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Abstract: Recently, with the rapid development of deep learning (DL), an increasing number of
DL-based methods are applied in pansharpening. Benefiting from the powerful feature extrac-
tion capability of deep learning, DL-based methods have achieved state-of-the-art performance in
pansharpening. However, most DL-based methods simply fuse multi-spectral (MS) images and
panchromatic (PAN) images by concatenating, which can not make full use of the spectral information
and spatial information of MS and PAN images, respectively. To address this issue, we propose a
spectral-spatial interaction Network (SSIN) for pansharpening. Different from previous works, we
extract the features of PAN and MS, respectively, and then interact them repetitively to incorporate
spectral and spatial information progressively. In order to enhance the spectral-spatial information
fusion, we further propose spectral-spatial attention (SSA) module to yield a more effective spatial-
spectral information transfer in the network. Extensive experiments on QuickBird, WorldView-4, and
WorldView-2 images demonstrate that our SSIN significantly outperforms other methods in terms of
both objective assessment and visual quality.

Keywords: deep learning; spectral-spatial interaction network; spectral-spatial attention; pansharpening

1. Introduction

Due to the limitations of remote sensing satellite-imaging system, remote sensing
satellite images with both high spatial and high spectral resolution are difficult to obtain.
This problem can be mitigated by improving the hardware. However, it turns out to be
an arduous task due to the strict limit of the signal-to-noise ratio of satellite products [1].
To alleviate this problem, the pansharpening technique was proposed. The main purpose
of pansharpening is to generate a high-spatial-resolution (HR) multispectral (MS) image,
which contains spatial information of the panchromatic (PAN) image and spectral informa-
tion of the corresponding MS images, by fusing a low-spatial-resolution (LR) MS image
with a HR PAN image. As one of the most basic and dynamic research topics in remote
sensing, pansharpening has a significant impact on many remote sensing applications,
such as crop mapping [2], land cover classification [3], and target detection [4]. In recent
years, with the wide application of deep learning in various computer vision tasks, DL-
based pansharpening methods have developed rapidly. Inspired by SRCNN [5], Masi
et al. [6] first attempted to use convolutional neural networks (CNN) for pansharpening
and stacks of three convolutional layers (PNN) for pansharpening, achieving state-of-the-
art results. Motivated by the results of the PNN, many pansharpening methods based on
deep learning have emerged in recent years [7–13].

Although they have different structures and achieve the desired effect, they usually
underutilize the advantage of spectral information that exists in the MS images and spatial
information that exists in the PAN images. Most of them tend to concatenate PAN and
MS images at the beginning of the network and extract the input feature maps with a
single network, which is simple and easy to implement but is not conducive to spectral-
spatial information fusion. Even though some DL-based methods [14–18] are designed
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to be multi-branch structures, and the features of the input PAN and MS images are
extracted respectively, they fail to consider the interaction and the impact of spectral-spatial
information, which is adverse to information transmission and conversion in networks.

In view of the above issues, we propose a spectral-spatial interaction network for
pansharpening. Specifically, to fully extract the features of MS and PAN images, SSIN
is designed as dual-branch structures, where the spatial branch is used to extract spatial
information from PAN images and the spectral branch extracts spectral information from
MS images. Inspired by [19], we take into account information guidance between dif-
ferent branches and design a spectral-spatial attention (SSA) module to fully extract the
advantageous information from the two branches. Moreover, we introduce an information
interaction block (IIB) into our network for information interaction of the spectral branch
and spatial branch. Furthermore, we assemble IIB and SSA into an information interaction
group (IIG) as the basic structure of our network. It is worth noting that we use a long
skip connection to pass the upsampled MS image to the end of the network directly; many
DL-based methods [8,20–22] have demonstrated the effectiveness of this approach.

In summary, the main contributions of this article are as follows:

(1) We propose a spectral-spatial interaction network (SSIN) based on information interac-
tion group for pansharpening. The network is designed as a dual-branch architecture.
It extracts spectral and spatial information independently from the two branches and
are interacted repetitively to incorporate spectral and spatial information progres-
sively.

(2) We propose the information interaction block (IIB) to enhance the conversion and
transmission of spectral and spatial information between the two branches. Because
it is a dual-input and dual-output structure, it can be embedded in dual-branch
networks efficiently.

(3) We design a lightweight and effective spectral-spatial attention module, which is able
to calculate spatial attention from the PAN branch to guide the MS branch. Similarly, it
calculates spectral attention from the MS branch to guide the PAN branch. In this way,
the advantages of information of MS and PAN images can be fully utilized, which
facilitates the fusion of different information.

The remainder of this paper is organized as follows. Section 2 introduces the related
work, while Section 3 introduces the proposed SSIN and each part of the network in detail.
Section 4 presents the data sets, evaluation index, ablation study, parameters analysis and
comparison with SOTA methods on three data sets. Section 5 presents the efficiency study.
Finally, Section 6 draws conclusions.

2. Related Work

Over the past decades, many pansharpening methods have been put forward. These
methods fall into four categories [23]: component substitution (CS)-based methods, multi-
resolution analysis (MRA)-based methods, variational optimization (VO)-based methods,
and deep learning (DL)-based methods. In CS-based methods, the LR MS image is decom-
posed into spectral and spatial components, then the decomposed spatial components of
the LR MS image are replaced by the histogram-matched PAN image. Finally, the HR MS
image is obtained by inverse transformation. Several widely known CS-based methods
include intensity-hue-saturation (IHS) [24,25], principal component analysis (PCA) [26], the
Gram–Schmidt (GS) conversion [27], the adaptive GS (GSA) [28], the partial replacement
adaptive CS (PRACS) [29], and the band-dependent spatial details (BDSD) [30]. These
CS-based methods are simple and efficient and can directly extract spatial information from
PAN images. However, spectral distortion is prone to occurs during pansharpening when
the correlation between the PAN and MS images is low [31]. As for MRA-based methods,
MRA-based methods typically consist of three steps: (1) the upsampled MS image and
PAN image are decomposed into multiple scales, (2) fusion at every scale, (3) utilizes an
inverse transform to get the reconstructed image. MRA-based methods use multi-scale
decomposition to decompose the source image into multiple scales, for instance, discrete
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wavelet transform (DWT) [32], Laplacian pyramid (LP) [33], generalized Laplacian pyramid
(GLP) [34], and contourlet transformation [35]. These methods are generally superior to
CS-based methods in spectral fidelity. However, multiscale transformation brings a large
amount of computation and may lead to spatial distortion [36].

In order to balance spectral and spatial distortions, some methods based on variational
optimization are proposed.

VO-based pansharpening methods transformed the pansharpening process into an
optimization problem. The key to solve the problem is the establishment of energy function
and the selection of optimization algorithm [37].

This category was developed in the 1990s [38]. Since Ballester et al. [39] proposed the
pioneer variational method for pansharpening, VO-based pansharpening methods attracted
more and more attention and developed rapidly. Model-based methods [40,41] and sparse-
based methods [42,43] are two representative VO-based methods. Even though VO-based
methods can produce high-quality fusion results, the optimization is time-consuming [44].

In recent years, with the rapid development of DL-based image super-resolution,
many DL-based pansharpening methods have been put forward which greatly improve
the performance and efficiency of pansharpening. Masi et al. [6] first introduced a simple
three-layer CNN into pansharpening. Inspired by VDSR [20], Wei et al. [8] proposed a deep
residual neural network with 11 convolutional layers for pansharpening. Yang et al. [7]
proposed a deep network architecture for the pansharpening called PanNet, which trained
the network in the high-pass domain to preserve the spatial structure. To capture multiscale
detailed information, Yuan et al. [12] introduce multiscale feature extraction and residual
learning into CNN for pansharpening. These pansharpening methods process at the pixel
level. Different from the previous method, Liu et al. [13] presented a two-stream fusion
network (TFNet) to fuse PAN and MS images in the feature level and reconstructed the pan-
sharpened image from the fused features. To take full advantage of gradient characteristics
in pansharpening. Lai et al. [45] utilized gradient information to guide the pansharpening
process. The above method simply concatenated the upsampled MS image and PAN
image, input it into the network, and then learned the mapping relationship between
the input and HRMS image directly, which resulted in spatial distortion. To solve this
problem. Wang et al. [15] integrated a multiscale U-shaped CNN into pansharpening for
make full use of multispectral information. To explore the intra-image characteristics and
the inter-image correlation concurrently. Guan et al. [46] proposed a three-stream structure
network to fully extract the valuable information that encoded in the HR PAN images and
LR hyperspectral images.

As mentioned above, although most of the current DL-based methods have signifi-
cantly improved the fusion performance, they do not explore the advantage information of
MS and PAN images. Unlike the above methods, we consider the interaction and impact of
spectral-spatial information on the basis of the dual-branch structure. We use both spatial
attention and spectral attention mechanisms in the SSA module to take full advantage of
the advantageous information of the MS and PAN images.

3. Proposed Method

In this section, the implementation details of the SSIN will be described in detail,
including the overall architecture, information interaction block (IIB), spectral-spatial
attention (SSA) module, and information fusion (IF) module. We first introduce the overall
structure of the network, and then the other network components in turn.

3.1. Network Architecture

Figure 1 shows the network architecture of SSIN, which consists of three main parts:
spectral-spatial information extraction, spectral-spatial information interaction, and spatial-
spectral information fusion. Specifically, we use a single convolutional layer to extract
information and then stack the information interaction group (IIG) to achieve the informa-
tion interaction. Finally, we use the IF module to fuse spectral and spatial information. The
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input LRMS image and PAN image are denoted as IMS ∈ Rh×w×c and IPAN ∈ RH×W×1. The
spectral and spatial information is first extracted by a single convolution layer, respectively.

I0
spe = fspe

(
fup(IMS)

)
, I0

spa = fspa(IPAN), (1)

where I0
spe ∈ RH×W×B and I0

spa ∈ RH×W×B represent the extracted spectral and spatial
information, respectively. fspe(·) and fspa(·) are 3× 3 convolutional layers used to extract
the spectral-spatial information from the input imageIMS and IPAN . fup(·) represents the
bicubic interpolation.

Figure 1. The architecture of the proposed SSIN.

Then, the extracted spectral and spatial information are fed into a series of IIG to
realize spectral-spatial information interaction, which can be formulated as follows:(

In
spe, In

spa

)
= f n

IIG

(
In−1
spe , In−1

spa

)
, n = (1, 2, ..., N) (2)

where f n
IIG(·) stands for the the nth IIG, and In

spe, In
spa represent the output spectral and

spatial information of the nth IIG, respectively. N denotes the total numbers of IIG.
Inspired by [47], we cascade all these IIGs to fully use the information interacted

at different stages. Then, the spectral and spatial information extracted by each IIG are
concatenated and fed into an information fusion module to fuse the spectral-spatial infor-
mation. Simultaneously, we feed the spectral information I0

spe and spatial information I0
spa

into the IF module to maintain the original information concentration. Finally, to maintain
the integrity of the spectral information, we add the upsampled LRMS image to the fused
information forming global residual learning. This process can be expressed as:

I f use = f IF

([
I1
spe, · · · , IN

spe

]
,
[

I1
spa, · · · , IN

spa

]
, I0

spe, I0
spa

)
(3)

ISRMS = I f use + fup(IMS) (4)

where f IF(·) and [·] denote the IF module and concatenation operation. I f use represents the
fused information by the IF module. ISRMS indicates the pansharpened MS image.

3.2. Information Interaction Group

Figure 2 shows the network architecture of the IIG, which is constructed by IIB, SSA,
and residual channel attention blocks (RCABs) [48]. In IIG, the SSA is in the middle of
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two IIBs and connected by two cascade RCABs in each branch, which can be formulated
as follows: (

In′
spe, In′

spa

)
= f n

IIB,1

(
In−1
spe , In−1

spa

)
(5)(

In′′
spe, In′′

spa

)
= f n

SSA

(
fRCAB

(
I
′
spe

)
, fRCAB

(
I
′
spa

))
(6)(

In
spe, In

spa

)
= f n

IIB,2

(
fRCAB

(
In′′
spe

)
, fRCAB

(
In′′
spa

))
(7)

where f n
IIB,1(·), f n

IIB,2(·) represent the first and second IIB in IIG, respectively. In′
spe

(
In′
spa

)
and In′′

spe

(
In′′
spa

)
represent the intermediate process of IIG. fRCAB indicates two cascaded

RCAB. The symmetrical structure of IIG is helpful to maintain the synchronization of
spectral and spatial information.

Figure 2. Schematic diagram of the information interaction group, “⊕” denotes elementwise addition,
and “⊗” denotes matrix multiplication.

3.3. Information Interaction Block

The main function of the IIB is to realize information interaction in SSIN. As shown
in Figure 3, we first extract spectral information of the input spectral-branch feature by
a convolutional layer with 3× 3 kernel size, then the extracted spectral information is
concatenated with the input spatial-branch feature and further use a 1× 1 convolutional
layer to update the spatial information. Note that we add the input spatial-branch feature
to the updated spatial information to achieve local residual learning.

Figure 3. Schematic diagram of the information interaction block, “⊕”denotes elementwise addition,
and “⊗” denotes matrix multiplication.

Simultaneously, we extract the spatial information of the spatial branch using a convo-
lutional layer and then concatenated it with the input of the spectral-branch feature, but
the difference is that we extract the spatial information of the spatial-branch output port. In
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this way, the updated spatial information can be used to guide spectral information updata.
In summary, the information interaction block can be formulated as:

In
spa = ReLu

(
H1×1

([
H3×3

(
In−1
spe

)
, In−1

spa

]))
+ In−1

spa (8)

In
spe = ReLu

(
H1×1

([
H3×3

(
In
spa

)
, In−1

spe

]))
+ In−1

spe (9)

where H1×1 and H3×3 represent convolution operation with 1× 1 kernel size and 3× 3
kernel size, respectively. ReLU(·) represents the ReLU activation function [49].

3.4. Spectral-Spatial Attention Module

In order to take full advantage of the advantageous information of the spectral branch
and spatial branch, we design a lightweight and effective spectral-spatial attention (SSA)
module to guide spectral-spatial information integration. We compute the spatial and spec-
tral attention from the branch of spatial and spectral, respectively. Then, we multiply the
original features with the attention maps from another branch to transfer the corresponding
information. Finally, we add the original features with the above weighted features in each
branch to maintain the original information concentration. The schematic of SSA is shown
in Figure 4.

Figure 4. Schematic diagram of the spectral-spatial attention module, “⊕” denotes elementwise
addition, and “⊗” denotes matrix multiplication.

Similar to [50], we use global average pooling and 1D convolution to achieve spectral
attention which is lightweight and effective. The weights of spectral attention wspe ∈
R1×1×B can be computed as:

wspe = δ
(

H1D

(
g
(

In−1
spe

)))
(10)

where g(x) = 1
WH ∑W

i=1 ∑H
j=1 In−1

spe(i,j) is channel-wise global average pooling (GAP) and σ is
the Sigmoid function. H1D(·) indicates 1D convolution.

For spatial attention, we use 1× 1 convolution instead of the max pooling to generate
the spatial attention map wspa ∈ RH×W×1. It can be formulated as:

wspa = δ
(

H1×1

(
In−1
spa

))
(11)

To sum up, the spectral-spatial attention module can be formulated as:

In
spe = ReLU

(
H3×3

(
In−1
spe

))
⊗ wspa + In−1

spe (12)

In
spa = ReLU

(
H3×3

(
In−1
spa

))
⊗ wspe + In−1

spa (13)
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where ⊗ denotes the element-wise multiplication with the auto broadcast mechanism
of Pytorch.

3.5. Information Fusion Module

The main purpose of the information fusion (IF) module is to fuse the interacted
spectral-spatial information to reconstruct an HR-MS image ISRMS. The schematic of IF is
shown in Figure 5.

Figure 5. Schematic diagram of the information fusion module, “⊕” denotes elementwise addition,
and “⊗” denotes matrix multiplication.

To fully use the information interacted at different stages, we take as input the concate-
nation of the spectral and spatial information extracted by each IIG in each branch. First,
the concatenated inputs

[
I1
spe, · · · , IN

spe

]
∈ RH×W×NB and

[
I1
spa, · · · , IN

spa

]
∈ RH×W×NB are

fed to a 1 × 1 convolution to squeeze the number of channels, and then the squeezed
information is added with its initial extracted spectral I0

spe and spatial I0
spa information

to generate feature maps Fspe ∈ RH×W×B and Fspa ∈ RH×W×B, respectively. Next, we
concatenate the feature maps in each branch to generate Ff use ∈ RH×W×B and the 1× 1
convolution is used for squeeze channels again. This process can be described as:

Fspe = H1×1

([
I1
spe, · · · , IN

spe

])
+ I0

spe (14)

Fspa = H1×1

([
I1
spa, · · · , IN

spa

])
+ I0

spa (15)

Ff use = H1×1
([

Fspe, Fspa
])

(16)

Inspired by [51], we adopt the pixel attention (PA) block at the end of the IF to
incorporate the spectral and spatial information, which consists of two convolution layers
and a PA layer between them. PA obtains the attention maps, and only goes through a 1× 1
convolution and a Sigmoid function, which will then be used to weight the input features.
It could effectively improve the final performance at lower parameter cost [51], which is
validated by the ablation study in Section 4.4. We denote the proposed PA as fPA(·), the
Ff use is further fed into the PA block:

I
′
f use = fPA

(
Ff use

)
(17)

Finally, to match the channel number of the input MS image, a convolutional layer is
used to generate the final fusion result:

I f use = H3×3

(
I
′
f use

)
. (18)
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4. Experiments
4.1. Datasets

We conduct experiments using partial datasets provided in [37]. To verify the perfor-
mance of SSIN, we chose the dataset from three different satellites for our experiments
including QuickBird (QB), WorldView-4 (WV4), and WorldView-2 (WV2). The detailed
information of the datasets is shown in Table 1. For each dataset, we randomly divide the
data into the training set and test set by a ratio of 8:2, and twenty percent of the test set
is chosen as the validation set. Due to the lack of data volume, the data augmentation is
utilized to generate training samples, including random cropping, random horizontal flips,
and rotating. After the data augmentation, 400× 2, 380× 2 and 400× 2 image pairs are
used as training samples for QB, WV4 and WV2, respectively. The sizes of PAN and LRMS
images are 64× 64 and 16× 16. As for the test data, 80 reduced-scale and 80 full-scale
image pairs are utilized. The sizes of reduced-scale PAN and LRMS images are 256× 256
and 64× 64, respectively. The sizes of full-scale PAN and MS images are 1024× 1024 and
256× 256, respectively. All the deep learning methods use the same dataset for training
and testing.

Table 1. The detailed information of the datasets.

Satellite Sensors Image Type Spatial
Dimension

Spectral
Dimension Dimension Size Bits

QuickBird
MS

PAN
2.44 m
0.61 m

Four band
one band

256 × 256 × 4
1024 × 1024 11 bit

WorldView4
MS

PAN
1.24 m
0.31 m

Four band
one band

256 × 256 × 4
1024 × 1024 11 bit

WorldView2
MS

PAN
2 m

0.5 m
Eight band
one band

256 × 256 × 8
1024 × 1024 11 bit

Following the Wald protocol [52], we downsample the PAN and MS images at a four-
fold scale using spatial degradation based on a modulation transfer function (MTF), then
we can use the degraded images as the network input and the HR MS images as ground
truth image to train the network.

4.2. Train Details

In the training stage, we use the Adam optimization algorithm [53] to optimize our
network, and the initial learning rate is set to 0.0005. Every 200 epochs, the learning rate
drops by a factor of two. We set the batch size to 10 and the patch size of LRMS images to
16 for training with 1200 epochs. Our network uses the `1 norm as the loss function.

In our experiments, all the DL-based approaches are implemented in Pytorch frame-
work and are trained on a GTX-1080Ti GPU, while traditional methods are conducted
by MATLAB. As for the test phase, all the objective evaluation indexes are calculated by
MATLAB, and the results were averaged on the corresponding test set.

4.3. Evaluation Index

In the reduced-resolution experiment, the HR MS image is usually used as the reference
image for evaluation, therefore, commonly used objective evaluation indicators, including
spectral angle mapper (SAM) [54], the erreur relative global adimensionnelle de synthese
(ERGAS) [55], the correlation coefficient(CC) [56] and the Q2n index [57], is used to evaluate
all the approaches at reduced resolution. The optimal values of CC and Q2n are 1, and the
best values of for ERGAS and SAM are 0.

Since there is no reference image in the full-resolution experiment, we adopt the popu-
lar non-reference quality evaluation index, i.e., the quality with no reference (QNR) [58] to
evaluate the pansharpening performance. QNR consists of a spectral distortion index, Dλ
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and a spatial distortion index, Ds, which can be computed as: QNR = (1− Dλ)
α(1− DS)

β.
In the following experiments, α and β are both set as to 1. The ideal value is 1 for QNR,
and 0 for Dλ and DS

4.4. Ablation Study

To verify the validity of IIB, SSA, and PA, we conduct an ablation study on the WV2
validation dataset. In this subsection, the number of IIG and the number of RCAB in each
IIG are set to four and two, respectively. The results of ablation experiments are given in
Table 2. The meanings of each method are as follows:

• Base: Baseline, ablate the PA block, disconnect the interaction cables in each IIB, and
removes both spatial and spectral attention from each SSA.

• Base+PA: Add the PA block in IF on the baseline
• Base+PA+SSA: Add both spatial attention and spectral attention on the Base+PA
• Base+PA+SSA+IIB: The method proposed in this paper (SSIN) that turn on the interac-

tion connection in each IIB on the basis of Base+PA+SSA.

For the baseline, we remove PA from IF and turn off the interaction connection in SSA
and IIB. By doing this, spatial and spectral information can only be processed separately,
and the spatial and spectral branches are independent of each other. From Table 2, it is
not hard to see that baseline achieved the worst performance compared to other methods,
which illustrates the importance of interaction between the two branches.

Table 2. The quantiative evaluation result of ablation study, the best value is in bold.

Methods SAM↓ ERGAS↓ Q2n↑ CC↑
Base 3.7354 2.8492 0.7783 0.9634

Base+PA 3.4086 2.605 0.7839 0.968
Base+PA+SSA 3.3495 2.563 0.7854 0.969

Base+PA+SSA+IIB 3.2598 2.4239 0.7882 0.9711

4.4.1. Effect of the PA

Inspired of [50], we add pixel attention (PA) block in IF to improve information fusion
performance. To verify the significance of the PA in the IF. We add the PA in IF based on
the baseline, which is called “Base+PA”.

As can be seen in Table 2, compared with baseline, “Base+PA” has significantly
improved in all evaluation indexes. The reason is that PA can improve the expression
ability of convolutions [50]. In particular, PA can automatically calculate the importance
of each neuron in the feature maps for reconstruction according to the input features, and
then rescale these neurons with the importance.

4.4.2. Effect of the SSA

To take full advantage of the advantageous information of the spectral branch and
spatial branch, we use both spatial attention and spectral attention mechanisms in the
SSA module. It can be seen in Table 2 that “Base+PA+SSA” has achieved better fusion
performance than “Base+PA”. This is because SSA can make use of the cross-attention
mechanism. That is to enhance the spectral characteristics of the spatial branch by spectral
attention in the spectral branch, while enhancing spatial characteristics of the spectral
branch by using spatial attention of the spatial branch. In this way, the two branches
can make up the weakness of each other by using their respective advantages, which are
conducive to the final information fusion.

4.4.3. Effect of the IIB

In this section, we assess the effectiveness of the IIB. Comparing “Base+PA+SSA”
with “Base+PA+SSA+IIB” in Table 2, we can observe that “Base+PA+SSA”, without any
information interaction, has worse results in all objective indicators. This is because SSA
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can take into account the information from another branch before generating attention.
Through the information interaction, the network with SSA can obtain more appropriate
and accurate attention weights. Moreover, the spectral-spatial information cannot be
effectively incorporated by the IF module without information interactions. With the
increase of information interaction, the fusion performance of the network is steadily
improved as shown in Figure 6.

(a) (b)

(c) (d)

Figure 6. Compare network performance and parameters configured with different parameters.
(a) the result of SAM. (b) the result of ERGAS. (c) the result of Q2n. (d) the result of CC.

4.5. Parameters Analysis

SSIN is constructed mainly by IIG. The number of IIG, N, and the number of RCAB in
each IIG, L, are two key factors affecting network performance.

To explore the impacts of N and L on performance, we conduct eight groups of contrast
experiments. In order to keep the number of parameters within a reasonable range, we
adjust L from 1 to 4 with a step of 1 by keeping N = 3, then we adjust N from 2 to 5 with a
step of 1 by keeping L = 2, while the other settings remain unchanged. The experiment is
conducted on the WV2 test dataset. The objective evaluation indices results are given in
Table 3. To obtain the influence of N and L on network performance more intuitively, we
show the experimental results in Figure 6.
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Table 3. The quantiative evaluation results with different number of IIG and RCAB on the wv2 test
dataset. The best value is in bold.

Methods SAM↓ ERGAS↓ Q2n↑ CC↑ #Params

SSIN (N = 2, L = 2) 2.9677 2.5289 0.7714 0.9726 1.87 M
SSIN (N = 3, L = 2) 2.9418 2.5101 0.7724 0.9728 2.76 M
SSIN (N = 4, L = 2) 2.9227 2.4653 0.7733 0.9739 3.64 M
SSIN (N = 5, L = 2) 2.9031 2.4354 0.7741 0.9747 4.53 M

SSIN (N = 3, L = 1) 3.1256 2.7793 0.7664 0.9674 1.82 M
SSIN (N = 3, L = 2) 2.9418 2.5101 0.7724 0.9728 2.75 M
SSIN (N = 3, L = 3) 2.9476 2.4972 0.7733 0.9731 3.70 M
SSIN (N = 3, L = 4) 2.9234 2.4658 0.7733 0.974 4.63 M

We first discuss the effect of L with N fixed to 4. The purple curve in Figure 6 shows the
experimental results, from which we can find that the SSIN performance and the number of
parameters grow with the increase of L, especially when L increase from 1 to 2. However,
the increase of L has little impact on network performance when L reaches 2, but brings
more parameters. So for the rest of the experiment, the L is set to 2.

Then, we fixed L to 2 to study the effect of N, the results of this part are shown by the
blue curve in Figure 6. As we can see, with the increase of N, the performance and the
number of parameters of SSIN increase steadily, especially in Figure 6a,c. This is because
the number of IIB grows as N increases, and information interaction can enhance the
performance of the SSA module and significantly improve the final information fusion
performance, as we discussed in Section 4.4.

In addition, it is worth noting that increasing N can bring greater performance im-
provement than increasing L under the condition of a similar number of parameters. The
main reason is that increase of L can enhance the ability of information extraction but
hinder the dissemination of information, while the increase of N can significantly increase
the number of information interactions. The interaction between spectral information and
spatial information has a more important impact on the performance of SSIN.

To sum up, considering the performance and the number of parameters, we selected
N = 4 and L = 2 as our final setting for our proposed SSIN.

4.6. Comparison with SOTA Methods

In this section, to verify the effectiveness of SSIN, several SOTA pansharpening meth-
ods are used to conduct comparative experiments at both reduced resolution and full
resolution. For a fair comparison, all parameters of the DL-based approach are kept consis-
tent with the original papers for best performance. In this article we use an implementation
of traditional methods that can be downloaded for free [23,59].

The SOTA pansharpening methods used for comparison includes the MS image inter-
polation (EXP) [34], the robust band-dependent spatial detail (BDSD-PC) [60], GS adaptive
(GSA) [28], partial replacement adaptive CS (PRACS) [29], MTF-GLP [61], and seven DL-
based methods, such as PNN [6], PanNet [7], MSDCNN [12], TFNET [13], GGPCRN [45],
MUCNN [15], MDA-Net [46].

4.6.1. Reduced-Resolution Experiments

The reduced-resolution experimental results of different methods on the QB datasets
sets are shown in Table 4. It can be clearly observed from Table 4 that DL-based methods
outperform the traditional methods on the evaluation indexes, which reflect the powerful
fusion performance of deep learning. Among them, our proposed SSIN performs the best
for all the reduced-resolution indexes, followed by MDA-Net [46], which demonstrates the
effectiveness of SSIN. Similar results also appear on WV4 and WV2 datasets, as shown in
Tables 5 and 6. SSIN achieves the best result except the Q2n on WV2.
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Table 4. Quantiative results of different methods on the QB dataset. The best results are in bold and
the second-best results are underlined.

Methods SAM↓ ERGAS↓ Q2N↑ CC↑
EXP 1.8768 1.8316 0.6913 0.8776
GSA 1.4291 1.1440 0.8329 0.9447

PRACS 1.4681 1.1957 0.8210 0.9406
BDSD-PC 1.4268 1.1099 0.8388 0.9470
MTF-GLP 1.4162 1.1602 0.8282 0.9438

PNN 1.1802 0.9451 0.8660 0.9601
PanNet 1.0350 0.8068 0.8825 0.9686

MSDCNN 1.0011 0.7787 0.8830 0.9696
TFNET 0.8475 0.6494 0.8991 0.9778

GGPCRN 0.7714 0.5951 0.9091 0.9809
MUCNN 0.9134 0.7121 0.8950 0.9737
MDA-Net 0.7740 0.5908 0.9104 0.9815

SSIN 0.7292 0.5427 0.914 0.9833

Table 5. Quantiative evaluation comparison of different methods on the WV4 dataset. The best
results are in bold and the second-best results are underlined.

Methods SAM↓ ERGAS↓ Q2N↑ CC↑
EXP 2.5639 3.2561 0.6957 0.9026
GSA 2.6454 2.5375 0.7735 0.9372

PRACS 2.5875 2.4452 0.7753 0.9412
BDSD-PC 2.6018 2.4424 0.7876 0.9435
MTF-GLP 2.5785 2.5715 0.7783 0.9409

PNN 1.9677 1.9709 0.8371 0.9583
PanNet 1.9605 1.9341 0.8361 0.9594

MSDCNN 1.8648 1.8522 0.8492 0.9618
TFNET 1.4589 1.3066 0.8909 0.9788

GGPCRN 1.3167 1.1445 0.9025 0.9826
MUCNN 1.7308 1.7138 0.8676 0.9675
MDA-Net 1.3068 1.1487 0.9040 0.9828

SSIN 1.1994 1.0399 0.9095 0.9853

Table 6. Quantiative evaluation comparison of different methods on the WV2 dataset. The best
results are in bold and the second-best results are underlined.

Methods SAM↓ ERGAS↓ Q2N↑ CC↑
EXP 5.3078 7.3730 0.4887 0.8017
GSA 4.9165 5.0016 0.6764 0.9089

PRACS 5.1933 5.8450 0.6111 0.8844
BDSD-PC 4.8530 4.7933 0.6853 0.9169
MTF-GLP 4.7501 4.8380 0.6899 0.9150

PNN 3.7671 3.4542 0.7422 0.9535
PanNet 3.6355 3.2757 0.7545 0.9574

MSDCNN 3.4789 3.0815 0.7528 0.9608
TFNET 3.1212 2.6381 0.7642 0.9702

GGPCRN 3.0029 2.5669 0.7699 0.9715
MUCNN 3.3052 2.9356 0.7576 0.9642
MDA-Net 2.9554 2.5030 0.7737 0.9729

SSIN 2.9227 2.4653 0.7733 0.9739

Although the quantitative evaluation shows the excellent performance of SSIN, in
order to demonstrate the effect of SSIN in subjective evaluation, we make a subjective
visual comparison of some samples in the above datasets. To prove the universality of
SSIN, we selected images of three different scenes from the above datasets for comparison.
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Specifically, the harbor image is from the QB dataset, the forest image is from the WV4
dataset, and the city image is from the WV2 dataset.

Figures 7–9 present the visual comparison of different methods on the three satellite
datasets. For intuitive comparison, residual results between fusion image and the ground
truth are also presented. The concrete method is to take the average of the absolute values
of each band residuals.

Figure 7. The reduced-resolution experiments results of different methods on QB dataset.

Figure 8. The reduced-resolution experiments results of different methods on WV4 dataset.
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Figure 9. The reduced-resolution experiments results of different methods on WV2 dataset.

Figure 7 displays the fusion results of an image from the QB dataset. We can clearly see
from Figure 7 that the results of EXP and PRACS methods are blurred and contain serious
spatial distortion compared with GT. The results of the BDSD-PC, PNN, and MUCNN are
slightly darker than the ground truth (GT). According to the residual result from Figure 7,
it can be found that the error between the traditional method and the GT is greater, while
the DL-based methods have less error. Moreover, comparing various DL-based methods,
we can see that our proposed SSIN is the closest to the GT, which indicates that our model
has better performance in spatial recovery and spectral preservation.

A visual comparison of WV4 dataset is shown in Figure 8. As can be seen, EXP, PRACS,
PNN, and MSDCNN produce very blurry images with serious spatial distortion, while
the results of BDSD-PC, GSA, and MTF-GLP generate significant spectral distortion in
the forest area. The results of the MDA-Net, GGPCRN and our proposed methods are
difficult to discern visually. We can further see the residual result from Figure 8, similarly
to the experimental results of the QB dataset case, DL-based methods are closer to GT
than traditional methods. Among DL-based methods, the residual image of MDA-Net and
SSIN is closer to GT than others, which is consistent with the results of the quantitative
evaluation shown in Table V. Although the residual image of MDA-Net is very close to that
of SSIN, further observation reveals that MDA-Net is slightly brighter than SSIN.

The visual comparison of the WV2 dataset is depicted in Figure 9. It can be observed
that, compared with the first two datasets, the test results of each method have larger errors
in the WV2 dataset. The reason is that the number of bands in the WV2 dataset is twice
that of the first two datasets, making reconstruction more difficult. This can also be seen by
comparing objective indicators of the three datasets. As we can see from the residual result
in Figure 8, the results of the proposed SSIN are closer to the GT. In particular, it can be
clearly seen from the circle in the upper right corner of the residual image that SSIN has
the smallest error.

The above comparison at reduced resolution demonstrates the superior performance
of SSIN.

4.6.2. Full-Resolution Experiments

In order to evaluate the generality of the above method, we also conducted a full-
resolution experiment on the QB and WV4 datasets. Table 7 shows the average quantitative
results of the full-resolution experiments from the QB and WV4 datasets. Since the EXP
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does not inject the details of the PAN image into the LRMS image, the result of the EXP
shows spectral features similar to those of the LRMS image, which can be regarded as a
reference for evaluating spectral preservation [9,59] and excluded from the comparison.

As shown in Table 7, our method is mediocre in Dλ on both QB and WV4 datasets but
achieves the best results in Ds and the QNR of our method is high, which demonstrated
our method still achieves satisfactory fusion results. One potential reason is that the spatial
attention of SSA module changes the spectral features excessively during the interaction
process, resulting in the reduction of the fidelity of the original spectral information.

Table 7. Quantitative evaluation comparison of different methods on the QB and WV4 dataset at the
full-resolution experiments. The best results are in bold and the second-best results are underlined.

Methods
QB WV4

Dλ↓ Ds↓ QNR↑ Dλ↓ Ds↓ QNR↑
EXP 0 0.1016 0.8984 0 0.0819 0.9181

GSA 0.0875 0.1743 0.7584 0.0766 0.1576 0.7803
PRACS 0.0465 0.1096 0.8510 0.0305 0.0975 0.8758

BDSD-PC 0.0622 0.1515 0.7998 0.0478 0.1258 0.8350
MTF-GLP 0.1261 0.2004 0.7056 0.0914 0.1332 0.7907

PNN 0.0622 0.1115 0.8374 0.0473 0.0612 0.8944
PanNet 0.0604 0.0990 0.8502 0.0326 0.0620 0.9076

MSDCNN 0.0572 0.1025 0.8493 0.0449 0.0665 0.8927
TFNET 0.0492 0.0728 0.8840 0.0569 0.0562 0.8905

GGPCRN 0.0509 0.0688 0.8858 0.0555 0.0581 0.8902
MUCNN 0.0488 0.0886 0.86 0.0611 0.0591 0.8847
MDA-Net 0.0473 0.0656 0.8921 0.0560 0.0607 0.8873

SSIN 0.0532 0.0609 0.8910 0.0483 0.0534 0.9012

Figures 10 and 11 show the visualized results of different methods on QB and WV4
datasets in the full-resolution experiment, respectively. In addition, we enlarge the re-
gion marked in the red box in the fused images for better subjective evaluation. To in-
tuitively observe the differences between different methods, the residual image between
the results of EXP and the results of other methods in Figures 10 and 11 are shown in
Figures 12 and 13, respectively.

As shown in Figure 10, The results of PNN, PanNet, and MSDCNN suffer from
obvious spectral distortion. The results of BDSD-PC, GSA, MTF-GLP, and PRACS yield
different levels of spatial distortion compared with the PAN. Specifically, they produce
thicker strip structures. The other methods produce better visual results. From the residual
images in Figure 12, we can see that the traditional methods inject fewer details than the
compared DL-based methods but have better spectral preservation. On the DL based
category, we can find that the residual image of PNN, PanNet, and MSDCNN has obvious
spatial distortion. Because there are noise pixels in the whole residual image, however, the
residual images of the rest of the methods are difficult to discriminate.
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Figure 10. The full-resolution experiments results of different methods on QB dataset.

Figure 11. The full-resolution experiments results of different methods on WV4 dataset.

Figure 11 shows results of a full-resolution sample from WV4. As it shows, the result
of the GSA and PRACS exhibits serious spectral distortion. Specifically, the grass color in
the lower-left corner of the result images is lighter than the result of EXP. The results of the
BDSD-PC, MTF-GLP, and PRACS are blurred and present serious spatial distortion. As for
DL-based methods, MSDCNN, MUCNN, PanNet, PNN, TFNET, and MDA-Net produce
obvious artifacts and spatial distortion with varying degrees. GGPCRN and SSIN generate
relatively clearer images. As shown in the enlarged area, we can observe that the results
of PNN, PanNet, TFNET, MUCNN, and MDA-Net contain obvious spectral distortions
evidenced by distinct color pixels from the result of EXP. As we can see in Figure 13, MTF-
GLP and BDSD-PC inject fewer details than DL-based methods. However, GSA injects
more details than PNN, PanNet, MSDCNN, and MDA-Net. PRACS observably injects the
spatial details, but there is significant spectral distortion, as the residual image of PRACS is
obvious color deviation. Furthermore, the residual images of PNN, PanNet, MSDCNN,
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TFNET, MUCNN, MDA-Net, and SSIN exhibit different levels of spectral distortion as the
residual images have many distinct colors of pixels. Although our SSIN suffers from some
spectral distortion and is slightly worse than BDSD-PC, GSA, and MTF-GLP in spectral
preservation, it injects more edges into the fusion result.

Figure 12. Residual results of the enlarged region of Figure 10.

Figure 13. Residual results of the enlarged region of Figure 11.

Overall, from the above results of both reduced- and full-resolution experiments,
our SSIN achieves favorable and promising performance in spatial detail injection and
spectral preservation.

5. Efficiency Study

In order to compare the computational time and learnable parameters of different
methods, we record the results of different methods on the full-resolution experiments from
WV4 datasets as shown in Table 8. All traditional methods are implemented using MATLAB
and tested on an Intel Core i7-12700K CPU. DL-based methods are tested on a desktop
with an Nvidia RTX 3090 GPU. As shown in Table 8, the traditional methods take more
computational time than the DL-based methods. PRACS is the slowest method, whose
computational time is about 1s per image. As for DL-based methods, although MDA-Net
has achieved good results in previous experiments, it needs more time and computational
cost to generate the fused images. Although SSIN has a slightly larger number of parameters
than other DL-based methods except for MDA-Net, it has better performance.
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Table 8. Performance comparison of different methods.

Methods Time(s) #Parameters

Traditional
methods

EXP 0.1136 -
BDSD-PC 0.199 -

GSA 0.5937 -
PRACS 0.97 -

MTF-GLP 0.4555 -

DL-based
methods

PNN 0.008 80 K
PanNet 0.009 77 k

MSDCNN 0.0089 190 K
TFNET 0.0095 2.36 M

GGPCRN 0.014 1.77 M
MUCNN 0.0081 1.36 M
MDA-Net 0.0172 12 M

SSIN 0.0157 3.63 M

6. Conclusions

In this paper, we proposed a dual-branch network named SSIN with spectral-spatial
interaction for pansharpening. In the proposed SSIN, the PAN and the LRMS images are
processed separately to fully extract their features. SSIN extracted spatial information from
the PAN image and spectral information from the MS image. To make the most of the spatial-
spectral information, we propose an information interaction block based on a dual-branch
network to promote the interaction between spectral and spatial information. Furthermore,
the spectral-spatial attention module is used to guide information integration and enhance
the characteristics of the another branch. The performance improvement of the two modules
for the dual-branch network was proved in the ablation study. Moreover, we used pixel
attention in the information fusion module to adjust the importance of each pixel in the
feature maps, thereby further improving the network performance. Extensive experiments
have demonstrated the effectiveness of our proposed method on pansharpening.
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