 1.88 GSD 3.4 2.06 GSD 2.6 1.58 GSD
5 3.5 2.12 GSD 3.3 2.00 GSD 3.0 1.82 GSD 2.8 1.70 GSD

Table 8. Prediction Error Rate and Accuracy of Butner UAS Test Site from Pix4D and MR Models.

RMSEZ Error Rate RMSER Error Rate Prediction Accuracy Prediction Accuracy

16.67 7.69 83.33 92.31
27.59 8.70 72.41 91.30
3.70 6.90 96.3 93.1
6.25 16.13 93.75 83.87
14.29 15.15 85.71 84.85

Thus, there are at least 72% and 83% prediction accuracy to predict the vertical and
horizontal accuracies using five influence factors. Since the actual results from Pix4D can be
influenced by other influence factors, such as wind speed and lighting environment, the cur-
rent MR prediction models are sufficient to estimate the vertical and horizontal accuracies.

4.3. Practical Implications

Applying the findings of this research in practice can help surveyors better design
flight missions based on the site constraints and conditions. For example, the typical flight
time for most high-quality UAS is about 20 min. However, using a low flight height (for
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example, 40 m) on a large site for surveying will significantly increase the surveying time
(for example, an hour) and, therefore, increase the number of batteries (for example, 5 or
more sets of batteries) to be used. In this case, a high flight height (for example, 100 m)
with a high image overlap (for example, 80 or 90%) can be applied to reduce the flight
mission time (for example, 40 min). If higher accuracy is desired, the drone speed can be
increased as long as the camera can capture good quality images while maintaining the high
image overlap. Surveyors can use the MR prediction model to predict what combination of
the influence factors given these alternative situations to optimize their workflow while
achieving the desired accuracy.

Additionally, the MR prediction model can be applied to repeated similar scenarios,
such as construction progress monitoring. For agencies such as the state Department of
Transportation (DOTs), surveyors can build their own model with very similar scenarios
with the same set of hardware and software used over and over. However, the MR model
cannot be generalized for all the scenarios, such as the scenarios that required categorical
data as input variables. It can be generalized to a certain degree if the users include all
variations of scenarios for their use cases. In this case, surveyors can build their own MR
model for their own use cases using a set of equipment on certain terrain types of interest.

4.4. Limitations and Future Work

There are a few limitations of this research. First, the MR model in this paper is
developed using one terrain type—a facility with an open field. Therefore, MR models for
different types of terrains (i.e., vertical surfaces, excavation sites, etc.) and more scenarios
should be either included in the training or separately trained and separately used for
prediction, which will be the authors’ future work.

Moreover, regarding the selection of the validation site, the site is relatively flat, which
means the CPs appear at the same height as the GCPs. It may cause a high correlation and
yield inaccurate results. Thus, more sites with elevation differences should be selected in
future work to reduce the correlation.

Additionally, although five influence factors are used in this research, more influence
factors (e.g., camera calibration and weather conditions) can be identified and used to
create a more accurate MR prediction model, which can be used in general cases. Any
practitioners who want to implement the presented method, will have to build their own
model using the set of influence factors that are specific to the set of hardware they own.

Additionally, since MR analysis is based on hypothesis testing, there is some prerequi-
site before applying the MR, including linear relationship, multivariate normality, no or
little multicollinearity, no auto-correlation, and homoscedasticity. This method may not fit
other data with complex terrains and different devices. Thus, the users could consider an-
other statistical method that is the most suitable for their cases, such as using an alternative
method that contains flight planning with simulations.

Lastly, in this research, a multirotor drone is used. Multirotor drones rely on the
spinning of their rotors to stay stable in the air, making them vulnerable to high wind.
Thus, the image with low quality may be captured during windy weather. In addition,
there are restrictions on the altitude most standard multirotor drones can fly at since the
drone needs air to stay airborne by spinning the rotors and generating enough lift. Thus, it
is necessary to consider the drone according to the flight height and wind speed.

5. Conclusions

A combination of computer vision, photogrammetry, and remote sensing techniques
provide the camera-equipped UAS yielding a highly accurate point cloud model on UAS-
based photogrammetric surveying. However, the accuracy of this point cloud model can be
influenced by many factors. Although there have been many studies on various factors that
affect the accuracy of such data, most previous studies focus on the influence on accuracy
caused by image overlaps, GCP quantity, and GNSS types. Little research studies the
effect of other influence factors on the accuracy using quantitative methods to identify
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the relationships between flight configuration influence factors and point cloud accuracy.
This paper evaluated the levels of significance of five influence factors on accuracy using
an MR method. The influence factors include flight height, average image quality, image
overlap, GCP quantity, and focal lengths of cameras. 40 flight missions were conducted
using different flight configurations at the track facility site. 160 datasets were processed
using all conducted flight missions with four different numbers of GCPs.

The results show that image overlap is highly significant to the vertical and horizontal
accuracies of all the influence factors. The quantity of GCPs has high significance on vertical
accuracy. The rest of the influence factors have low levels of significance on both horizontal
and vertical accuracies. In addition, this research shows that there are interactions between
two influence factors. The impact of one influence factor on accuracy can be affected by
changing the values of another influence factor. Thus, a lower accuracy can be generated
using a smaller number of GCPs and a lower image overlap.

Additionally, two MR prediction models were developed to estimate the value of
RMSEZ and RMSER based on site conditions on a facility site. Moreover, the developed
MR prediction models were validated using other datasets collected from the Butner site
with s similar terrain type. The validation result shows the difference in the accuracy
between MR prediction models and Pix4DMapper is less than 0.007 m, which proves
the MR prediction models can be used to estimate the horizontal and vertical accuracies
based on flight configurations and site conditions at a facility site with open space at a
72% prediction accuracy. The findings of this study can help surveyors better design flight
configurations given different site conditions and constraints. Furthermore, the findings
of this research can provide a basic understanding of what levels of accuracy could be
achieved using different flight configurations. Moreover, agencies such as state DOTs can
generate their prediction models based on their data and sets of equipment used on the
interesting sites using our proposed method, especially on some repeated similar scenarios,
such as construction progress monitoring.

Since the MR models in this paper were developed using a single type of terrain with
five influence factors, in future work, more types of terrains and influence factors will be
included to generalize the findings in different scenarios.
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Inaccessible Forested Areas? Remote Sens. 2019, 11, 721. [CrossRef]

57. Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of Photogrammetric Mapping Accuracy based on
Variation Ground Control Points Number Using Unmanned Aerial Vehicle. Meas. J. Int. Meas. Confed. 2017, 98, 221–227.
[CrossRef]

58. Lee, S.; Park, J.; Choi, E.; Kim, D. Factors Influencing the Accuracy of Shallow Snow Depth Measured Using UAV-based
Photogrammetry. Remote Sens. 2021, 13, 828. [CrossRef]

http://doi.org/10.3390/s21103531
http://doi.org/10.3390/drones4020009
http://doi.org/10.1515/jag-2015-0017
http://doi.org/10.3390/f8050151
https://connect.ncdot.gov/projects/research/Pages/ProjDetails.aspx?ProjectID=2020-18
http://doi.org/10.14358/PERS.81.3.A1-A26
http://doi.org/10.3390/rs12152447
http://doi.org/10.3390/rs9020186
http://doi.org/10.1016/j.jag.2018.05.015
http://doi.org/10.3390/ecrs-2-05165
http://doi.org/10.3390/s17081777
http://doi.org/10.3390/rs10101606
http://doi.org/10.3390/drones4030055
http://doi.org/10.3390/drones4030049
http://doi.org/10.1016/j.geomorph.2016.11.021
http://doi.org/10.3390/s18082433
http://www.ncbi.nlm.nih.gov/pubmed/30050007
http://doi.org/10.3390/s18092783
http://www.ncbi.nlm.nih.gov/pubmed/30149517
http://doi.org/10.3390/jimaging6050030
http://doi.org/10.3390/rs8040316
http://doi.org/10.3390/rs9020172
http://doi.org/10.3390/rs12030404
http://doi.org/10.3390/drones4020013
http://doi.org/10.3390/ijgi9100578
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000936
http://doi.org/10.3390/rs11060721
http://doi.org/10.1016/j.measurement.2016.12.002
http://doi.org/10.3390/rs13040828


Remote Sens. 2022, 14, 4119 28 of 28

59. Zimmerman, T.; Jansen, K.; Miller, J. Analysis of UAS Flight Altitude and Ground Control Point Parameters on DEM Accuracy
along a Complex, Developed Coastline. Remote Sens. 2020, 12, 2305. [CrossRef]

60. Harwin, S.; Lucieer, A.; Osborn, J. The Impact of the Calibration Method on the Accuracy of Point Clouds Derived Using
Unmanned Aerial Vehicle multi-view stereopsis. Remote Sens. 2015, 7, 11933–11953. [CrossRef]

61. Wang, X.; Chen, J.C.; Dadi, G.B. Factors Influencing Measurement Accuracy of Unmanned Aerial Systems (UAS) and Photogram-
metry in Construction Earthwork. In Computing in Civil Engineering 2019: Data, Sensing, and Analytics; American Society of Civil
Engineers: Reston, VA, USA, 2019; pp. 408–414. [CrossRef]

62. Griffiths, D.; Burningham, H. Comparison of Pre- and Self-Calibrated Camera Calibration Models for UAS-Derived Nadir
Imagery for a SfM Application. Prog. Phys. Geog. 2019, 43, 215–235. [CrossRef]

63. Cledat, E.; Jospin, L.V.; Cucci, D.A.; Skaloud, J. Mapping Quality Prediction for RTK/PPK-equipped Micro-drones Operating in
Complex Natural Environment. ISPRS J. Photogramm. Remote Sens. 2020, 167, 24–38. [CrossRef]

64. Unmanned Systems Technology. 2022. Available online: https://www.unmannedsystemstechnology.com/expo/uav-autopilot-
systems/#:~{}:text=What%20is%20an%20UAV%20Autopilot%20Unit%3F (accessed on 14 August 2022).

65. Scan Accuracy Checks for the Focus—FARO®Knowledge Base. Available online: https://knowledge.faro.com/Hardware/3D_
Scanners/Focus/Scan_Accuracy_Checks_for_the_Focus (accessed on 19 August 2021).

66. FARO®SCENE 3D Point Cloud Software | FARO. Available online: https://www.faro.com/en/Products/Software/SCENE-
Software (accessed on 14 August 2022).

http://doi.org/10.3390/rs12142305
http://doi.org/10.3390/rs70911933
http://doi.org/10.1061/9780784482438.052
http://doi.org/10.1177/0309133318788964
http://doi.org/10.1016/j.isprsjprs.2020.05.015
https://www.unmannedsystemstechnology.com/expo/uav-autopilot-systems/#:~{}:text=What%20is%20an%20UAV%20Autopilot%20Unit%3F
https://www.unmannedsystemstechnology.com/expo/uav-autopilot-systems/#:~{}:text=What%20is%20an%20UAV%20Autopilot%20Unit%3F
https://knowledge.faro.com/Hardware/3D_Scanners/Focus/Scan_Accuracy_Checks_for_the_Focus
https://knowledge.faro.com/Hardware/3D_Scanners/Focus/Scan_Accuracy_Checks_for_the_Focus
https://www.faro.com/en/Products/Software/SCENE-Software
https://www.faro.com/en/Products/Software/SCENE-Software

	Introduction 
	Background 
	Flight Heights 
	Image Overlap 
	GCP Quantities and Distribution 
	Georeferencing Methods 
	Multiple Factors 

	Methodology 
	Experimental Design 
	Data Collection 
	Data Processing 
	Data Analysis 
	Spatial Data Analysis 
	Statistical Analysis 

	Validation 

	Results and Discussion 
	Influence and Significance of Five Influence Factors 
	MR Prediction Model Development and Validation 
	MR Model Development 
	MR Prediction Models Applied to Test Site 

	Practical Implications 
	Limitations and Future Work 

	Conclusions 
	References

