
 
 

 

 
Remote Sens. 2022, 14, 4099. https://doi.org/10.3390/rs14164099 www.mdpi.com/journal/remotesensing 

Article 

Uniform and Competency-Based 3D Keypoint Detection for 
Coarse Registration of Point Clouds with  
Homogeneous Structure 
Fariborz Ghorbani 1,2,*, Hamid Ebadi 1, Norbert Pfeifer 2 and Amin Sedaghat 3 

1 Geomatics Engineering Faculty, K.N. Toosi University of Technology, Tehran 19967-15433, Iran 
2 Department of Geodesy and Geoinformation, Technische Universität Wien, 1040 Vienna, Austria 
3 Department of Geomatics Engineering, Faculty of Civil Engineering, University of Tabriz,  

Tabriz 51666-16471, Iran 
* Correspondence: f.ghorbani@mail.kntu.ac.ir 

Abstract: Recent advances in 3D laser scanner technology have provided a large amount of accurate 
geo-information as point clouds. The methods of machine vision and photogrammetry are used in 
various applications such as medicine, environmental studies, and cultural heritage. Aerial laser 
scanners (ALS), terrestrial laser scanners (TLS), mobile mapping laser scanners (MLS), and photo-
grammetric cameras via image matching are the most important tools for producing point clouds. 
In most applications, the process of point cloud registration is considered to be a fundamental issue. 
Due to the high volume of initial point cloud data, 3D keypoint detection has been introduced as an 
important step in the registration of point clouds. In this step, the initial volume of point clouds is 
converted into a set of candidate points with high information content. Many methods for 3D key-
point detection have been proposed in machine vision, and most of them were based on threshold-
ing the saliency of points, but less attention had been paid to the spatial distribution and number of 
extracted points. This poses a challenge in the registration process when dealing with point clouds 
with a homogeneous structure. As keypoints are selected in areas of structural complexity, it leads 
to an unbalanced distribution of keypoints and a lower registration quality. This research presents 
an automated approach for 3D keypoint detection to control the quality, spatial distribution, and 
the number of keypoints. The proposed method generates a quality criterion by combining 3D local 
shape features, 3D local self-similarity, and the histogram of normal orientation and provides a 
competency index. In addition, the Octree structure is applied to control the spatial distribution of 
the detected 3D keypoints. The proposed method was evaluated for the keypoint-based coarse reg-
istration of aerial laser scanner and terrestrial laser scanner data, having both cluttered and homo-
geneous regions. The obtained results demonstrate the proper performance of the proposed method 
in the registration of these types of data, and in comparison to the standard algorithms, the regis-
tration error was diminished by up to 56%. 

Keywords: point cloud registration; 3D keypoint detection; uniform; competence; homogeneous 
structure 
 

1. Introduction 
Recent advances in 3D laser scanner technology have provided a large amount of 

accurate information as point clouds. These data are used in various fields such as ma-
chine vision [1], medicine [2], forestry and urban vegetation [3], geomorphology and sur-
face roughness [4], etc. Instruments such as aerial laser scanners (ALS), terrestrial laser 
scanners (TLS), mobile mapping laser scanners (MLS), and approaches using image 
matching are the essential modes for the generation of point clouds [5]. Typically, differ-
ent scans from various positions are needed to cover all of an object, indoors and outdoors, 
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in all its dimensions. It is necessary to transfer all scans to a common coordinate system 
in most applications. In this regard, the process of point cloud registration is considered a 
critical and fundamental issue. 

The point clouds registration process generally consists of two main parts, coarse and 
fine registration. Each scan is acquired in its local sensor coordinate system with individ-
ual origin and orientation of the axes. The largest amount of difference in rotation and 
non-concurrence between point clouds is reduced in coarse registration. This step is con-
sidered as input for fine registration. On the other hand, the error of registration between 
two point clouds is minimized in the fine registration. The developed algorithms for fine 
registration (such as ICP [6] and its developments [7]) deliver the final (accurate) results 
for the registration of point clouds. However, the main challenge for 3D point cloud reg-
istration lies in coarse registration [8]. 

Due to the very high volume of the primary data, 3D keypoint detection is a step that 
is performed in coarse registration [9]. In the 3D keypoint detection, the initial volume of 
point clouds is converted into a set of candidate points with high information content. 
This process will increase the accuracy and reduce the computational cost of the subse-
quent processing steps. Three-dimensional keypoint detection can be considered to be an 
operational step in applications such as 3D objects recognition [1,10], SLAM [11], 3D ob-
jects retrieval [12], 3D registration [13], and 3D change detection [14]. 

Various methods have been proposed for 3D keypoint detection. In 2013, Tombari et 
al. provided a comprehensive assessment of the performance of 3D detectors. They di-
vided 3D detectors into two categories: fixed-scale detectors and adapted-scale detectors. 
Fixed-scale detectors work on only one scale in the whole process, while adapted-scale 
detectors consider one scale for each keypoint. The fixed-scale key detector generally con-
sists of two steps. The first step is pruning, and the second is non-maximal suppression 
(NMS) [15]. In the pruning stage, some criteria remove the least useful information, and 
only the effective points are transferred to the next stage. In the NMS stage, other evalua-
tions are performed within a radius r to detect the final keypoints. Fixed-scale 3D key-
points detection methods were suggested by [16–20], and adapted-scale detectors were 
suggested by [21–24]. The 3D keypoints detection algorithms are often designed in the 
computer vision field, and their primary purpose typically is to detect prominent and dis-
tinct keypoints [18]. However, in most applications of photogrammetry and remote sens-
ing, in addition to the distinctness, the spatial distribution and number of 3D keypoints 
are also of particular importance because it is necessary to create a uniform accuracy of 
registration in all regions of point clouds. 

Limited research has been conducted to develop 3D keypoint detection algorithms 
in the registration of point clouds on challenging data. Persad and Armenakis [25] pre-
sented a method for the initial correspondence of 3D point clouds generated from various 
platforms. They extracted 2D keypoints from height maps. Their method is designed for 
man-made scenes and uses images. In 2011, Weinmann et al. [26] proposed an image-
based method for quick and automatic TLS data registration. They first extracted the 2D 
keypoints using the 2D SIFT algorithm and then mapped them into 3D space using inter-
polated range information. This method needs to extract information from the images, 
which is a limitation. In 2017, Petricek T et al. [27] presented a method for coarse registra-
tion based on an object-based approach for challenging data. The keypoint detection has 
used a local maximum to determine the salient points. They decomposed the covariance 
matrix in a neighborhood of each point and evaluated the obtained eigenvalue in the 3D 
keypoint detection process. Their method only considered the criterion of the quality of 
points, and no attention has been paid to other criteria. In 2017, Bueno et al. [28] developed 
the 3DSIFT detection method using geometric features. For this purpose, geometric fea-
tures are extracted from the decomposition of the covariance matrix in the vicinity, and 
they displayed point clouds with these features. Instead of applying the 3DSIFT algorithm 
to the point cloud, they applied the algorithm to the extracted features of the covariance 
matrix. This method also only considers the quality of the keypoints. In 2019, Zhu et al. 
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[29] combined 3D point cloud data with thermal infrared imaging using a keypoint detec-
tion and matching process. In this research, the keypoints are extracted from the point 
clouds, and thermal infrared images and the corresponding keypoints are manually de-
termined. Their final output is a 3D thermal point cloud. Recently, the 3D keypoints de-
tection using deep learning methods has also been proposed [13,30–33]. While these meth-
ods are emerging, their need for a large amount of training data is considered a limitation. 
There is little access to this type of training data, especially for real, i.e., not simulated, 
data.  

Although standard 3D keypoint detection algorithms perform adequately in point 
clouds registration, these algorithms still face challenges, especially in point clouds with 
homogeneous structures (“Homogeneous structure” means that a large part of the point 
cloud structure includes limited changes of normal angles in these neighborhoods. In 
these areas distinct features can hardly be found). These challenges in registration include 
(i) the quality of the extracted keypoints (limited by defining only one quality criterion), 
(ii) a lack of proper spatial distribution of keypoints, and (iii) a lack of control over the 
number of extracted keypoints. These problems prevent achieving a uniform accuracy of 
registration for the entire point clouds. The main contribution of this paper is to provide 
a fully automated method for extracting uniform and competency-based keypoints for the 
coarse registration of point clouds with homogeneous structures. The proposed method 
effectively provides keypoints to control the quality, spatial distribution, and the number 
of points necessary to perform the point cloud coarse registration. The benefit of such an 
endeavor lies firstly in a reliable coarse registration for a wider range of given point clouds 
and secondly in a more accurate coarse registration, which reduces the number of itera-
tions in fine registration (such as ICP).  

The remainder of this paper is organized as follows: in the Section 2, related works 
are presented, and in the Section 3, the proposed method is explained for 3D keypoints 
detection. The Section 4 includes the introduction of the data and results, and the Section 
5 presents the conclusions and suggestions. 

2. Related Works 
This section will provide a brief introduction to the standard 3DSIFT and 3DISS key-

point detection algorithms. The following describes the challenges related to these algo-
rithms. 

2.1. Keypoint Detectors 3DSIFT and 3DISS 
In 3D keypoint detection algorithms, the 3D Intrinsic shape signatures (3DISS) detec-

tor [17] and 3D scale-invariant feature transform (3DSIFT) detector [24,34,35] are the most 
popular algorithms. The SIFT algorithm is a computer machine algorithm to detect and 
describe local features [36]. This algorithm approximates the Laplacian of Gaussian (LoG) 
filter using the deference of Guassian (DoG) operator and detects local features with spe-
cific dimensions. Inspired by 2DSIFT, 3DSIFT has been developed to detect 3D local fea-
tures [24]. At first, the scale space is created by the convolution of the Gaussian function 
with different scale coefficients in the point clouds. The DoG space is then calculated using 
the difference between two consecutive scales. The keypoints are obtained by calculating 
local extremes in the DoG space. Finally, the unstable points are refined by the threshold-
ing approach. In this method, only a threshold on quality criterion measures the quality 
of point,s and no attention has been paid to the distribution and number of points. 

The 3DISS detector was introduced by Zhong et al. in 2009 [17]. In this detector, the 
quality of points depends on the Eigenvalue Decomposition (EVD) in the covariance ma-
trix obtained from a neighborhood of points (the support region of the points). The covar-
iance matrix for a point is calculated according to the following Equation: 
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where P is considered a point, N is the number of points that are located in the neighbor-
hood, 𝑞௜ represents the points in the neighborhood, and 𝜇௣ is their average. For the co-
variance matrix ∑(p), the eigenvalues of e1, e2, and e3 are sorted in descending order. 
Points whose ratio of eigenvalues (Equation (3)) is less than a threshold are retained, and 
other points are removed as unstable points. Among the remaining points, the saliency is 
determined by the smallest eigenvalue.  
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2.2. Keypoint Descriptor SHOT 
In point-based registration approaches, creating key point descriptors is one of the 

main steps. Among the descriptors presented, the SHOT descriptor [37] is one of the most 
popular descriptors and has presented appropriate results in comparative research [38]. 
This descriptor extracts both the geometric and spatial information of points located in 
the vicinity of keypoints. In the first step, a local reference system (LRF) is generated using 
eigenvalues obtained from the decomposing of the covariance matrix. Next, along the ra-
dial, azimuth, and elevation, the generated LRF is structured into small bins. Histograms 
are formed from points located in each bin, and the final descriptor is created by connect-
ing all these histograms. 

2.3. Limiations of Current Approaches 
In this section, the limitations of standard 3D detector methods are discussed. These 

limitations include (i) the quality of the extracted keypoints (limited by defining only one 
quality criterion), (ii) a lack of proper spatial distribution of keypoints, and (iii) a lack of 
control over the number of extracted keypoints. These challenges will be examined in the 
following. 

2.3.1. Measures for Keypoint Quality 
The high quality of the points extracted by the 3D detectors will lead to distinct de-

scriptors in the next step. The keypoint quality is limited to one criterion in the standard 
3D detectors such as 3DSIFT and 3DISS. It is difficult to achieve appropriate keypoints 
using only one quality criterion. Quality criteria from different aspects and combining 
these criteria provides the possibility of achieving more competent keypoints. It is possi-
ble to extract various features in the point clouds space. Some of these features have the 
ability to display point discrimination in a specific neighborhood. Among the most im-
portant of these features are the 3D Local Shape Features, 3D Self Similarity, and Histo-
gram of Normal Orientations. In the following, we will introduce these features. 
• 3D Local Shape Features 

In 2016, Weinmann et al. [39] analyzed 3D environments using feature extraction 
from point clouds. They selected a suitable neighborhood around the points and extracted 
geometric features and local shape features using the decomposition of the covariance 
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matrix around each point. In this research, the optimal features are selected using a feature 
selection approach, and the 3D environment is analyzed using a supervised classification 
method. They extracted a total of 26 features from the point cloud. Some of the extracted 
features represent the distinction of points. As the distinction increases, the possibility of 
producing distinct descriptors in the matching process will rise. The selected distinction 
features include scattering, omnivariance, anisotropy, and curvature changes. The Equa-
tions are: 
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Parameters 𝑆ఒ,𝑂ఒ, and 𝐶ఒ, respectively, show the degree of scattering, distribution, 
and curvature changes in a neighborhood. High values indicate a significant distinction 
of points. Parameter 𝐴ఒ represents that a point is located on a continuous surface patch. 
The lowness of this criterion means the high ability to distinguish points. 
• 3D Self Similarity 

In 2012, Huang et al. [40] developed the concept of self-similarity on 3D point clouds. 
Accordingly, self-similarity includes the similarity of normals between a central point and 
points located in a neighborhood, according to Equation (8). The surface of self-similarity 
is directly generated by comparing the similarity of center points with neighboring points 
in a spherical region. According to Figure 1, the more significant the difference between 
the normal angles is, the lower the self-similarity is. As a result, the criterion considered 
according to Equation (8) will have a higher value. Conversely, points that have a lower 
self-similarity will be more salient and distinct. In Equation (8) is the dot product. 
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Figure 1. Showing of the normal vector similarity of the center point with other points in a spherical 
neighborhood. 

• Histogram of Normal Orientations 
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In 2016, Prakhya et al. [41] proposed a keypoint detection method using histograms 
of normal orientation. They removed the extracted points on flat areas and only selected 
the located points within the saliency areas. This method does not allow the detection of 
noises as keypoints. This method considers a spherical neighborhood for each keypoint to 
produce a histogram of normal orientations. Directional angles are calculated for each 
neighborhood point according to Equation (9). 
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where ×  represents the cross product and .  is the dot product of the keypoint nor-
mal vector with the other points in its spherical neighborhood .A direction histogram is 
formed using the 𝜃 values with 18 bins, and the width of each bin is 10 degrees. The 
histogram is quantified using the normal angles of the neighborhood that fall into each 
bin. According to Figure 2, it is easy to see that the histogram values have accumulated in 
the more homogeneous structure at the first bin, and the other bins will have values close 
to zero. When the point is located in a cluttered area, most histogram bins will contain 
values. 

 
Figure 2. Demonstration of the histogram of normal orientations difference in two homogeneous 
and cluttered regions. 

The kurtosis criterion has been used to consider a quantitative criterion of the sepa-
ration or peakedness histogram, according to Equation (10). 
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In Equation (10), 𝐻 is the produced histogram, 𝑁 is the number of bins used (here 𝑁 =  18). 𝐻௞ represents the value of the 𝑘௧ bin in the histograms 𝐻, 𝐻ഥ is the average of 
all bins. 𝑆ௗ  represents the standard deviation of histogram bins, which is calculated ac-
cording to Equation (11). 

2.3.2. Spatial Distribution and the Number of Keypoints 
Another problem with standard 3D detectors includes the lack of control over the 

spatial distribution of keypoints. In small-scale and standard data, the issue of keypoint 
spatial distribution generates fewer challenges in the point cloud registration. The role of 
keypoint distribution is greater in large-scale data. If point cloud data contain an almost 
homogeneous region with little changes in normal angles and curvature, and other parts 
contain significant variations of normal angles and curvature, most of the detected points 
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will be concentrated in the cluttered part. This means that registration accuracy is not the 
same in all regions. The lack of sufficient candidate points in a more homogeneous area 
increases registration error and, in some cases, causes it to fail. Figure 3 shows the problem 
of the non-uniform spatial distribution of extracted keypoints by standard detectors.  

 
(a) (b) 

 
(c) (d) 

Figure 3. Demonstration of the non-uniform spatial distribution of keypoints ((a–d) are the detected 
keypoints by 3DSIFT detector). 

In this research, the Octree [42] algorithm is utilized to generate an appropriate spa-
tial distribution in keypoint detection. Appropriate spatial distribution refers to the detec-
tion of 3D keypoints n the entire point cloud volume. The Octree algorithm has been used 
in various applications such as 3D segmentation [43], point cloud compression [44], 
change detection [45], and ICP registration [46]. The Octree is often defined as a tree data 
structure in which each internal node has exactly eight children, where a 3D space is cre-
ated by subdivided recursively, dividing it into eight octants [42]. The recursive splitting 
process is performed only when a cell contains more points than the predefined value. 
This sequential process continues until it reaches a threshold called depth. The final sub-
division leads to eight leaf nodes and stores points in them. Figure 4 shows the division 
of point cloud space into 3D cells using the Octree method.  
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Figure 4. Demonstration of the Octree structure on a point cloud. Data are same with Figure 3d. 

Due to the property of the Octree algorithm, the dimensions of each cell in the clut-
tered areas will be smaller than in homogeneous regions, and there will be more not 
empty cells there. As a result, the Octree structure supports the extraction of more key-
points in areas with higher discrimination, which are mostly located in cluttered areas. 
The advantage of having an Octree structure in a cell formation with the same dimensions 
is that in addition to creating suitable spatial distribution for the extracted keypoints, it 
provides more chances to more distinctive points in the cluttered area.  

The 3DSIFT and 3DISS algorithms detect 3D keypoint only by applying a threshold 
on the quality criterion. It usually leads to extracting an extra number of keypoints in the 
regions of the point cloud with cluttered structures. These additional keypoints impose 
high computational costs in other stages, such as making descriptors, conducting corre-
spondence search, and eliminating wrong correspondences [37]. On the other hand, this 
number may be much less than the required number in some data with a more homoge-
neous structure. These problems are mainly due to the nature of the large-scale data, 
which causes great sensitivity to the parameters of the detectors, especially the parameter 
controlling the number of extracted points.  

Figure 5 shows the sensitivity of the number of features extracted for some point 
clouds data. These data include outdoor and indoor scenes, homogeneous areas, and 
scenes with cluttered structures. This figure presents the number of features extracted by 
3DSIFT and 3DISS with different values of their parameters. The Tc parameter for the 
3DSIFT detector varies in [0–0.04], and the Th parameter for the 3DISS detector changes in 
[0.5–1]. This figure shows that there is no optimal value for the thresholding on the pa-
rameters of two detectors and displays the high sensitivity of the algorithms to these 
thresholds. For example, for data A in the 3DSIFT algorithm, keypoints decreases from 
24,000 to 2500 when Tc = 0.001 changes to Tc = 0.005. In the same data, the number of key-
points is increased from 3700 to 12,000 points in the 3DISS algorithm when the change is 
from Th = 0.6 to Th = 0.7. 
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Figure 5. Effects of the Tc and Th threshold on the number of extracted features in the standard 
3DSIFT and 3DISS detectors. Data given in Figure 3. 

Research on the selection of high-quality keypoints and appropriate spatial distribu-
tion has been conducted on satellite [47,48] and UAV images [49]. Furthermore, it has been 
performed in 3D space. In 2014, Berretti et al. selected stable key points for person identi-
fication using 3D face scans [50]. In 2015 Glira et al. selected optimized points for ALS 
strip adjustments. Their method is based on the ICP Algorithm and optimized for ALS 
data [7]. According to the studies, comprehensive research has not been undertaken to 
detect optimum 3D keypoints to control the quality, spatial distribution, and the number 
of keypoints in the point cloud registration. 

3. Proposed Method  
This research presents a uniform and competency-based 3D keypoint detection 

method for the coarse registration of point clouds with homogeneous structures. Figure 6 
shows a flowchart of the proposed method. At first, the initial keypoints are extracted by 
3DSIFT or 3DISS detectors. The keypoint quality is evaluated using different criteria, and 
the competency criterion is presented to select the keypoints with the highest competence. 
The Octree structure is then used to create a uniform spatial distribution in the point 
cloud. In each cell, the keypoints with the highest quality will be extracted. It will be pro-
portional to the number of points assigned to each cell. The keypoints are described using 
the signature of histograms of orientations (SHOT) descriptor to perform the matching 
process. Finally, the required evaluation is accomplished after the matching and registra-
tion process. 
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Figure 6. Diagram of Proposed approach. 

Following [47], the proposed method has been developed for extracting a sufficient 
number of 3D keypoints with high quality and in a suitable spatial distribution in the 
point cloud space. The steps of the algorithm are as follows: 
1. Extraction of initial keypoints by detector algorithms (3DSIFT or 3DISS). At this 

stage, by selecting small thresholds, a relatively large number of points are extracted. 
2. Estimate competence for each initial keypoint by: 

(1) The 3D shape features (Scattering, omnivariance, anisotropy, change of curva-
ture), the 3D self-similarity feature, and the Histogram of Normal Orientations 
feature are extracted for each initial keypoint. These properties are considered 
as a vector with n components as follows: 

{ }X ; 1,2,..., ; 1,2,...,mj j
ix i n j= = =

 
(12)

where i is related to the initial point number and j is for the criteria number (m 
is equal to 6 here). 

(2) The ranking vector of the initial points is determined for each criterion. The 
highest value will be the first rank, and the lowest value will be the last rank for 
all criteria except anisotropy (𝐴ఒ). The criterion anisotropy is the opposite, and 
the lowest value will have the highest rank. The ranking vector of each criterion 
is displayed as follows: 

{ }; 1,2,...,n; 1,2,...,j j
iR r i j m= = =

 
(13)

where 𝑟௜௝ is related to the 𝑖௧௛ keypoint in the 𝑗௧௛ criterion vector and indicates 
the rank of this keypoint against others in that criterion. 

(3) The competence of initial keypoints is calculated using a combination of all cri-
teria as follows:  
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where 𝐶௜ corresponds to the competence of the 𝑗௧௛ kepoints, 𝑟௜௝ indicates the 
rank of the 𝑖௧௛ kepoints in the 𝑗௧௛ criterion, n is equal to the number of key-
points, m is the number of criteria. 𝑤௝ is the weight parameter for the 𝑗௧௛ crite-
rion, which is used to control the effect of different criteria on the keypoints 
quality. The sum of the weights of the various criteria must be equal to one. The 
higher the C-competence criterion is, the better the complication is, and it has 
more probabilities of success in the matching process. 

3. The control of the keypoint spatial distribution is conducted by cell formation in 
point clouds based on the Octree structure. The details of this process are as follows: 
(1) The point cloud space is cellularized using the Octree structure. Using the depth 

parameter, it is determined to what extent the cell formation will continue. 
(2) The total number of required keypoints (N) is determined for detection. The N 

parameter controls the number of required keypoints for extraction. 
(3) The number of extractable keypoints in each cell is calculated according to the 

value of competence and the number of initial points located in each cell. In fact, 
in this step, it is determined how many of the total numbers of required key-
points (parameter N) are allocated to each cell. This process is determined as 
follows: 

.. c kn k
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where 𝑛௞ is the number of initial keypoints located in a specific cell and 𝐶̅௞ rep-
resents the average competency of the keypoints in that cell. wn and wc are 
weights related to 𝑛௞ and 𝐶̅௞. In general, the higher the number of initial key-
points in a cell and the higher the average competency of the keypoints, the more 
points are extracted from that cell. 

3.1. Matching and Registration 
After producing uniform and competent keypoints by using the proposed method, 

the next step is applying a local feature descriptor for the 3D keypoints and performing 
the registration process. Here, the SHOT descriptor is used for describing the 3D key-
points. The registration process is performed using a RANSAC-based approach, following 
[51]. In this method, according to Figure 7, two-point clouds are considered as the source 
(Ps) and target (Pt). The closest keypoint in the target point cloud is determined for each 
of the described keypoints in the source point cloud by calculating the Euclidean distance 
among their descriptors. Then, these points are considered initial correspondence points 
if their Euclidean distance is less than a threshold. In order to remove the wrong corre-
spondences, the relationship between two point clouds is determined using a 3D trans-
formation such as 3D similarity. In this method, The M-estimator sample consensus 
(MSAC) model [52], an extension of RANSAC, is used to estimate 3D similarity transfor-
mation parameters. The source point cloud is transferred to the target point cloud using 
the estimated parameters. Then the distance between the corresponding points is used as 
the error of each corresponding pair. The root means square error (RMSE), as a criterium 
to measure the error of registration, is compared with a threshold limit. If it is greater than 
this value, the point with the highest error is removed from the registration process. This 
process continues until reaching an RMSE with the desired value. 
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Figure 7. A diagram of the steps of matching and registration. 

3.2. Evaluation Criteria 
Various criteria have been used to evaluate the proposed method. These criteria in-

clude repeatability, recall, precision, spatial distribution, and positional accuracy. Repeat-
ability is a percentage of detected keypoints in two point clouds that correspond to each 
other after the transfer to the same coordinate system. The recall and precision criteria 
were calculated using the following Equation:  

Re CMcall
TM

=
 

Pr CMecision
CM FM

=
+  

(16)

In Equation (16), CM (Correct Match) and FM (False Match) are the number of correct 
and false correspondences obtained by the proposed method in the matching results, re-
spectively, and TM (Total Match) is all the correct matches available in the matching pro-
cess. The geometrical relationship between each pair of point clouds must be known to 
determine these criteria. In data B, the secondary data were simulated to create registra-
tion conditions, so the geometric relationship between them is obvious, and the exact po-
sition of the corresponding points can be easily calculated. The 3D similarity transfor-
mation was calculated manually to establish a geometric relationship between two point 
clouds in data A and data C. For this purpose, reflective targets were installed in the loca-
tions. An expert operator has manually identified these points in each point cloud. These 
corresponding points were used to calculate the 3D similarity model. Furthermore, the 
ground truth transformations are available for the data D, and the user can use them to 
transfer point clouds coordinate system. This paper has used a spatial threshold equal to 
2mr (mr is the mean of resolution in point clouds) to distinguish the corresponding points 
from the non-corresponding points. 

The local distribution density and the global coverage index have been used to eval-
uate the spatial distribution quality of points. These criteria are calculated based on the 
Voronoi diagram as follows: 
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where 𝛿ௗ௘௡௦ is the local distribution density and 𝛼௖௢௩ is the global coverage, 𝑉௜  is the 
volume of the 𝑖௧௛ Voronoi cell, 𝑉ത is the mean volume of all the Voronoi cells, n is the total 
number of Voronoi cells and 𝑉 ௢௧௔௟ is the total volume of common parts in two-point 
cloud data. The smaller 𝛿ௗ௘௡௦ and the larger the value of 𝛼௖௢௩ indicates the more appro-
priate spatial distribution of the corresponding points. 

Two criteria have been used to evaluate the positional accuracy of registration. The 
first criterion is proposed to measure rotational and translation errors. Generally, they are 
used to validate the point cloud registration [27,53]. Suppose the source point cloud (𝑃௦) 
is transferred to the target point cloud (𝑃௧) by the transformation function (𝑇௦,௧). The re-
maining value of transformation (𝛥𝑇௦,௧) is defined as follows: 

( ) 1 , ,
, , , 1

s t s tG
s t s t s t

R t
T T T

− Δ Δ 
Δ = =  

   
(18)

where 𝑇௦,௧ is the estimated transformation function from 𝑃௦ to 𝑃௧  and 𝑇௦,௧ீ is the ground 
truth transformation function. Then the rotation error (𝑒௦,௧௥ ) and the translation error (𝑒௦,௧௧ ) 
from 𝑃௦ to 𝑃௧ are calculated based on the rotational components (Δ𝑅௦,௧) and the transla-
tion components (Δ𝑇௦,௧) as Equation (19). in this Equation, 𝑡𝑟(Δ𝑅௦,௧) represents the trace 
(Δ𝑅௦,௧). 
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The second criterion is The RMSD (The root-mean-square distance) criterion, and it 
is a combination of two rotational and translation errors. In this criterion, the root-mean-
square distance is calculated between the registered point cloud by the algorithm and the 
point cloud in its true position. RMSD is utilized for assessing positional accuracy. If we 
consider the source point cloud after the transfer as P and the same point cloud in its true 
position as G, the RMSD value can be calculated from the following Equation: 

2
0

n

i i
i

p g
RMSD

n
=

−
=


 

(20)

where .  is the Euclidean distance, and n is the total number of points. It should be 
noted that the point clouds are on the same scale. 

4. Experiments 
4.1. Data 

The method proposed in this study was tested and analyzed across four different 
point clouds. The most important attribute of these data is the existence of large regions 
of point cloud with an almost homogeneous structure and a cluttered part simultane-
ously. In the following, we will review these data. In addition, they are shown in Figure 
8. 
• Data A: These data were obtained by terrestrial laser scanner in an indoor environ-

ment at two different stations with 100% coverage. They were taken from a corridor 
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of a university building (TU Wien). In Figure 8a, we can see some objects concen-
trated in a small area of the corridor, and there are also some installed signs along 
the corridor. 

• Data B: This point cloud was obtained using aerial laser scanners at Ranzenbach (a 
forested area in lower Austria, west of Vienna). It was provided by the company 
Riegl and acquired in April 2021. The used scanner in this data is VQ-1560 II-S. The 
scan area consists of a flat area in the middle and a forest of different tree types 
around it. The selected area included a small section of dense trees, and other areas 
had an almost homogeneous surface. The secondary data were simulated to create 
the co-registration conditions. The simulated data were generated by applying shifts, 
rotations, and density changes in the point cloud to examine the co-registration pro-
cess. 

• Data C: These data were taken by Terrestrial laser scanners in an outdoor environ-
ment at two different stations with 100% coverage. The geographical location of the 
data is in the flat, rural area of Vienna (22nd district). These data can be divided into 
three parts. The first part consists of dense trees. The second part consists of flat land, 
and the third part includes agricultural land with little topographic changes.  

• Data D: These data are a subset of the ETH PRS TLS benchmark as the Courtyard 
dataset. Point clouds in this benchmark were taken by a Z + F Imager 5006i and Faro 
Focus 3D and provided in an outdoor environment for the TLS point cloud registra-
tion. There are no vertical objects in these data. It was generated to create DTMs.  

  
 

(a) Data A 

 
 

 

(b) Data B 

  
(c) Data C 
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(d) Data D 

Figure 8. Demonstration of a scan of the data used. 

4.2. Results 
This section presents the performance of the proposed approach in the point cloud 

registration .All of the steps of the proposed algorithm were implemented on MATLAB 
(R2021a). In the evaluation process, two 3DSIFT and 3DISS detectors algorithms and a 
SHOT descriptor algorithm are used. These algorithms were implemented in PCL [24]. 
The parameters of the proposed method include the number of points to be extracted (N), 
the maximum depth in the Octree structure (OcDepth), which represents the maximum num-
ber of times a bin can be divided and the weights associated with each of the quality cri-
teria (w1, …w6), and the weight related to determining the number of points in each bin 
(wn and wc). To determine the optimal weights, different values between [0–1] were con-
sidered for each of the parameters. Then, the optimal value for each of the parameters was 
determined by implementing the proposed method on all of the data and considering the 
RMSD criteria. Table 1 shows the considered values for the parameters of the proposed 
algorithm. All of these optimal values were determined experimentally by applying dif-
ferent amounts of the parameters. Furthermore, the results of uniform and competency 
3D keypoints detection by the proposed method (3DUCSIFT and 3DUCISS) are presented 
in Figure 9. 

Table 1. The parameters of the 3D Keypoints detection method. 

Parameter Name Denotation Selected Value 
Number of required Keypoints N 1% total of points 

Maximum depth in Octree structure OcDepth 4 

Weights related to competency measure 
computation 

Scattering W1 0.1 
Omnivariance W2 0.1 

Anisotropy W3 0.1 
Change of curvature W4 0.1 

Self-Similarity W5 0.3 
Histogram of Normal Orientations W6 0.3 

The weight is related to determining the 
number of points per cell 

Average competency Wc 0.5 
Number of keypoits Wn 0.5 
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3DUCSIFT 3DUCISS 

(a) Data A 

  
(b) Data B 

 
(c) Data C 

  
(d) Data D 

Figure 9. The result of 3D keypoints detection by the proposed method. The left column is the 3D 
keypoints detection result of the proposed method using 3DSIFT(3DUCSIFT) and the right column 
is the 3D keypoints detection results of the proposed method using 3DISS (3DUCISS). 

The matching results for the proposed method (3DUCSIFT and 3DUCISS) as well as 
the standard 3DSIFT and 3DISS methods on the considered data are shown in Figure 10. 
In Table 2, the number of detected keypoints is presented. As mentioned earlier, the pro-
posed method can control the number of detected keypoints. As a result, to perform a 
proper comparative process, the number of detected keypoints by the proposed algorithm 
is considered close to standard algorithms. On the other hand, the mean resolutions (mr) 
of the used data are 5, 60, 45, and 15 cm, respectively. These different resolutions indicate 
a variety of densities in the evaluation of the methods. 
  



Remote Sens. 2022, 14, 4099 17 of 22 
 

 

3DSIFT 3DISS 3DUCSIFT 3DUCISS 

  

(a) Data A 

   
(b) Data B 

   
 

(c) Data C 

    

(d) Data D 

Figure 10. Displaying of correspondence process using 3D SIFT, 3D ISS standard detectors, and the 
proposed method. 

Table 2. Results of comparison of the proposed method and standard methods. mr is the mean of 
resolution. 

 Data A (mr = 5 cm) Data B (mr = 60 cm) 
3DSIFT 3DUCSIFT 3DISS 3DUCISS 3DSIFT 3DUCSIFT 3DISS 3DUCISS 

Number of 
extracted 
features 

Source point 
cloud 

1197 1200 1221 1200 701 950 680 800 

Target point 
cloud 

1188 1200 3744 1200 789 950 773 800 

 Data C (mr = 45 cm) Data D (mr = 15 cm) 
3DSIFT 3DUCSIFT 3DISS 3DUCISS 3DSIFT 3DUCSIFT 3DISS 3DUCISS 

Number of 
extracted 
features 

Source point 
cloud 

1391 1500 1057 1500 2452 2500 1700 1700 

Target point 
cloud 

1599 1500 1758 1500 3007 3000 1803 1700 

Figure 10 shows that in these type of data, the spatial distribution of corresponding 
points is limited for standard algorithms, and the corresponding points are not detected 
in areas with homogeneous structures. However, in the proposed method, the spatial dis-
tribution of the corresponding points has improved significantly. 



Remote Sens. 2022, 14, 4099 18 of 22 
 

 

The results of different evaluation criteria to compare the performance of the pro-
posed method are presented in Figures 11–13. Figure 11 shows the results of the Recall, 
Precision, and Repeatability criteria. Figure 12 presents the spatial distribution results, 
and Figure 13 shows the positional accuracy results of the methods tested. 

 
Figure 11. Results of Recall, Precision, and Repeatability criteria. 

Figure 12. Results of spatial distribution criteria. 
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Figure 13. Results of positional accuracy criteria. 

According to Figure 11, in some comparisons, we see better performance of the pro-
posed method, and in some cases, standard algorithms are superior in the recall, precision, 
or repeatability criteria. For example, the 3DSIFT method in data A and B has a higher 
recall rate, and in data C, this value is very close to the proposed method. This superiority 
is because of the type of data used in this research. These data consist of a large homoge-
neous region with little normal angle changes and a cluttered area with severe normal 
angle changes in a local neighborhood. Due to the nature of the standard keypoint detec-
tion algorithms, the extracted keypoints are often concentrated in a cluttered region of the 
data, and the keypoint distribution criterion is not considered. As a result, the high Recall 
obtained by standard detectors algorithms is limited only to correct correspondences in a 
small area of point clouds. This issue is visible in Figure 10. 

According to Figure 12, the proposed method obtains the best performance in the 
local distribution density and the global coverage index in all data. These results show 
that the proposed method is able to well consider the distribution of extracted keypoints. 

The results of Figure 13 show that the proposed method has a higher performance in 
all data in terms of the positional accuracy in point cloud registration. The superiority of 
the proposed method is very noticeable in data A, B, and C, but in data D, this superiority 
is not significant. In data D, the homogeneous areas are less than in the other data sets 
used. The results obtained from these data show that the Recall, Precision, and Repeata-
bility criteria in the proposed method are higher than the standard methods. Although 
the amount of the DeltaT, DeltaR, and RMSD indicate the potential accuracy of the pro-
posed method is more than standard methods, this superiority is not as impressive as for 
data A, B, and C. The spatial distribution of extracted keypoints by standard detectors is 
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better than in the other data, so the criteria for the positional accuracy in the proposed 
approach and standard algorithms are almost close. This result testifies to the very high 
importance of the spatial distribution of the corresponding points in the point cloud. Ac-
cording to the RMSD criterion, the proposed method, in comparison to standard algo-
rithms, has increased the positional accuracy of registration for A, B, C, and D data by 
40%, 62%, 52%, and 15%, respectively. 

The reason for the superiority of the proposed method over standard algorithms is 
the extraction of keypoints in a suitable spatial distribution in the point clouds, which 
significantly increases the registration accuracy in these types of data. On the other hand, 
another factor influencing the point cloud registration in these kinds of data is the used 
descriptor. Because many of the extracted points in this type of data are in areas with low 
normal angle changes, resulting in ambiguity in the matching process. In the proposed 
method, the most competent keypoints in each cell are detected to make discriminative 
descriptors and therefore increase the chances of success in the matching step. 

5. Conclusions and Suggestions 
Three-dimensional keypoint detection in the point clouds with homogeneous struc-

tures by standard detectors faces challenges. In this research, challenges such as the con-
trollability of the number of points, quality, and spatial distribution in the 3D keypoint 
detection process have been studied. The method proposed in this study is tested and 
analyzed in four different point clouds. The dominant structure of data used was homo-
geneous, and fewer parts of them were cluttered regions. The core of the proposed ap-
proach is the extraction of uniform and competency keypoints to the coarse registration 
of point clouds with a homogeneous structure. In this research, we tried to identify the 
keypoints with the highest quality. The higher the quality of the keypoints (the more dis-
tinctive they are), the higher the chances of the matching process in the next step. Finally, 
the registration process, which is the final output, is performed with higher accuracy. For 
this purpose, a combination of several quality criteria has been used. The reason for com-
bining these criteria is to reach high-quality (distinctive) points from different perspec-
tives. The quality of the keypoints was evaluated using 3D local shape features, 3D local 
self-similarity, and a histogram of normal orientation. We provided a competency index 
by a combination of these features. In addition, the spatial distribution of keypoints was 
made using the Octree structure. In addition to creating suitable spatial distribution for 
the extracted keypoints, the Octree structure provides more chances to more distinctive 
points in the cluttered area. In the proposed method, the ability to control the number of 
extracted keypoints was obtained using Equation (15). The experimental results showed 
the proper performance of the proposed method in the registration of point clouds with a 
homogeneous structure. In comparison to the standard algorithms, registration error was 
diminished by up to 56% by our method. As for future research, the authors suggest the 
development of the proposed method on other 3D detectors. Our method detects 3D key-
points with appropriate spatial distribution on the whole point cloud. It will be an ad-
vantage in dealing with point clouds that have a small overlap. As a result, investigating 
the performance of the proposed method on data with little overlaps is suggested as fu-
ture works. Furthermore, developing a stable descriptor for adapting to point clouds with 
a homogeneous structure can increase the accuracy of the point clouds registration. 
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