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Abstract: State-of-the-art multiple-object tracking methods are frequently applied to people or
vehicle tracking, but rarely involve underwater-object tracking. Compared with the processing
in non-underwater photos or videos, underwater fish tracking is challenging due to variations in
light conditions, water turbidity levels, shape deformations, and the similar appearances of fish.
This article proposes a robust underwater fish-school tracking algorithm (FSTA). The FSTA is based
on the tracking-by-detection paradigm. To solve the problem of low recognition accuracy in an
underwater environment, we add an amendment detection module that uses prior knowledge to
modify the detection result. Second, we introduce an underwater data association algorithm for
aquatic non-rigid organisms that recombines representation and location information to refine the
data matching process and improve the tracking results. The Resnet50-IBN network is used as a
re-identification network to track fish. We introduce a triplet loss function based on a centroid to train
the feature extraction network. The multiple-object tracking accuracy (MOTA) of the FSTA is 79.1%
on the underwater dataset, which shows that it can achieve state-of-the-art performance in a complex
real-world marine environment.

Keywords: underwater fish school tracking; annotated underwater fish school dataset; high-performance
tracking and detection algorithm; deep learning

1. Introduction

According to the State of World Fisheries and Aquaculture report [1], aquatic product
output is expected to increase from 179 million tons in 2018 to 204 million tons in 2030. With
the increase in population, the demand for seafood and damage to the ocean are increasing,
which leads to the continuous decline of marine fishery resources. An effective way to
alleviate this problem is to raise the proportion of marine pastures in the supply of aquatic
products [2], which can ensure the steady and sustainable growth of aquatic resources.
Therefore, it is necessary to manage marine pastures scientifically and effectively. In recent
years, the rapid development of submarine cable online observation systems has provided
a way to systematically manage marine pastures. The quantity and behavior of marine
organisms can be monitored and tracked using cameras and sensors in an observation
system, promoting scientific fishery management and sustainable fish production [3–5].
For example, we can obtain species diversity and richness through video detection and
tracking, which can be applied to disease identification, hypoxia stress identification, etc.
In addition, we can analyze the coupling relationship between environmental factors and
marine organism populations [6].

Fish detection and behavior analyses have been conducted in ocean observation,
aquaculture, and biological research. Compared with the traditional method, fish-tracking
methods based on computer vision are real-time and automatic, and the expected behaviors
of fish are unaffected [7]. However, underwater observation equipment is usually expensive,
and difficult to deploy and maintain. Moreover, it is challenging to continuously access
underwater videos in real time in the ocean. Research on underwater fish school detection
and tracking is primarily performed in following three ways.
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(1) Most studies are conducted using laboratory video observations [8–12], and tanks
are used to breed fish. They artificially change environmental variables to study underwater
fish tracking algorithms and behaviors. Observing and researching a fish school in a flume
is convenient. Still, it cannot simulate a complex natural marine or lake environment, such
as with underwater color distortion and wave slamming. So, it is challenging to transfer
laboratory algorithms to a natural underwater environment.

(2) Some studies use online open datasets, such as ImageNet [13] and Fish4-Knowledge [14].
These collections consist of discontinuous images extracted from different underwater
videos, and limited fish species, behaviors, and environmental water conditions are in-
cluded. Thus, these online open datasets are usually insufficient for a specific underwater
fish-school detection and tracking study.

(3) Some studies use the underwater videos of cameras equipped on an underwater
observation platform, such as cabled seafloor observatory systems [15]. Underwater
observation videos can be continuously transmitted to a land observation center in real time
by using a submarine cable. Many data are available, and online detection and tracking
algorithms can be applied to them. The videos used in this study are from an underwater
observation platform.

A fish resource statistical technology usually consists of two key steps: first, the
accurate underwater detection of fish, and then associating the detected fish in every frame
with the tracklets. Current research on technical solutions can be generally grouped into
three categories [16].

The first approach uses traditional computer graphics algorithms, such as a back-
ground subtraction algorithm [17] or a Gaussian mixture model [18]. Each fish in the
frames is matched in the video to obtain the trajectories. Matching methods are usually
prediction models, such as the Kalman filter [19] and particle filter [20]. Recently, Flow-
Track [21], which is used for small-scale tracking, introduced an optical flow method by
calculating the motion vectors of each pixel between frames that can apply to fish tar-
gets [22]. However, it is complex and time-consuming, and its tracking performance relies
heavily on the detection results. It showed poor performance in a turbid water environment
due to noise such as water plants and rocks.

The second approach is a one-stage deep learning scheme that combines detection
and tracking models into a unified framework, and can avoid the overall loss caused
by submodel errors. The joint detection and embedding (JDE) model [23] is the first
algorithm based on this idea; later on, its successors, FairMOT [24] and RMCF [25], were
also developed. However, these algorithms treat object identity as a classification task. In
particular, all object instances of the same identity in a training set are treated as one class.
The number of objects grows over time; thus, an increasing number of categories need to
be classified, which deteriorates the algorithm’s performance. Moreover, it is difficult to
associate the trajectories of those objects re-entering the camera view.

The third approach is the two-stage deep learning algorithm following the tracking-
by-detection paradigm. It generally detects objects by first using a neural network and
then associating objects using a filtering method or a reidentification algorithm. Detection
algorithms include YOLOx [26], Faster-RCNN [27], and DETR [28], while filtering algo-
rithms are similar to those of the first approach [19,20]. The reidentification algorithm uses
a neural network to extract the representation features of objects to further calculate the
similarity between objects. The technology based on deep learning can deal with massive
data, and is widely applied in detecting and tracking scenes. It was also used in underwater
fish detection and tracking, and studies showed that detection accuracy was significantly
improved [29–31]. This study also uses this approach.

We propose a robust underwater fish-school tracking algorithm (FSTA) in this study.
The main contributions and innovations of the FSTA are as follows:

1. We propose an amendment detection module. Prior tracking knowledge is introduced
to amend the detection model. The image quality of underwater videos suffers from
color distortions, deformations, low resolution, and contrast, and the fish features
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vary over time. It also leads to inconsistent detection results because of the sudden
low confidence scores during detection. Therefore, in this study, tracklets are used as
prior knowledge to amend the detection results to improve the performance of the
underwater detection model.

2. We propose a new data association algorithm scheme by recombining representation
and location information. In this algorithm, the weight parameters of the position and
apparent information are dynamic. The loss value can be adjusted according to the
lost situation to improve the matching performance. We recovered objects from the
low-score detection box while filtering out the background.

3. The centroid triplet loss function was introduced to train the feature extraction net-
work of Restnet50-IBN. This significantly improved the performance of the tracking
algorithm. Its MOTA is 86.7, which achieved SOTA performance. We also released
the labeled underwater datasets, including detection and tracking datasets.

The structure of this article is as follows. Section 2 reviews the existing methods of
fish detection and tracking. The method proposed in this paper is described in Section 3.
Section 4 reports and discusses our experimental results. The conclusions and discussion
are given in Section 5.

2. Related Work

Several tracking methods have been applied to underwater fish-school tracking in the
past decade [30–36]. Chung et al. [32] proposed an automatic fish segmentation algorithm.
They first used the object segmentation algorithm to obtain a fish mask, and then combined
four cues, namely, vicinity, area, motion direction, and histogram distance, to match the
object. In addition, the algorithm modified the Viterbi data association algorithm from a
single-target tracking to a multiple-target tracking algorithm. It could effectively divide
the fish boundary and overcome poor motion continuity in LFR scenarios. However,
this algorithm is time-consuming, and the mismatching phenomenon is serious when an
occlusion exists. Palconit et al. [33] used a time-series prediction algorithm to predict the
trajectory. They first used the subtraction of two images to obtain the binary image, and
then the long short-erm memory (LSTM) or genetic algorithm to predict the fish’s position
in the next frame. However, most of the images processed by this algorithm were single
targets, and the features of the fish were visible. It lacked experimental verification in
a complex environment. Liu et al. [25] performed one-stage detection and produced a
tracking algorithm. The dataset was collected from a natural marine pasture. They built a
parallel two-branch structure in which the detection branch output fish species and position
coordinates, and the tracking branch output the number statistics. The algorithm improved
the running time and could be deployed in a marine pasture. However, the approach treats
object identity embedding as a classification task. As tracking time increases, the number of
objects increases, and the algorithm’s performance gradually deteriorates, so it is unsuitable
for long-term tracking. Sun et al. [34] proposed consistent fish tracking with multiple
underwater cameras, introducing a target-background confidence map to build appearance,
and using maximal posterior estimation to obtain fish locations. Lastly, centroid coordinate
homographic mapping and the speeded-up robust features (SURF) technique [35] were
used to capture and match the same fish from the perspectives of multiple cameras with a
set of strategies. However, this algorithm could track the same fish from different cameras
and cannot process multiple targets. Xu et al. [9] analyzed fish behavior trajectories on the
basis of deep learning in an ammonia environment. That research improved the faster R-
CNN algorithm [27] to identify fish in a tank, and mapped the behavior trajectory of the fish.
After that, they constantly changed the ammonia concentration in the tank and observed
behavioral changes in the fish, which would become inactive and gradually die with the
increase in ammonia concentration. This approach was used in the laboratory environment,
and it is not easily applied in a complex natural marine environment. Wang et al. [15]
used the determinant of the Hessian blob detector to extract the head region of each fish,
which was the input of the CNN network. So, it obtained the position coordinates from the
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CNN network. Lastly, an SVN classifier was used to relink the trajectory across the frames.
However, when an occlusion occurs, the fish are easily lost.

In brief, the early tracking algorithm was given priority to computer graphics algo-
rithms, such as the filter algorithm, the optical flow method, and the background modeling
algorithm. With the substantial rise of deep learning in recent years, researchers have
gradually used computer-vision algorithms to solve tracking problems, and powerful data-
fitting capabilities to accelerate computational speed. Therefore, we focus on the accuracy
of tracking. Balancing speed and accuracy by improving accuracy without reducing speed
is the core idea of the FSTA algorithm proposed in this study.

3. Method

The FSTA algorithm consists of an object detection module, an amendment detection
model (ADM), and a data association module. The structure is shown in Figure 1. The
detector, such as the YoloX algorithm [26], is used in the object detection module to obtain
the objects’ classes, bounding boxes, and confidence scores from each frame. Then, the
amendment detection model is used to improve underwater detection performance. Lastly,
the detection results and current tracklets are inputted into the data association module to
obtain trajectories.
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Figure 1. Flow chart of the FSTA. It comprises three modules, a detection result set, and a tracking
result set.

3.1. Amendment Detection Model

Underwater videos have problems of color distortion and blur, and fish features
change over time. This can lead to inconsistent detection results. Therefore, we used
tracklets to amend the detection results and improve the performance of the underwater
detection model. The detection result seriously affects the result of the tracking algorithm
on the basis of the tracking-by-detection paradigm. Here is an underwater scenario to
illustrate the necessity of this module. In Figure 2, black is Fish I, purple is Fish II, and red
is Fish III. The first row at the bottom is the confidence score output by the detector model,
and the second row is the modified confidence score. Fish II occluded Fish I at Point A,
so Fish I was lost at Point A. When Fish I reappeared at Point C, it was partially occluded
by Fish III, resulting in low confidence. Then, Fish I was not matched with the existing
trajectory in the data-associated algorithm at Point C. Although the confidence score of the
fish was low, we can infer that the reappeared fish was Fish I by observing the trajectory at
Point C. The idea of this module is to use the current trajectories as prior knowledge. The
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fish’s confidence improves after the correction at Point C. The object can participate in the
subsequent data association algorithm to improve the tracking performance.
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The pseudocode of the ADM algorithm is shown below.
The input of ADM is a detection set DS along with tracklet set γ and Kalman Filter

KF. We also set a parameter σ, which is an adjustable parameter related to the current
image size and blur level. The output of ADM is the detection set D of the current frame
containing the bounding box and class of the object. Tracklet set γ is empty in the first
frame. We merge tracked set τtrack and currently lost set γlost into one set, γpool . Then, we
use Kalman filter KF to predict the new locations of each tracking bounding box. After
that, we calculate the distances between each tracking box and each detection box usingIoU
distance. (Lines 1 to 8 in Algorithm 1).

Algorithm 1: Pseudocode of ADM

Input: detection set DS, tracklet set γ, adjustment parameter σ, Kalman filter KF.
Output: detection set DS

1. Initialization: dist← 0
2. γpool = γtrack + γlost
3. for t in γpool do
4. t← KF(t)
5. end
6. for i, j in DS, γpool do
7. disti,j ← calculate the distance between i and j using IoU distance
8. end
9. for i in DS do
10. disti,∗ = so f tmax

(
disti,∗

)
11. i.score = i.score + (edisti,∗ − 1)/σ /*(i.score means the confidence score of detected object i)*/
12. end
13. Return DS
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Lastly, the softmax function normalized the distance between object i and all detection
boxes. Then, we modify the object’s confidence score with IoU distance, and σ is an
adjustable parameter related to the current image size and blur level. The output of ADM
is the detection set DS of the current frame containing the bounding box and class of the
object (Lines 9 to 13 in Algorithm 1).

3.2. Data Association Algorithm

We introduced the BYTE data association [31] algorithm and improved the algorithm
using the re-ID feature extractor network. Since fish are non-rigid organisms, and the
motion model was complex, the Kalman filter was mainly modeled with a uniform motion
model, so it was not reliable to predict the coordinate position of fish by only using position
information. This tracks a false object when occlusion occurs in the video. Therefore,
we combined the representation feature of the object and its location information. The
tracking loss of the current data association algorithm was high, and we designed a new
data association algorithm. The occlusion of the object changed over time; thus, the weights
of the representation and location features were adjusted automatically to improve the
performance.

The input of the data association algorithm is a video sequence S along with an object
detector and Kalman filter KF. We also set five thresholds: ξhigh, ξlow, ε, lostbu f f er, and
pairval . γhigh and γlow are the detection score thresholds, ε is the tracking score threshold,
pairval is the match score threshold, and lostbu f f er is the max lost frame number. The output
of the data association algorithm is tracks γ of video sequence S.

Each frame obtains the bounding boxes, confidence scores, and coordinates using the
detector. All the detection boxes are divided into two parts, Dhigh and Dlow, according to
their detection score. The boxes whose scores are higher than ξhigh are classified as Dhigh,
and the boxes whose scores are between ξhigh and ξlow are classified as Dlow (Lines 3 to 13
in Algorithm 2).

Algorithm 2: Pseudocode of data association algorithm

Input: video sequence S, object detector, re-ID feature extractor Ext, Kalman filter KF, detection
score threshold ξhigh, ξlow, tracking score threshold ε, match score threshold pairval , lost
buffer frame number lostbu f f er.

Output: Tracks γtrack of the video.

1. Initialization: γtrack ← ∅
2. for frame fk in S do
3. Dk ← Det( fk)
4. Dhigh ← ∅
5. Dlow ← ∅
6. for d in Dk do
7. if d.score > ξhigh then
8. Dhigh ← Dhigh ∪ {d}
9. end
10. else if d.score > ξlow and d.score < ξhigh then
11. Dlow ← Dlow ∪ {d}
12. end
13. end
14. γpool = γtrack + γlost
15. for t in γpool do
16. t← k f (t), Ext(t)
17. end
18. /*high score association*/
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19. Mpair ← associate γpool and Dhigh using IoU distance
20. Dremain ← remaining objects boxes f rom Dhigh
21. γremain ← remaining objects boxes f rom γpool
22. for m in Mpair do
23. if m.score < pairval then
24. γremain ← m
25. /*low score association*/
26. Dlow = Dlow ∪ Dremain
27. cost1← calculate cost between γremain and Dlow using IoU distance
28. cost2← calculate cost between γremain and Dlow using Re− ID distance

29. cost = 7× cost2×min(1, e
log2×γremain .lostlen

lostbu f f er − 1) + cost1×max(0, 2− e
log2×γremain .lostlen

lostbu f f er )
/ ∗ (γremain.lostlen means the lost frame number of the object in the remaining track set)*/
30. Associate γremain and Dlow using cost
31. γre−remain ← remaining tracks f rom γremain
32. /* delete unmatched tracks*/
33. γtrack ← γpool\γre−remain
34. for d in Dremain do
35. if d.score > ε then
36. γtrack ← γtrack ∪ {d}
37. end
38. end
39. end
40. Return γtrack

Tracked set γtrack and lost set γcost are merged into one set, γpool . Then, a Kalman filter
(KF) is used to predict the new coordinates of each track, as performed in ADM. We also
use a re-ID network to obtain the representation feature of each object in track set γpool
(Lines 14 to 17 in Algorithm 2).

Next, we match detection bounding boxes Dhigh with the objects in track set γpool .
The IoU is used to compute the similarity of all possible pairs, and we use a binary graph
maximal matching algorithm, such as the Hungarian algorithm [36], to accomplish their
matching. Then, all the matched pairs are filtered by the Euclidean distance of their
appearance feature, whose distance over pairval remains. Unlike tracking methods, only
using predicted position information is easily affected by the distance of the boxes. This
situation affects lost-target tracking and the matching false detection box on the track. The
proposed method adds the apparent feature scores to discriminate between the different
objects. At the end of this stage, only the unmatched detection objects in Dremain and the
unmatched track set objects in γremain remain (Lines 17 to 24 in Algorithm 2).

In the second stage of association, unmatched first-stage high-score detection set
Dremain is added to low-score detection set Dlow. We associate objects between low detection
set Dlow and remaining track set γremain. We calculate the cost between γremain and Dlow
by the IoU distance and the re-ID feature distance. This cost change over lost time. The
Hungarian algorithm is used to finish the matching on the basis of the cost (Lines 25 to 31
in Algorithm 2).

All remaining unmatched tracklets γre−remain after the second stage of the association
are removed from tracked tracklets γtrack if they are in γtrack, and added into lost tracklets
γlost. For simplicity, the procedure of tracking rebirth [21,30,37] is not shown in Algorithm 2.
Only if the target is not tracked for over 30 frames, i.e., the tracklet is added into γlost for
over 30 frames, it is deleted from lost tracklet γlost, which means that the target left the
camera forever (Lines 32 to 33 in Algorithm 2).

Lastly, the detection boxes that satisfy the following conditions are used to initialize
new tracklets (Lines 33 to 39 in Algorithm 1). (1) They are from Dremain, which remains in
the first association stage and is still not matched in the second association stage. (2) The
detection scores are higher than ε, where ε > ξhigh. (3) The boxes are detected over two
consecutive frames.
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3.3. Re-ID Network

The performance of the re-ID network affects the results of the subsequent data-
matching algorithm in multiple-target tracking experiments. So, it is necessary to obtain
accurate feature extraction results from the re-ID network. The fish swim in all directions in
the extraction process, and their characteristics vary a lot. In view of these facts, we adopte
the heuristic dynamic feature fusion strategy and integrate the fish features extracted from
multiple viewing angles to improve the feature representation ability of the network. A
re-identification neural network is used to obtain the representation feature of the object.
Thus, reducing the feature distances of the same object while enlarging the feature distances
of different objects is a re-identification task. When occlusion and high turbidity occur, a
common re-identification neural network has a poor effect and cannot enlarge the feature
distance of different objects. Most research uses triplet loss to obtain more stable features.
Furthermore, the triplet loss function is improved to achieve better performance. We
improve the loss function by replacing instance-based loss with object-based loss. The
feature of the object is gradually robust with the increase in the number of successfully
matched frames, so the object could be rematched according to the local feature when
occlusion occurrs.
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Instead of using the triple loss function, the centroid triplet loss function is performed
to train the re-identification network. The centroid triplet loss function is formulated in
Equation (1), where [z]+ = max(z, 0), f denotes the re-identification network, and A is
an anchor instance. Centroid triplet loss (CTL) computes the distance among an anchor
instance, a positive class centroid CP and a negative class centroid CN .

Ltriplet = [‖ f (A)− CP‖2
2−‖ f (A)− CN‖2

2 + α]+ (1)

The centroid is calculated as the mean feature of the same object in the video frames, as
shown in Figure 3. Thus, each object is represented by a single embedding along its lifetime,
reducing retrieval time and storage requirements. The backbone of the re-ID network
is Resnet50-IBN. Most CNNs use instance normalization (IN) or batch normalization
alone. High-level visual tasks such as recognition use BN as a critical component to
improve learning ability, while low-level visual tasks such as image style transformation
use IN to remove the changing parts of pictures. IN eliminates the difference in individual
appearance, but simultaneously reduces useful information. Resnet50-IBN reasonably
combines IN and BN, which improves learning and generalization abilities.
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4. Experiments and Results

To demonstrate the perfromance of the proposed fish tracking algorithm, we first
elaborate on the dataset and implementation details in Section 4.1. We compare the FSTA
with other related methods and evaluate different settings to justify our design choices
in Section 4.2. Then, we show that our correlation tracker outperformed the state-of-the-
art methods on five MOT benchmarks in Section 4.3. Lastly, we visualize the tracking
trajectories in Section 4.4.

4.1. Dataset and Implementation Details

Dataset. Our neural network consist of the detection and re-identification networks.
We used 5300 images as the training dataset of the detection network. The images were
all extracted from the observation video of a marine pasture over one year. LabelImage
software labelled the image according to the VOC format [38]. Second, 6318 images were
used as the training dataset of the re-identification network; the format of the dataset was
similar to that of DeepFashion [39]. The dataset is available at https://drive.google.com/
file/d/15BDaciElZRaAIZgDRFjl1iq_sVseDRqP/view?usp=sharing (accessed on 18 August
2022).

Implementation details. The training and reference of the algorithm were carried out
on a server configured with Intel(R) Xeon(R) Gold 6342 CPU × two and NVIDIA A100
40 GB × 4 in this experiment. We used PyTorch to build the backbone network and ran it
on the Ubuntu 18.04 LTS operating system.

We adopted YoloX as the detector and trained it on the input with a resolution of
1920× 1080. We used random flip, random scaling (between 0.5 to 0.9), cropping, and data
mosaic as data augmentation, and Adam to optimize the overall objective. The learning
rate was initialized as 1× 10−4 and then decayed to 1× 10−6 in the last 20 epochs. We
trained with a batch size of 32 (on 4 GPUS) for 120 epochs. When using the Adam optimizer,
some networks may fall off a cliff and then fix at a value from which they are no longer able
to recover. By reducing the learning rate to some threshold, such as 0.0001, unstable cases
can be solved; the step size is then reduced to 0.000001 to ensure that the model gradually
converges.

The backbone network of the re-identification network is Resnet50-IBN; the imple-
mentation and hyperparameters mostly follow Pan et al. and Wieczorek et al. [40,41].
The backbone network was pretrained on ImageNet, and then we fine-tuned the network
in our dataset. We used stride = 1 for the last convolutional layer and modified it to a
512-dimensional embedding size. The loss functions were similar to those in He et al. and
Wieczorek et al. [42,43], and we used triplet loss, center loss, and classification loss. The
center loss was weighted by a factor of 5× 10−4, and all other losses were assigned a weight
of 1. The learning rate was initialized as 5× 10−4 and then decayed to 1× 10−5 in the
last 25 epochs. The models were trained for 150 epochs because the loss function curve
converged at the 150th epoch on the basis of our dataset. Note that, this value is related to
the size of the dataset. Different datasets have different convergence speed levels. Usually,
the larger the dataset is, the fewer the training epochs are needed.

In the data association algorithm, detection score threshold τhigh was set to 0.7, and
τlow was set to 0.2. The tracking score threshold ε was set to 0.6. The matching score
threshold pairval was set to 0.5. The maximal lost frame lostbu f f er was set to 50.

4.2. Hyperparameter Setting and Network Experimentaion

We first tested the hyperparameter setting. As Figure 4a shows, when lostbu f f er < 50,
MOTA does not decrease with the increase in lostbu f f er. When lostbu f f er = 50, the maximal
MOTA reaches 79.1. Thus, lostbu f f er was set to 50 in this study. This value is related to
the video’s frame rate and the fish’s swimming speed. The frame rate of the video that
we tested is 30. If the frame rate of the video is not 30, additional adjustment of this
hyperparameter would be needed. With a fixed lostbu f f er, we searched for the proper value
of pairval . This value was used to control the matching accuracy; we only used the position

https://drive.google.com/file/d/15BDaciElZRaAIZgDRFjl1iq_sVseDRqP/view?usp=sharing
https://drive.google.com/file/d/15BDaciElZRaAIZgDRFjl1iq_sVseDRqP/view?usp=sharing
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prediction algorithm in the first association. When this value was too large, most successful
matches were not filtered, so many wrong matches were considered to be correct, and the
MOTA was significantly reduced. Figure 4b shows that, when pairval is 0.5, the result is the
best. ξhigh and ξlow controll the confidence score range of the two-stage data association
algorithm and, to some extent, determine the reliability of the Kalman filter. In Figure 4c,
we present the tracking performance under different ξhigh and ξlow. The result is better
when the difference between the two values is around 0.5, among which ξhigh= 0.7 and
ξlow= 0.2 have the best result. When ξhigh = ξlow, it becomes a one-stage data association
algorithm using only position prediction.
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Table 1 presents the achieved performance using different backbone models of reiden-
tification networks. The top MOTA and the highest IDF1 are obtained with ResNet50-IBN.
ResNet50-IBN means that we added IBN-Net into ResNet50. IBN-Net carefully integrated
instance normalization (IN) and batch normalization (BN) as building blocks, and could
be wrapped into ResNet50 networks to improve its performance without increasing com-
putational cost. IN learns invariant features to appearance changes, such as colors, styles,
and virtuality or reality, by delving into IN and BN. At the same time, BN is essential
for preserving content-related information. This backbone is considered to run all the
following experiments.

Table 1. Comparison of different backbone networks on the validation set. The best results are shown
in bold.

Model MOTA↑ IDF1↑ ID Sw.↓ FPS↑
ResNet50 76.5 76.4 350 30
DenseNet 77.9 78.2 278 29.4
Darknet-53 78.1 78.6 230 29.3
ResNet50-IBN 79.1 80.3 210 29

Table 2 shows the obtained performance by considering different input image resolu-
tions. Better performance could be achieved with high image resolutions, but at a higher
computational cost.

Table 2. Comparison of different resolutions on the validation set. The best results are shown in bold.

Input Size MOTA↑ IDF1↑ ID Sw.↓ FPS↑
256 × 256 76.5 76.4 350 30
800 × 533 77.9 78.2 278 29.4
1024 × 683 78.1 78.6 230 29.3
1920 × 1080 79.1 80.3 210 29

4.3. Ablation Study

We tested the effect of the above modules on the results, as shown in Table 3. The
baseline model was ResNet50 with a Kalman filter algorithm. Re-ID indicates that we add
the representation feature into the data association algorithm in the baseline model. Then,
the amendment detection model (ADM) is added into the baseline model. Centroid loss
indicates the formula that is used as triplet loss. The baseline performs similarly to SORT,
which has the best FPS, but we significantly improve the multiple-object tracking accuracy
(MOTA), and the introduced representation features substantially reduce the ID switches.

Table 3. The influence of different modules on algorithm performance. The best results are shown in
bold.

Model MOTA↑ IDF1↑ ID Sw.↓ FPS↑
Baseline 71.6 74.4 405 32
+Re-id 75.3 76.2 315 29.5
+ADM 77.9 79.4 294 29
+Centroid loss 79.1 80.3 210 29

4.4. State-of-the-Art Comparisons

We compared FSTA with other popular association methods: SORT [29], Deep-
SORT [30], JDE [23] and ByteDance [31]. The results are shown in Table 4.
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Table 4. Comparison of different data association methods on the validation set. The best results are
shown in bold.

Method w/Re-ID MOTA↑ IDF1↑ IDs↓ FPS↑
SORT 71.6% 75.4% 342 30.1

DeepSORT X 75.4% 77.4% 301 19

J.D.E. X 76.1% 72.2% 453 30

ByteDance 77.6% 79.3% 249 29.6

FSTA (ours) X 79.1% 82.3% 160 29

SORT can be considered as our baseline method because all methods only use a
Kalman filter to predict the object’s motion. The FSTA improved the MOTA metric of SORT
from 71.6% to 79.1% and IDF1 from 75.4% to 82.3%, and decreased the IDs from 342 to
160. This highlights the importance of the representation features, and proves the ability of
FSTA to recover object boxes from a low-score one.

DeepSORT uses additional re-ID models to enhance long-range association. We sur-
prisingly observed that the FSTA also had more significant gains than those of DeepSORT,
which suggests that the cascade association is not the best algorithm, which could be
improved by optimizing the data association structure and re-ID network.

JDE proposed a MOT system that allows for a shared model to learn target detection
and appearance embedding. Specifically, it incorporates the appearance embedding model
into a single-shot detector, such that the model could simultaneously output detections and
the corresponding embeddings. The FSTA improves the MOTA metric of JDE from 76.1%
to 79.1% and IDF1 from 72.2% to 82.3%, and decreases IDs from 453 to 160. It uses the idea
of classification to fit the target ID, which causes the ID switch to be too large.

ByteDance suggests that a simple Kalman Filter can perform long-range association,
and achieve better IDF1 and IDs when the detection boxes are accurate. However, it is
difficult for the motion model to refine a lost object in severe occlusion cases. Therefore,
representation features behave more reliably.

4.5. Visualization

The specific algorithm effect is shown in Figure 5, in which frames of 10, 15, 40, 70,
100, and 130 s were intercepted from test video data. The mark in the figure is the scientific
name and count of each category, respectively. This algorithm can be used as a long-term
recognition algorithm for an underwater observation platform, and it not only meets the
real-time requirements, but also has a high accuracy rate.
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the target and gave it a new ID, which added tracking error. 

Figure 5. Visualization result of the FSTA. We selected six sequences from the validation set of our
dataset and showed the effectiveness of FSTA to handle complex cases such as occlusion and motion
blur.

5. Discussion

By adding the robust Re-ID algorithm proposed in this study, the centroid-based
matching algorithm improves its accuracy over time because more complete organism
characteristics could be learned. We provide a visual comparison between our algorithm
and another algorithm that only uses the location information in Figure 6. There were three
fish swimming in overlapping occlusion over time. We use a triangle to represent each
fish, and the solid purple lines successfully represente the matched object. The dotted line
is the unsuccessful match. Algorithm 1 is ours, and Algorithm 2 only uses the Kalman
filter to predict the position of the coordinate to match the object. The fish swimming cover
problem occurred in the 67th frame, and the algorithm lost the original target, but when
Fish III reappeared in the 101st frame, Algorithm 1 could track the target. Algorithm 2 lost
the target and gave it a new ID, which added tracking error.

This technology has its shortcomings. The motion model of Kalman filtering is a
uniform motion model. When there is a large wave or fish mutation, the model affects the
tracking result because fish are nonrigid. The problem can be solved through an improved
motion model of the Kalman filter. Still, it is also difficult to build the fish motion model. We
also tested the nonlinear particle filter with stronger overfitting ability, but its performance
was not stable because it could only obtain local optimal solutions. If the global optimal
solution could be obtained, the tracking performance could be effectively improved, and
this could be a future breakthrough point.

Through experimental tests, the recognition accuracy rate dropped by 1.5% to 2.3% in
other sea areas. This was due to different sea areas’ color cast and contrast differences. So,
when the FSTA is applied to different sea areas, the network weight coefficients need to be
retrained accordingly. By adding different white balance methods to process the video first,
since the parameters of white balance need to be manually adjusted, the most appropriate
method should introduce a color complement neural network before image classification.
This would be another future breakthrough point.
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This study is expected to have good prospects. First, our model was stably tested
in marine ranches, and could achieve long-term and highly accurate underwater biolog-
ical tracking. Second, our algorithm could be applied not only to underwater loading
equipment, but also to underwater robots, underwater AUVs, and other equipment. The
algorithm in this paper has the potential to realize automatic statistics in marine environ-
ments, and it can be a useful complement to traditional manual statistical methods. In
addition, the algorithm provides a means to analyze underwater biological environments.
By tracking the trajectory of fish, fish behavior can be analyzed; current water-quality and
environmental changes can be further analyzed to provide an additional verification of
observer data. The technology only needs to rely on high-definition underwater cameras
without special requirements for the cameras, but there are certain restrictions on the
observation and tracking time. For example, the time during which we could track was
mainly during the day. Accuracy dropped at night and in particularly murky water, so
there are specific light requirements.

6. Conclusions

Tracking methods based on deep learning rarely involve underwater-object tracking.
Compared with processing in non-underwater photos or videos, underwater fish tracking
is challenging due to varying marine environments and poor-quality underwater imaging.
In this paper, we proposed a robust tracker FSTA, and its accuracy achieves 79.1% of MOTA
and 82.3% of IDF1 on the basis of our underwater dataset.

The FSTA, as a new paradigm for underwater fish tracking, has the potential to be
widely applied to aquatic observation systems. First, the image quality of underwater
videos suffers from color distortions, deformations, low resolution, and contrast, and fish
features vary over time. This also leads to inconsistent detection results because of the
sudden low confidence scores during detection. Therefore, in this study, trajectories have
been used as prior knowledge to amend the detection results to improve the performance
of the underwater detection model. Second, a new data association algorithm is proposed
by recombining representation and location information. In this algorithm, the weight
parameters of the position and apparent information are dynamic. The loss value could be
adjusted according to the lost situation to improve matching performance. We recovered
objects from the low-score detection box while filtering out the background. The algorithm
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is robust to occlusion due to dynamic association, which improves retracing lost targets.
Lastly, we introduce the centroid triplet loss function to train the RestNet50-IBN feature
extraction network. This greatly enhances the performance of the tracking algorithm.

The different hyperparameters affect our algorithm’s performance. The effects of the
three components of the algorithm in this paper have been tested with ablation experiments.
The experimental results show that each element improved the model’s performance in
a different aspect, and among them, the Re-ID network showed superior performance.
Also, the results of our model were compared with the performance of state-of-the-art
algorithms, and our algorithm has indices in the leading position for the underwater
dataset. In addition, the shortcomings of the model has also been discussed in this paper,
and further improvement could be achieved by focusing on the unresolved complex fish
aliasing phenomena.
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