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Abstract: Conventional multispectral imaging systems based on bandpass filters struggle to record
multispectral videos with high spatial resolutions because of their limited light efficiencies. This
paper proposes a multi-aperture multispectral imaging system based on notch filters that overcomes
this limitation by allowing light from most of the spectrum to pass through. Based on this imaging
principle, a prototype multi-aperture multispectral imaging system comprising notch filters was built
and demonstrated. Further, a dictionary learning- and total variation-based spectral super-resolution
algorithm was developed to reconstruct spectral images. The simulation results obtained using
public multispectral datasets showed that, compared to the dictionary learning-based spectral super-
resolution algorithm, the proposed algorithm reconstructed the spectral information with a higher
accuracy and removed noise, and the verification experiments confirmed the performance efficiency
of the prototype system. The experimental results showed that the proposed imaging system can
capture images with high spatial and spectral resolutions under low illumination conditions. The
proposed algorithm improved the spectral resolution of the acquired data from 9 to 31 bands, and the
average peak signal-to-noise ratio remained above 43 dB, which is 13 dB higher than those of the
state-of-the-art coded aperture snapshot spectral imaging methods. Simultaneously, the frame rate of
the imaging system was up to 5000 frames/s under natural daylight.

Keywords: multispectral imaging; spectral super-resolution; compressive sensing; multi-aperture
imaging; dictionary learning

1. Introduction

Multispectral images (MSIs) contain several to dozens of spectral bands of the target
scene and are widely used in agriculture [1], medical diagnosis [2,3], remote sensing [4],
and other applications. However, conventional complementary metal-oxide semicon-
ductor (CMOS) or charge-coupled device imaging sensors cannot directly acquire the
three-dimensional (3D) spectral data of a target scene. Therefore, for existing multispec-
tral imaging systems, scarification of the temporal or spatial resolution has been intro-
duced to obtain multispectral data cubes [5–7]. Imaging systems that directly capture
multispectral data cubes can be categorized into three types: spatial/spectral-scanning
spectrometers, per-pixel filter mosaic (micro/nanostructure) snapshot multispectral cam-
eras, and multi-aperture multispectral systems. Spatial-scanning spectrometers capture
all spectral information from a point or spatial line. By contrast, spectral-scanning spec-
trometers record a single-wavelength image each time, and other wavelengths can be
captured by scanning filters or by changing the central wavelength of the filters. Therefore,
spatial/spectral-scanning spectrometers require a long time to collect MSIs [8,9], making
them unsuitable for capturing MSIs of moving scenes. Snapshot multispectral cameras,
which are based on the traditional Bayer color imaging concept, directly deposit 4 × 4 or
5 × 5 pixel-wise filter units on a CMOS image sensor. Although a monolithic deposition
results in compactness, the spatial resolution is degraded [10]. Compared with snapshot
multispectral cameras, multi-aperture spectral imaging systems, with different bandpass
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filters [11] or continuous variable filters [6] in front of each aperture, exhibit significantly
improved spatial resolutions. However, owing to the narrow bandwidth of each filter, the
use of bandpass filters or continuous variable filters results in low light efficiency, and the
number of apertures is limited for low volumes and small weights. Therefore, conventional
multispectral imaging systems cannot simultaneously achieve high spatial, spectral, and
frame-rate spectral imaging [5]. Computational spectral imaging technology overcomes the
disadvantages of conventional spectral imaging systems, utilizing an imaging prior (e.g.,
smoothness or sparsity) to recover the original high-dimensional spectral information from
the low-dimensional observation data by modulating the spectral and spatial information
of the target scene with a coded aperture. A typical computational spectral imaging method
is the coded aperture snapshot spectral imaging (CASSI) [12], which enables the acquisition
of MSI snapshots using a single imaging sensor; however, its optical system is complicated
and requires precise calibration. In practice, the reconstructed spectral images obtained
from CASSI usually exhibit limited spatial resolution and severe spectral distortion because
the required conditions for high-fidelity compressive sensing reconstruction are difficult
to verify through a coded aperture design [13,14]. The shortcomings of CASSI include
light-intensity attenuation in long optical paths and coding apertures, and the highest frame
rate reported in the literature is 30 fps [15,16]. Hence, a CASSI-based dual-camera com-
pressive hyperspectral imaging (DCCHI) system [15], including a panchromatic camera,
was proposed to reduce the complexity of underdetermined calculations and improve the
image quality. As demonstrated in previous studies, the combination of a multi-aperture
system design and compressive sensing algorithms enables high-spectral-resolution imag-
ing and acquisition of almost gigapixel hyperspectral data cubes with hundreds of spectral
bands [17,18]. However, multi-aperture systems exhibit low light efficiencies caused by
bandpass filters. To solve the issue of light efficiency affecting the speed of multispectral
imaging, Wang et al. [5] proposed a notch filter and compressive sensing theory-based
multispectral imaging system, which enables high light efficiency as well as a high imaging
frame rate.

For computational spectral imaging systems, the signals can be recovered from ac-
quired data using compressive sensing theory, and the required minimum frequency of the
measurement data is much lower than that required by Nyquist’s sampling law. In 2006,
Donoho et al. [19,20] proposed compressive sensing theory, which is widely used in image
processing [21], biomedicine [22], and wireless communication [23]. Compressive sensing
theory assumes that a signal is sparse, and the observation matrix and basis matrix are
incoherent [24]. Although most signals are not sparse in the temporal or spatial domain,
they are on a sparse basis (e.g., discrete wavelet transform, discrete cosine waveform,
and discrete Fourier transform), and the original signal can still be recovered using com-
pressive sensing theory. Because compressive sensing only requires a small amount of
observational data to recover the original high-dimensional data with a high probability,
the application of compressive sensing theory in the field of computational imaging enables
compressed sampling of the spatial [25,26], spectral [12], or time dimensions [27] of the
target scene. For instance, magnetic resonance imaging utilizes the image signal sparseness
in the Fourier domain to recover the original image with small sampling data, reduce the
image acquisition time, and improve the image quality [28]. The typical imaging algo-
rithms developed for CASSI systems include generalized alternating projection with total
variation (GAP-TV) [29], two-step iterative shrinkage/thresholding (TwIST) [30] based on
the total variation (TV) prior [31], and dictionary-based reconstruction [15]. The TV-based
methods can be used for denoising or deblurring by assuming image smoothing, whereas
the dictionary learning methods can be used to train a dictionary with high sparsity to
improve the imaging quality; however, they are heavily influenced by the noise in the
measured data. Thus, these two types of algorithms cannot simultaneously satisfy the
requirements of high image quality and strong robustness. For multispectral imaging, an
imaging algorithm with good imaging quality and strong noise robustness is particularly
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important for real-world applications because of the noise introduced by environmental
light or imaging sensors.

The main contributions of this paper are as follows:

• A multispectral imaging system that combines a notch-filter array and multiple aper-
tures is proposed. The use of notch filters enables the development of a high-light-
efficiency imaging system that overcomes the drawbacks of conventional bandpass-
filter-based multispectral imaging systems (e.g., low spatial resolutions and imaging
speeds). Compared with CASSI or DCCHI systems, the proposed multi-aperture
multispectral imaging system enables more spectral information from the target scene
to be captured, significantly reducing the complexity of the underdetermined recon-
struction problem. Compared with those of other bandpass-filter-based multispectral
imaging systems, the higher light efficiency yielded by the notch-filter array signif-
icantly improves the imaging quality and temporal resolution of the multispectral
imaging system.

• A dictionary learning- and TV-based spectral super-resolution algorithm (DL-TV) is
proposed; it can train sparse dictionaries to achieve a high imaging quality as well as
reduce noise with TV. Because the proposed method introduces more imaging priors,
it can provide better imaging performance than the alternative direction multiplier
method (ADMM) [32] with the dictionary learning algorithm (DL) [33].

• The effectiveness of the proposed system and algorithm is demonstrated through
simulations using various datasets.

• A snapshot multispectral-imaging prototype system is built to verify real-world imag-
ing performance via indoor experiments and field tests. The experimental results
demonstrate that the combination of the proposed imaging system and compressive-
sensing-based super-resolution spectral algorithm can obtain high-quality as well as
high-spatial-spectral-resolution images.

2. Methods
2.1. Notch Filter Imaging Model

An MSI is a 3D data cube represented by C ∈ RM×N×Q, where M and N are the
spatial dimensions of the image and Q is the spectral dimension. Owing to the difficulty of
mathematically modeling and constructing an optimization function for a 3D data block, C
is transformed into a 2D matrix: X ∈ RQ×MN , where MN represents the product of two
spatial dimensions.

Figure 1 shows the spectral transmittance of the eight notch filters used in this study.
The notch images, Y ∈ RK×MN , captured by the notch filters can be expressed as:

Y = TX, (1)

where T ∈ RK×Q denotes the transmittance measurement matrix of the proposed system
and is determined by the selected notch filters. For the simulation and experiments, k = 9
was used. T(i, λ) denotes the transmittance of the ith notch filter at the λth band. Compared
with a bandpass filter, which transmits only a narrow spectrum of light, resulting in a
low light efficiency, the notch filter enables most of the spectrum to pass through while
blocking only a specific portion of the spectrum. Consequently, the light efficiency of
a notch-filter-based imaging system is close to that of a panchromatic imaging system.
Therefore, the exposure time of the imaging process can be decreased, and the signal-to-
noise ratio and imaging speed can be improved. For a notch-filtered spectral image, the
corresponding bandpass spectral image was obtained by subtracting the panchromatic
image from the notch-filtered spectral image. As shown in Figure 1, in the proposed multi-
aperture multispectral imaging system, eight of the nine apertures were covered with a
notch filter, and the central aperture was used to capture a panchromatic image.
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Figure 1. (a) Transmittance of notch filters and (b) their locations in the multi-aperture imaging
system. P indicates the aperture used for capturing panchromatic images. The central wavelengths of
the notch filters are 405, 457, 488, 514, 532, 561, 632, and 685 nm.

In an ideal situation, the transmittances of the transmission and cutoff bands are 100%
and 0%, respectively. Therefore, the transmittance in the ideal case can be approximately
written as

T(i, λ) =

{
1, otherwise
0, |λ− ai| ≤ bi

, (2)

where ai denotes the central wavelength of the ith notch filter, and bi is its corresponding full
bandwidth at half maximum. However, owing to the optical materials and manufacturing
errors, the actual transmittance of the transmission band is between 90% and 100%, whereas
the cutoff transmittance is less than 10% [5].

2.2. Spectral Super-Resolution Algorithm

Reportedly, the spectral information of one pixel can be sparsely represented by a
trained dictionary [34], and the calculated results outperform the linear combination of a
few spectral bases obtained via principal component analysis [35]. For a point (m, n) on a
spectral image, the spectral vector xj ∈ RQ×1 can be expressed as

xj = Dθj, j = {1, . . . , MN}, (3)

where D ∈ RQ×P denotes an overcomplete dictionary trained using MSIs. P is the number
of dictionary atoms. Here, Q = 31 and P = 2Q = 62. The dictionary D was trained using
the K-SVD algorithm by generalizing the K-means clustering process [36]. We let θj ∈ RP×1

denote the sparse vector of xj with a much smaller number (<Q) of nonzero elements. To
speed up the calculation, all the pixels in the spatial domain were simultaneously calculated.
Substituting Equation (3) into Equation (1) yields

Y = TDΘ, (4)

where the sparse matrix, Θ ∈ RP×MN , must be solved, and its nonzero elements must be
minimized as follows:

argmin
Θ

1
2
‖Y− TDΘ‖2

F + η‖Θ‖1. (5)

The first term in Equation (5) is the fidelity term, the second term is the sparse term,
and η is the regularization factor that balances the fidelity and sparse terms. Because the
MSIs are smooth in the spatial dimension, the TV constraint term [37] is added to the
optimization objective of Equation (5) and can be expressed as:

argmin
Θ

1
2
‖Y− TDΘ‖2

F + η‖Θ‖1 + ηTV‖X‖TV, (6)



Remote Sens. 2022, 14, 4115 5 of 18

where ηTV is the regularization factor used to adjust the smoothness of the target, and
‖X‖TV is the TV constraint term, which can be expressed as:

‖X‖TV =
Q
∑

λ=1

M
∑

m=1

N
∑

n=1

√
Xv(λ, (m− 1)× N + n)2 + Xh(λ, (m− 1)× N + n)2[

Xv(λ, (m− 1)× N + n)
Xh(λ, (m− 1)× N + n)

]
=

[
C(m + 1, n, λ)− C(m, n, λ)
C(m, n + 1, λ)− C(m, n, λ)

]
,

(7)

where Xv(λ, (m − 1) × N + n) and Xh(λ, (m − 1) × N + n) are the vertical and hori-
zontal differences between the pixels of X, respectively. Substituting Equation (3) into
Equation (6) yields

argmin
Θ

1
2
‖Y− TDΘ‖2

F + η‖Θ‖1 + ηTV‖DΘ‖TV. (8)

By adding auxiliary variables Z1 = Θ and Z2 = DΘ to Equation (8), the above
problem can be written as

argmin
Θ

1
2‖Y− TDΘ‖2

F + η‖Z1‖1 + ηTV‖Z2‖TV,

s.t. Z1 = Θ, Z2 = DΘ.
(9)

The corresponding augmented Lagrangian function is as follows:

L(Θ, Z1, Z2, V1, V2) = 1
2‖Y− TDΘ‖2

F + η‖Z1‖1 + ηTV‖Z2‖TV+

ρ1
2 ‖Θ− Z1 +

V1
ρ1
‖2

F
+ ρ1

2 ‖DΘ− Z2 +
V2
ρ2
‖2

F
.

(10)

where V1 and V2 are the Lagrange multipliers, and ρ1 and ρ2 and are the coefficients of the
regular terms. ADMM theory [32] states that minimizing (6) is equivalent to iterating over
the following steps until convergence:

Θk+1 = argmin
Θ

L(Θ, Zk
1, Zk

2, Vk
1, Vk

2), (11)

Zk+1
1 = argmin

Z1

L(Θk+1
1 , Z1, Vk

1), (12)

Zk+1
2 = argmin

Z2

L(Θk+1
1 , Z2, Vk

2), (13)

The Lagrange multipliers are updated by

Vk+1
1 = Vk

1 + ρ1(Θ
k+1 − Zk+1

1 ), (14)

Vk+1
2 = Vk

2 + ρ2(DΘk+1 − Zk+1
2 ). (15)

where k denotes the number of iterations. Equation (11) can be solved as follows:

Θk+1 = argmin
Θ

1
2
‖Y− TDΘ‖2

F +
ρ1

2
‖Θ− Zk

1 +
Vk

1
ρ1
‖

2

F
+

ρ2

2
‖DΘ− Zk

2 +
Vk

2
ρ2
‖

2

F
, (16)

Θk+1 = (DTTTTD + ρ1 I + ρ2DTD)
−1 ×

[
DTTTY + ρ1

(
Zk

1 −
Vk

1
ρ1

)
+ ρ2

(
Zk

2 −
Vk

2
ρ2

)]
, (17)



Remote Sens. 2022, 14, 4115 6 of 18

where I is the identity matrix, and the superscript T denotes the matrix transpose. Equation (12)
is a typical lasso problem and can be solved as follows:

Zk+1
1 = argmin

Z1

ρ1

2
‖Θk+1 − Z1 +

Vk
1

ρ1
‖

2

F
+ η‖Z1‖1, (18)

Zk+1
1 = so f t

(
Θk+1 +

Vk
1

ρ1
,

η

ρ1

)
. (19)

Here, so f t( ) is the well-known soft-thresholding operator [38]

so f t(a, b) = max(|a| − b, 0)� s(a), (20)

where s is the signum function [39,40]. Equation (13) is equivalent to

Zk+1
2 = argmin

Z2

ρ2

2
‖Θk+1 − Z2 +

Vk
2

ρ2
‖

2

F
+ ηTV‖Z2‖TV, (21)

Equation (21) is a simple TV denoising problem that can be solved using any TV
algorithm; however, the fast gradient projection algorithms are generally recommended for
solving this equation because of their quick convergence [41]. When ηTV = 0, the algorithm
is the DL algorithm (Algorithm 1).

Algorithm 1: DL-TV for MSI Reconstruction

1: Input: T, D, ρ1 > 0, ρ2 > 0
2: Initialization: Z1, Z2, V1, V2, Θ, Itermax, k = 1;
3: while k ≤ Itermax do

4: Update Θk+1 via Equation (17)
5: Update Zk+1

1 via Equation (19)
6: Update Zk+1

2 via Equation (21)
7: Update Vk+1

1 via Equation (14)
8: Update Vk+1

2 via Equation. (15)
9: end while
10: Compute Θk+2 via Equation (17)
Output: MSI X = D×Θk+2

2.3. Prototype System

The proposed multi-aperture snapshot multispectral imaging system is shown in
Figure 2. The system consists of an array of eight notch filters (Edmund OD 4.0 Notch),
an array of lenses (Edmund FL 35 mm, f/1.8–f/16), and a monochromatic camera array
(HIKVISION, MV-CA013-20GMGCGN). To record panchromatic images, no filter was
added to the central lens, as shown in Figures 1b and 2b. The eight surrounding lenses
were equipped with notch filters of varying central wavelengths, as shown in Figure 1.
All the cameras were synchronized to capture eight notch images and one panchromatic
image simultaneously. Because the field of view of the images captured by each camera
varies, image registration is required. The traditional bandpass multi-aperture system only
captures a particular band of the spectrum of the target scenes. With most of the spectral
bands missing, some areas of the spectral image appear dark, making the image registration
of the multi-aperture image system difficult. The notch filter collects an image that is almost
the same as a panchromatic image, because only a small portion of the spectrum is rejected,
and the speeded up robust features algorithm can be used to achieve high-precision image
registration [42].
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3. Simulations Using Public Datasets

The CAVE [43] and ICVL [44] datasets were used to verify the effectiveness of the
proposed algorithm (Section 2). These datasets include MSIs with 31 spectral bands ranging
from 400 to 700 nm, and the spectral resolution of the MSIs was 10 nm. The CAVE dataset
includes 31 indoor MSIs with a spatial resolution of 512 × 512 pixels. The ICVL dataset
includes 201 MSIs with a spatial resolution of 1392 × 1300 pixels, and downsampling to
512 × 512 pixels during simulation. In this study, 16,000 pixel vectors were selected from
16 MSIs of the CAVE dataset to form the training dataset, as suggested in [44], and the
remaining 15 MSIs were used as the test dataset, as listed in Table 1. When choosing the
training set, the central region of each image was sampled to avoid the black background
area. For the trained dictionaries, different dictionaries resulted in different imaging
qualities for each MSI in the test set. Therefore, all test sets shown in Section 3 as well as the
field test data presented in Section 4 were implemented using the same dictionary trained
in this study. In the simulation, eight notch images and one panchromatic image were
created to simulate the images obtained using the proposed system. Because of the fast
convergence of the ADMM algorithm, the number of DL-TV and DL iterations was set to
k = 40 in this study. When performing calculations using the CAVE and ICVL datasets, the
parameters used in DL and DL-TV were set as follows: DL: η = 0.01, ρ = 0.001; DL-TV:
η = 0.01, ηTV = 0.00001, ρ1 = 0.001, ρ2 = 0.001.

Table 1. Average peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) of
the 15 reconstructed MSIs corresponding to the CAVE dataset.

MSI
PSNR SSIM

TwIST
[30]

GAP-TV
[29]

PnP
[45]

DCCHI
[15]

DL
[33] DL-TV TwIST GAP-TV PnP DCCHI DL DL-TV

Balloons 31.941 33.530 34.215 38.970 42.039 42.630 0.950 0.943 0.955 0.990 0.990 0.993
Beads 20.788 21.873 21.870 25.189 36.586 37.030 0.568 0.558 0.559 0.825 0.966 0.969
CD 29.616 31.975 31.522 34.483 32.686 32.785 0.927 0.912 0.907 0.971 0.973 0.977
Toy 23.956 24.774 24.997 34.044 42.618 43.103 0.805 0.791 0.822 0.964 0.991 0.995
Clay 31.954 32.979 32.960 36.754 44.938 46.720 0.907 0.893 0.897 0.952 0.976 0.984
Cloth 23.292 23.517 23.942 24.825 41.492 42.523 0.490 0.486 0.500 0.800 0.982 0.985
Egyptian 32.753 32.867 32.453 43.503 48.820 50.089 0.904 0.906 0.921 0.992 0.990 0.996
Face 32.467 32.449 32.463 40.814 44.153 44.975 0.928 0.915 0.908 0.988 0.985 0.994
Beers 30.190 32.127 34.265 39.194 42.037 42.456 0.940 0.928 0.952 0.984 0.991 0.995
Food 30.282 31.186 32.114 36.643 44.688 45.706 0.872 0.853 0.904 0.952 0.987 0.991
Lemon 28.853 29.733 30.695 39.833 47.357 48.458 0.871 0.841 0.874 0.975 0.991 0.994
Lemons 33.485 33.282 33.196 41.851 47.562 48.662 0.938 0.924 0.927 0.983 0.992 0.996
Peppers 28.501 30.187 30.621 36.307 44.854 45.744 0.893 0.893 0.908 0.950 0.989 0.993
Strawberries 32.089 31.353 30.832 41.738 47.019 48.065 0.895 0.870 0.887 0.971 0.991 0.994
Sushi 31.637 32.301 32.893 40.863 46.039 46.821 0.955 0.948 0.958 0.989 0.990 0.993

Average 29.454 30.275 30.603 37.001 43.526 44.384 0.856 0.844 0.859 0.952 0.986 0.990

For comparison, CASSI simulations were conducted using TwIST with the TV algo-
rithm, GAP-TV, and the plug-and-play (PnP) approach [45], and the DCCHI simulations
were performed using TwIST with the TV algorithm. The coded aperture mask reported
in [45] was used for simulation. Zhang et al. [46] mentioned that TwIST would converge
after 80 iterations; therefore, the iteration number in TwIST was set to 150. According
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to [14], the regularization parameter used in TwIST was set to τ = 0.1. The iterations and
parameters of PnP and GAP-TV were set as reported in [45].

The test results are presented in Tables 1–4. Tables 1 and 2 show the calculation results
of the test dataset of 15 MSIs selected from the CAVE dataset, and Tables 3 and 4 provide
the calculation results for the ICVL dataset. For both the datasets and under all four metrics,
DL outperformed TwIST, GAP-TV, PnP, and DCCHI, whereas DL-TV outperformed DL,
demonstrating that DL-TV can effectively preserve the spectral information of the scene.

Figure 3 shows the simulation results generated from three different MSIs of the CAVE
dataset. The spectral images reconstructed using DL-TV and DL were compared with those
generated using the CASSI and DCCHI systems, and the corresponding error images were
obtained from the reconstructed spectral image and ground-truth image for comparison.
Spectral curves of selected regions were also plotted and compared with the ground truth.
Additionally, the Pearson correlation coefficient (corr) was used to assess the fidelity of
the recovered spectra. For the CASSI system, TwIST exhibited the poorest imaging quality,
whereas GAP-TV and PnP provided slightly improved quality. Tables 1–4 show that DCCHI
can provide relatively better results than CASSI. The error images and spectral curves show
that the combination of the proposed system and DL-TV significantly outperforms CASSI
and DCCHI. It is clear that the imaging quality achievable by DL-TV is the best, so this
approach yields accurate and detailed spectral textures of the target scene. Figure 4 shows
the reconstructed spectra of “toy” MSI data. It can be clearly seen that DL-TV provides
better reconstructed spectra than the other methods. Figure 5 plots three selected spectral
frames from two ICVL scenes. Again, it is clear that DL-TV yields the best results.

Table 2. Average root-mean-square error (RMSE) and spectral angle mapper (SAM) of the 15 recon-
structed MSIs corresponding to the CAVE dataset.

MSI
RMSE SAM

TwIST GAP-TV PnP DCCHI DL DL-TV TwIST GAP-TV PnP DCCHI DL DL-TV

Balloons 6.483 5.387 4.974 2.914 2.644 2.560 0.091 0.085 0.119 0.070 0.088 0.085
Beads 23.518 20.702 20.709 14.366 4.877 4.738 0.304 0.311 0.310 0.313 0.109 0.104
CD 8.498 6.455 6.807 4.848 7.286 7.204 0.121 0.134 0.193 0.094 0.130 0.127
Toy 16.240 14.781 14.399 5.554 2.259 2.175 0.182 0.187 0.210 0.125 0.085 0.075
Clay 6.673 5.917 5.864 3.859 1.712 1.562 0.190 0.228 0.316 0.156 0.148 0.124
Cloth 17.631 17.118 16.405 15.964 3.032 2.878 0.171 0.172 0.171 0.318 0.081 0.080
Egyptian 5.934 5.832 6.103 1.716 1.172 1.084 0.264 0.255 0.347 0.113 0.172 0.140
Face 6.113 6.107 6.086 2.400 1.908 1.823 0.131 0.144 0.244 0.087 0.108 0.095
Beers 7.917 6.329 4.952 2.915 2.501 2.413 0.044 0.041 0.042 0.033 0.038 0.038
Food 7.893 7.080 6.331 3.812 1.979 1.888 0.154 0.181 0.213 0.137 0.120 0.113
Lemon 9.259 8.344 7.460 2.656 1.364 1.264 0.177 0.229 0.254 0.143 0.108 0.099
Lemons 5.421 5.539 5.605 2.090 1.315 1.224 0.107 0.117 0.217 0.087 0.082 0.073
Peppers 9.609 7.917 7.520 3.923 1.784 1.691 0.156 0.165 0.241 0.152 0.114 0.103
Strawberries 6.375 6.921 7.391 2.132 1.416 1.325 0.149 0.177 0.248 0.105 0.096 0.087
Sushi 6.701 6.216 5.796 2.350 1.715 1.644 0.106 0.126 0.184 0.080 0.138 0.130

Average 9.618 8.710 8.427 4.767 2.464 2.365 0.156 0.170 0.221 0.134 0.108 0.098

Table 3. Average PSNR and SSIM of the 15 reconstructed MSIs for the ICVL dataset.

MSI
PSNR SSIM

TwIST GAP-TV PnP DCCHI DL DL-TV TwIST GAP-TV PnP DCCHI DL DL-TV

4cam1640 33.015 33.094 33.632 35.419 43.257 43.817 0.857 0.842 0.845 0.963 0.992 0.994
BGU1113 25.628 26.814 27.912 33.257 40.845 41.251 0.785 0.770 0.796 0.960 0.990 0.992
BGU1136 27.366 28.047 28.765 32.470 42.085 42.230 0.801 0.790 0.838 0.963 0.994 0.995
Flower1336 24.876 26.054 27.235 27.001 40.061 40.459 0.676 0.677 0.714 0.905 0.987 0.988
Labtest1502 31.674 30.418 29.901 40.858 48.608 49.425 0.879 0.841 0.849 0.982 0.996 0.997
Labtest1504 37.060 37.019 37.915 42.547 52.464 53.778 0.940 0.931 0.938 0.988 0.998 0.999
CAMP1659 27.165 28.585 29.365 35.412 39.474 39.738 0.863 0.853 0.850 0.977 0.993 0.995
bgu1459 31.275 31.042 31.788 37.235 45.490 46.376 0.831 0.819 0.833 0.968 0.989 0.990
bgu1523 25.717 26.944 27.325 28.526 39.883 40.109 0.763 0.754 0.798 0.930 0.988 0.989
eve1549 33.527 34.585 35.221 38.622 44.409 44.654 0.898 0.888 0.890 0.977 0.995 0.996
eve1602 28.396 28.515 28.957 31.834 41.213 41.325 0.823 0.802 0.833 0.951 0.991 0.993
gavyam0930 32.781 31.870 31.867 40.023 45.644 45.953 0.860 0.831 0.831 0.971 0.994 0.995
grf0949 27.403 27.865 28.849 30.452 42.080 42.655 0.746 0.737 0.761 0.934 0.989 0.992
hill1219 26.995 28.057 28.656 27.617 40.198 40.699 0.735 0.729 0.740 0.913 0.987 0.989
hill1235 28.370 29.203 29.651 28.408 39.655 40.144 0.771 0.767 0.769 0.932 0.988 0.992

Average 29.417 29.874 30.469 33.979 43.024 43.508 0.815 0.802 0.819 0.954 0.991 0.993
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Table 4. Average RMSE and SAM of the 15 reconstructed MSIs for the ICVL dataset.

MSI
RMSE SAM

TwIST GAP-TV PnP DCCHI DL DL-TV TwIST GAP-TV PnP DCCHI DL DL-TV

4cam1640 5.859 5.725 5.438 4.667 2.206 2.145 0.036 0.040 0.044 0.054 0.037 0.036
BGU1113 13.823 11.905 10.668 5.954 2.939 2.878 0.074 0.079 0.077 0.084 0.059 0.059
BGU1136 11.181 10.245 9.362 6.758 2.787 2.808 0.072 0.081 0.077 0.079 0.038 0.038
Flower1336 14.867 12.976 11.551 12.881 3.782 3.808 0.078 0.073 0.065 0.156 0.049 0.050
Labtest1502 6.810 7.726 8.181 2.365 1.137 1.072 0.047 0.067 0.066 0.034 0.032 0.031
Labtest1504 3.696 3.625 3.298 2.037 0.689 0.622 0.045 0.053 0.055 0.060 0.030 0.029
CAMP1659 11.262 9.612 8.931 4.793 3.874 3.888 0.056 0.053 0.054 0.050 0.040 0.041
bgu1459 7.307 7.280 6.788 3.712 1.992 1.930 0.075 0.092 0.092 0.078 0.068 0.067
bgu1523 13.244 11.537 11.000 10.660 3.832 3.875 0.069 0.061 0.064 0.130 0.055 0.056
eve1549 5.529 4.839 4.536 3.127 2.102 2.107 0.030 0.031 0.034 0.038 0.036 0.036
eve1602 9.775 9.594 9.108 7.201 3.095 3.109 0.040 0.048 0.054 0.074 0.042 0.042
gavyam0930 6.061 6.564 6.566 2.567 1.695 1.676 0.065 0.086 0.086 0.052 0.049 0.049
grf0949 11.263 10.514 9.548 8.421 2.752 2.692 0.062 0.063 0.061 0.112 0.046 0.045
hill1219 11.601 10.321 9.772 12.098 3.695 3.657 0.053 0.049 0.053 0.122 0.060 0.059
hill1235 9.963 9.050 8.695 11.065 3.583 3.500 0.040 0.037 0.043 0.100 0.050 0.050

Average 9.483 8.768 8.229 6.554 2.677 2.651 0.056 0.061 0.062 0.082 0.0461 0.0459

In field tests, imaging noise is often introduced due to illumination conditions and imaging
sensor noise. Hence, Gaussian noise with standard deviations of σ = 10, 20, and 40 was added
during the simulation process for verification. Owing to the different noise levels, the
regularization parameters must be tuned according to the noise level; in general, the larger
the noise, the larger the regularization parameters. Table 5 shows the simulation results for
different levels of noise. It can be seen that irrespective of the noise level, the PSNR and
SSIM of the spectral images generated by DL-TV are significantly higher than those of the
images produced by DL, implying that DL-TV is more robust against noise. The algorithms
were run on a Windows 10 64-bit system with AMD R5-4600H and 16 GB RAM, and the
calculation time is shown in Table 6.

Table 5. Average PSNR and SSIM of 15 reconstructed MSIs under different levels of noise, obtained
using the CAVE dataset.

MSI

σ = 10 σ = 20 σ = 40

PSNR SSIM PSNR SSIM PSNR SSIM

DL DL-TV DL DL-TV DL DL-TV DL DL-TV DL DL-TV DL DL-TV

Balloons 32.637 36.647 0.742 0.919 29.309 34.079 0.543 0.863 25.480 30.981 0.354 0.683
Beads 30.328 31.114 0.824 0.878 27.932 28.613 0.695 0.816 24.670 27.262 0.544 0.720

CD 29.453 31.115 0.731 0.888 27.658 29.712 0.557 0.819 25.496 28.327 0.403 0.651
Toy 33.530 35.605 0.798 0.909 30.206 33.209 0.657 0.859 26.822 30.867 0.497 0.708
Clay 34.721 36.694 0.707 0.801 31.097 33.868 0.486 0.708 27.234 31.117 0.302 0.484
Cloth 32.940 34.669 0.783 0.872 28.887 31.574 0.614 0.810 24.802 29.130 0.451 0.683

Egyptian 36.571 40.108 0.821 0.898 32.932 37.568 0.638 0.813 29.332 33.529 0.426 0.593
Face 33.951 37.119 0.678 0.855 30.709 34.559 0.501 0.785 27.385 31.465 0.336 0.571
Beers 32.084 35.147 0.699 0.914 28.083 32.388 0.464 0.857 24.156 29.726 0.271 0.673
Food 34.614 35.535 0.790 0.879 30.727 32.965 0.614 0.822 26.909 30.446 0.442 0.661

Lemon 35.024 37.947 0.787 0.908 31.475 35.422 0.641 0.857 28.026 32.204 0.480 0.699
Lemons 34.905 37.766 0.756 0.886 31.032 35.076 0.571 0.823 27.301 31.842 0.406 0.649
Peppers 34.541 35.901 0.779 0.885 30.714 33.135 0.599 0.825 26.681 30.553 0.421 0.655

Strawberries 35.076 38.341 0.760 0.878 31.336 35.864 0.589 0.820 27.907 32.547 0.423 0.648
Sushi 36.024 38.328 0.786 0.899 32.274 36.061 0.621 0.843 29.242 32.731 0.466 0.668

Average 33.760 36.136 0.763 0.885 30.292 33.606 0.586 0.821 26.763 30.849 0.415 0.650

Table 6. Comparison of reconstruction time in seconds between different methods.

Method TwIST GPA-TV PnP DCCHI DL DL-TV

Time 500.5 569.8 540.8 525.6 6.4 64.1
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Figure 3. Simulation results calculated using three different MSIs of the CAVE dataset. The first, 
third, and fifth columns show the simulation results of “beads,” “cloth,” and “clay” MSIs. Error 
maps are shown in columns 2, 4, and 6 for comparison. To compare with the ground truth, the 
spectral curves of selected regions are shown in (a–f).  

Figure 3. Simulation results calculated using three different MSIs of the CAVE dataset. The first,
third, and fifth columns show the simulation results of “beads”, “cloth”, and “clay” MSIs. Error maps
are shown in columns 2, 4, and 6 for comparison. To compare with the ground truth, the spectral
curves of selected regions are shown in (a–f).
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Figure 4. Reconstruction spectra of “toy” MSI of the CAVE dataset. The original RGB image and the 
coded frame of the scene are shown at the top. The spectra of four color regions are shown on the 
left. The three reconstructed frames at wavelengths 510, 560, and 640 nm are shown on the right. 

Figure 4. Reconstruction spectra of “toy” MSI of the CAVE dataset. The original RGB image and the
coded frame of the scene are shown at the top. The spectra of four color regions are shown on the left.
The three reconstructed frames at wavelengths 510, 560, and 640 nm are shown on the right.
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Figure 5. Simulation results of “BGU1113” (top) and “Labtest1502” (bottom) MSIs of ICVL dataset. 
To compare with the ground truth, the spectral curves of selected regions are shown in (a) and (b). 
Figure 5. Simulation results of “BGU1113” (top) and “Labtest1502” (bottom) MSIs of ICVL dataset.
To compare with the ground truth, the spectral curves of selected regions are shown in (a,b).
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4. Experiments Using Actual Captured Data
4.1. Indoor Experiments

First, the notch-filter-based multi-aperture multispectral imaging system was built
using nine monochromatic cameras, each with a resolution of 1024 × 1280 pixels, and this
prototype system was used to capture the ColorChecker card and target image (ISO 12233
2014 eSFR) in an indoor environment. Eight notch-filtered images and one panchromatic
image were collected in a single shot. The captured images were then processed using
the proposed algorithms to reconstruct 31 bandpass spectral images. The illumination
was provided by a spectrum-tunable light source (Thouslite-LEDCube) and was limited
to the spectral range of 420–690 nm; therefore, the spectra of the MSIs in the experimental
part also range from 420 to 690 nm, with the spectral bands of 28, as also reported in [47].
Figure 6 shows the reconstructed spectrum for 18 color blocks and the reconstructed MSIs
for all bands. The exposure time for acquiring the notch-filtered and panchromatic images
was 4 ms (frame rate of up to 250 fps). Simultaneously, the bandpass spectral images
that were captured by the bandpass filters (THORLABS-FB) were obtained with the same
exposure time. Figure 6 reveals that the calculated spectrum of the color block is almost
the same as the ground truth captured by the hyperspectral camera (GaiaField_V10E),
implying that the proposed system can restore the spectral information of the target scene.
Figure 7 compares the hyperspectral images reconstructed by the proposed system with
the DL and DL-TV algorithms. For demonstration, an ISO 12233 target was used along
with the reconstructed spectral images with central wavelengths of 450, 530, 560, 610, and
660 nm, as shown in Figure 7. Figure 7 demonstrates that in the calculated spectral images,
the detailed features and texture information of the ISO 12233 target are well preserved,
indicating that the proposed system and algorithm do not reduce the spatial resolution
of the target scene. In both scenes, it can be observed that compared to DL, DL-TV can
effectively remove the noise from the actual captured data and can restore the target scene
with higher accuracy. This experiment demonstrated the effectiveness of the prototype
system and proposed algorithm for super-resolution spectral imaging.

4.2. Field Tests

For the field tests, the exposure time for capturing the notch-filtered and panchromatic
images was set to 0.2 ms, and the theoretical frame rate of the imaging system was up to
5000 fps. For each single shot, the captured eight notch-filtered images and one panchro-
matic image were processed with DL-TV to generate 31 multispectral bandpass spectral
images with central wavelengths in the range of 400–700 nm and a spectral resolution
of 10 nm (i.e., at wavelengths of 400, 410, 420, 430, . . . 700 nm). Figure 8 shows 5 of the
31 reconstructed spectral images with central wavelengths of 450, 530, 560, 610, and 660 nm,
along with a captured panchromatic image.

The field test results demonstrate that the proposed algorithm functioned efficiently for
the prototype multispectral imaging system and could provide MSIs with a high frame rate.
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Figure 6. Comparison of the spectra of the 18 color blocks between the reconstructed results and 
ground truth. The reconstructed MSIs are displayed at the bottom. The spectral range is 420–700 
nm. The zoomed-in regions for the 500 nm band are displayed in the right part. BP is the bandpass 
image. 

Figure 6. Comparison of the spectra of the 18 color blocks between the reconstructed results and
ground truth. The reconstructed MSIs are displayed at the bottom. The spectral range is 420–700 nm.
The zoomed-in regions for the 500 nm band are displayed in the right part. BP is the bandpass image.
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Figure 7. Comparison between the hyperspectral images reconstructed using the DL and DL-TV 
algorithms of the proposed system for the target image in the 450, 530, 560, 610, and 660 nm bands. 
Zoomed-in images for the 660 nm band are displayed as well. 
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Figure 8. Field test results obtained by the proposed multispectral imaging system. The reconstructed
MSIs were calculated using the DL and DL-TV algorithms. A total of 5 of the 31 reconstructed spectral
images, with central wavelengths of 450, 530, 560, 610, and 660 nm, were selected and are shown.
The zoomed-in regions from three selected spectral images are displayed, along with a captured
monochromatic reference image.

5. Discussion

From Tables 1–4, TwIST, GAP-TV, and PnP based on CASSI had lower PSNR, SSIM,
and RMSE values for the CAVE and ICVL data sets than the DCHHI and the notch-multi-
aperture system. On the MSIs “beads”, “toy”, and “cloth”, the CASSI reconstruction results
had the worst PSNR, SSIM, and RMSE. As shown in Figures 3 and 4, both “beads” and
“cloth” had repetitive and complex texture structures. For “clay” with simple texture
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structure, it can be well reconstructed, as shown in rows 5 and 6 of Figure 3. The coded
aperture broke the spatial structure of the scene (as shown in Figure 4); it therefore had
difficulty retaining the texture information. DCCHI captured the panchromatic image and
coded frame at the same time, obtaining more spatial-texture information than CASSI,
so it achieved better PSNR, SSIM, and RMSE; however, its reconstruction–evaluation
measurements on “beads” and “cloth” were not very good. The proposed notch-multi-
aperture system obtained eight notch images and a panchromatic image at the same time,
so it had more information about the target scene than CASSI and DCCHI; as a result, it
achieved good evaluation indicators on all tested MSIs.

6. Conclusions

A multispectral imaging system that combines notch filters and multiple apertures
is proposed. By taking advantage of the high light efficiency of the notch filters, the
exposure time can be reduced to <0.2 ms under natural daylight. The proposed system was
evaluated via simulations on the CAVE and ICVL datasets, and the corresponding results
were compared with those obtained using the CASSI and DCCHI systems. Evidently,
the proposed system can effectively improve imaging quality, and the proposed super-
resolution spectral imaging methods provide better reconstruction quality and robustness
against noise than those facilitated by the DL algorithm.

The proposed system can be used in medical contexts to capture the morphological and
biochemical characteristics required for accurate disease diagnosis or functional analysis
during a surgical operation. It is also suitable for dynamic remote-sensing classification,
mineral analysis, and monitoring of agricultural produce.

Although the proposed system exhibits a high spatial quality and spectral fidelity,
some of its aspects require further improvements. First, when capturing scenes with large
depth differences, the registration accuracy of the images captured by different apertures
is reduced, which could affect the quality of the reconstructed MSIs. Therefore, a better
registration algorithm is required to expand the depth of field of the proposed system.
Second, as the DL and DL-TV calculations for 512 × 512 × 31 MSI reconstruction are
time-consuming, future work will be focused on developing a faster algorithm for real-time
multispectral imaging. A deep learning algorithm could be used to replace the iterative
process [48], which would greatly reduce the calculation time.
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