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Abstract: Open biomass burning (OBB) is one of the major factors that influences the regional climate
environment and surface vegetation landscape, and it significantly affects the regional carbon cycle
process and atmospheric environment. The Amur-Heilong River Basin (ARB) is a fire-prone region
in high-latitude boreal forests. In this study, we used fire radiative power (FRP) obtained from a
Moderate-resolution Imaging Spectroradiometer (MODIS) to estimate OBB emissions from the ARB
and established a long-term series (2003–2020) with a high spatiotemporal resolution and a daily
1 km emissions inventory. The results show that the annual average emissions of CO2, CO, CH4,
NMHCs, NOx, NH3, SO2, BC, OC, PM2.5, and PM10 were estimated to be 153.57, 6.16, 0.21, 0.78, 0.28,
0.08, 0.06, 0.04, 0.39, 0.66, and 0.85 Tg/a, respectively. Taking CO2 as an example, grassland fire in
the dry season (mainly in April and October) was the largest contributor (87.18 Tg/a), accounting
for 56.77% of the total CO2 emissions from the ARB, followed by forest fire prone to occur in April–
May (56.53 Tg/a, 36.81%) and crop fire during harvest season (9.86 Tg/a, 6.42%). Among the three
countries in the ARB, Russia released the most total CO2 emissions (2227.04 Tg), much higher than
those of China (338.41 Tg) and Mongolia (198.83 Tg). The major fire types were crop fires (40.73%)
on the Chinese side and grass fires on the Russian (56.67%) and Mongolian (97.56%) sides. Over
the past decade, OBB CO2 emissions have trended downward (−0.79 Tg/a) but crop burning has
increased significantly (+0.81 Tg/a). Up to 83.7% of crop fires occurred in China (2010–2020), with a
concentrated and southward trend. Comparisons with the Global Fire Emission Dataset (GFED4.1s),
the Fire INventory from NCAR (FINNv2.2), and the Global Fire Assimilation System (GFASv1.2)
showed that our newly established emission inventory was in good agreement with these three
datasets in the ARB. However, this multi-year, daily 1 km high-resolution emission inventory has the
advantages of detecting more small fire emissions that were overlooked by coarse-grid datasets. The
methods described here can be used as an effective means of estimating greenhouse gas and aerosol
emissions from biomass combustion.

Keywords: long term; high-resolution; Amur-Heilong River Basin; biomass burning; fire radiative
power; emission inventory

1. Introduction

Open biomass burning (OBB), which includes forest, shrubland, grassland and crop
residue fire burning, is an important factor that affects ecosystem processes and dynamics
and a major cause of disturbance and change in a wide range of biomes at regional and
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global scales [1–4]. OBB releases significant amounts of trace gases, aerosols, and green-
house gases (GHGs) (e.g., CO2, CH4, and N2O) into the atmosphere [2,5]. According to the
Global Fire Emissions Database v4.1s (GFED4.1s), the global mean carbon emission from
OBB was 2.2 PgC a−1 during the period of 1997–2016 [6]. During the 2000–2010 period,
fires associated with deforestation emitted approximately 1.0 PgC a−1 worldwide [7,8].
Due to numerous peat and tropical deforestation/degradation fires, global CO2 emissions
from land use changes in 2019 were 1.8 ± 0.7 PgC, slightly higher than in the previous
decade [9]. While a significant fraction of the emitted CO2 is taken up again by vegetation
regrowth, much of it remains in the atmosphere for years and potentially even centuries,
such as in the case of tropical deforestation fires or burning of peat soil [6]. Therefore, OBB
emissions have become a major source of uncertainty and are an important input parameter
in terrestrial ecosystem cycle and atmospheric transport simulations [10]. Furthermore,
OBB is an important source of chemically reactive gases for some important atmospheric
pollutants such as nitric oxide, carbon monoxide, volatile organic compounds (VOCs),
black carbon (BC), and primary organic aerosol (POA) [11,12]. Among them, nonmethane
organic gases (NMOGs, also referred to as VOCs) produced by OBB are considered to be
the second largest source in the world [13,14]. Based on the estimates of Bond et al. (2013),
they account for 59% of BC emissions and 85% of POA emissions worldwide [15]. Open
vegetation fires alone represent about one-third to one-half of global carbon monoxide (CO)
emissions [3,16] and 20% of nitrogen oxide (NOx) emissions [3,16]. These observations
make it important to quantify OBB emissions at global and regional scales.

Satellite inversion with medium and high spatial and temporal resolution proves to be
reliable for quantifying OBB emissions [17–19]. The traditional method of estimating emis-
sions from biomass burning is based on the burned area proposed by Seiler and Crutzen in
1980 [20,21]. Pollutant inventory can be estimated by using burned area (km2), combustible
biomass (kg dry matter m−2), combustion efficiency (%), and emission factor (g kg−1) for
each emitted species [17,20,22]. This is exemplified by the GFED derived with the Carnegie–
Ames–Stanford Approach (CASA) biogeochemical model. The GFED quantifies trace gas
and aerosol emissions from global biomass combustion with the burned area retrieved by
satellites, the fuel load simulated by the biogeochemical model, the combustion factor for
humidity adjustment, and the emission factor based on land cover [23]. It provides monthly
global OBB emissions from different vegetation fires since 1997 at a spatial resolution of
0.25◦ × 0.25◦ (unit: g/m2/month) [19,24]. However, van der Werf et al. (2017) showed
that the GFED simulation result differs by about 14% from field observations of available
biomass fuel [6]. This is due to uncertainty in the parameters involved in the approach.
For example, most crop fires burn in a small area; however, this may be overestimated
with satellite imagery [18,25]. The combustible biomass load and its combustion coefficient
vary significantly with vegetation type, and thus introduce errors in the estimation [25,26],
especially for areas with alternate vegetation. Alternatively, the Fire INventory from NCAR
(FINN) data provide estimates of OBB with high spatial and temporal resolution (1 km2

per day), but the FINN results are mainly based on fire count data [18]. The burned area in
each active fire pixel is assumed to be 1 km2, except for grasslands and savannas where a
value of 0.75 km2 is assigned [27]. However, the actual burned area for each fire count can
vary to a large extent, and using fire counts as a proxy for fire-affected areas may lead to a
large error in emission estimates [28]. This can result in local or regional differences that
may be two-fold or greater.

A new method based on fire radiant power (FRP) has been proposed to estimate OBB
emissions at global or regional scales [18,25,29–34]. FRP is the rate of fire radiative energy
(FRE) per unit time, which is calculated as the difference between measured apparent
fire temperature at the 4 µm band and background temperature [35]. Freeborn et al.
(2008) showed that the relationship between biomass combustion and FRP will not be
significantly affected by the type of surface vegetation cover [36]. This results in a strong
linear relationship between the time integral of FRP and the biomass burned [37]. Therefore,
the fuel mass consumed by the OBB can be converted by the conversion rate constant,
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thereby avoiding errors caused by inaccurate combustion area inversion and inaccurate fire
number statistics. This approach improves the accommodation of small fires with a burn
area of less than 1 km2. Giglio et al. (2016) pointed out that, under ideal conditions, the
FRP method can detect small fires with an area of 50 m2 [38]. The Global Fire Assimilation
System (GFAS) data based on the FRP method can provide daily 0.1◦ spatiotemporal
resolution emission inventory products [39,40]. However, a detailed comparison of multiple
inventories by Liu et al. (2020) found that the GFAS method is based on GFED3 (using
GFED3 dominant fire-prone LULC at 0.5◦ resolution) and FRP-GFEDv3 DM conversion
factors by LULC [41]. However, OBB emissions inventories have large uncertainties about
the variation of spatially and temporally resolved distinctions [42], especially over small-
scale regions with frequent fires. Therefore, it is necessary to use emission inventories with
high spatial and temporal resolution to estimate regional fire pollutant emissions.

The main objective of this study is to establish daily 1 km2 OBB emissions of 11 pollutants
(CO2, CO, CH4, NMOCs, NOx, NH3, SO2, BC, OC, PM2.5, and PM10) in the Amur-Heilong
River Basin (ARB) by using the Moderate Resolution Imaging Spectroradiometer (MODIS)
Thermal Anomalies and Fire Daily Products (MOD14A1/MYD14A1) from 2003 to 2020.
The secondary objectives are to study the spatial and temporal changes of OBB from 2003
to 2020 and to explore the emission characteristics of different countries and different
fire types in the ARB region. The inventory results will provide accurate information for
the atmospheric transport model and the community land model and aid in global and
regional air quality simulations, which are important for tracking cross-border transmission
of pollutants such as trace gases or aerosols and for controlling greenhouse gas carbon
emissions. Furthermore, establishing a long-term biomass burning emission inventory
model on a grid of 1 km2 per day has important implications in the context of carbon
peaking and carbon neutrality proposed by China. This method is of great value for
formulating OBB-related carbon emission control policies, as well as achieving regional
carbon peaking and carbon neutrality.

2. Data and Methods
2.1. Study Area

The Amur-Heilong River Basin (ARB), located in northeastern Asia, is the 10th largest
river basin in the world, covering Mongolia (9%), China (43%), and Russia (48%) (Figure 1),
with a basin area of at least 2.08 million km2 (41.72–55.90◦N, 108.5–141.13◦E) [43–46]. The
ARB is located in the high-latitude boreal forest ecosystem on the southeastern edge of the
Eurasian permafrost, with abundant natural vegetation coverage. The ARB area is also
one of the key areas with high fire emissions in the northern high latitudes (Figure 1a).
More than 60% of the entire basin is covered by permafrost, which is sensitive to changes
in the external environment [46]. The degradation of frozen soil will accelerate the release
of combustible gases such as CH4, further increasing the risk of fire. Meanwhile, the ARB
also includes the main grain-producing areas in Northeast China (Figure 1b), where straw
burning of large-scale and varying degree occurs in spring and autumn every year. With
the economic development of recent years, the area of agricultural fires in Northeast China
has shown a significant growth trend [19]. Therefore, it is very important to accurately
quantify biomass burning in the ARB area. Hereafter, Russia, China, and Mongolia will
refer specifically to the territories of the three countries that lie within the Amur-Heilong
River Basin. The land use classification in this study adopts the reclassification results
produced by Guo et al. (2021) [47].
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land use and cover reclassification data in the Amur-Heilong River Basin in this study 
(MCD12Q1_IGBP, 2010). 
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Anomalies and Fire Daily (MOD14A1/MYD14A1) Version 6 data are primarily derived 
from MODIS 4 and 11 µm radiances. As a MODIS L3 product, MOD/MYD14A1 is gener-
ated every 8 days to facilitate data storage and organization, including daily pixel-by-pixel 
fire point information data for 8 consecutive days 
(https://modis.gsfc.nasa.gov/data/dataprod/mod14.php (accessed on 16 June 2021)). The 
improved MOD14A1 Collection 6 products reduced global commission errors to 1.2%, 
compared to 2.4% in Collection 5 [35]. MODIS can routinely detect both flaming and smol-
dering fires ~1000 m2 in size. Under very good observational conditions (near nadir, little 
or no smoke, relatively homogeneous land surface, etc.) flaming fires one tenth this size 
can be detected. Under pristine (and extremely rare) observational conditions, even 
smaller flaming fires ~50 m2 can be detected [38] (Giglio et al. 2015). Therefore, to investi-
gate the small fires in more detail, we extracted fires from the low-confidence fire, nomi-
nal-confidence fire, and high-confidence fire data under “MOD/MYD14A1, FireMask” 
(DN ≥ 7). Extract information, such as pixel quality index, maximum fire radiation power 
(MaxFRP, unit is MW/pixel) corresponds to the fire point position in the product. In this 
study, we use high spatiotemporal resolution data of 1 km per day to calculate FRP and 
estimate emissions over an 18-year period (2003–2020). 
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(MCD12Q1) is provided by the International Geosphere-Biosphere Program. MCD12Q1 
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the main research objectives of this study, we reclassified the land use data from 2003 to 
2020 (Figure 1) using the framework of Guo et al. [47]. We used the latest version of the 
MODIS land cover type product at a spatial resolution of 500 m. Subsequently, in order to 
be consistent with the FRP data type, we resampled to 1 km to explore the association 
between the fire point information and the actual land use type.  

  

Figure 1. (a) Carbon emissions from biomass burning in the northern hemisphere (GFEDv4.1s);
(b) land use and cover reclassification data in the Amur-Heilong River Basin in this study
(MCD12Q1_IGBP, 2010).

2.2. Datasets

Active Fire (AF) data (2003–2020) obtained by MODIS (MOD14A1/MYD14A1) on
the Terra and Aqua satellites were used to evaluate fires in this study. The MODIS Ther-
mal Anomalies and Fire Daily (MOD14A1/MYD14A1) Version 6 data are primarily de-
rived from MODIS 4 and 11 µm radiances. As a MODIS L3 product, MOD/MYD14A1
is generated every 8 days to facilitate data storage and organization, including daily
pixel-by-pixel fire point information data for 8 consecutive days (https://modis.gsfc.nasa.
gov/data/dataprod/mod14.php (accessed on 16 June 2021)). The improved MOD14A1
Collection 6 products reduced global commission errors to 1.2%, compared to 2.4% in Col-
lection 5 [35]. MODIS can routinely detect both flaming and smoldering fires ~1000 m2 in
size. Under very good observational conditions (near nadir, little or no smoke, relatively
homogeneous land surface, etc.) flaming fires one tenth this size can be detected. Under
pristine (and extremely rare) observational conditions, even smaller flaming fires ~50 m2

can be detected [38]. Therefore, to investigate the small fires in more detail, we extracted
fires from the low-confidence fire, nominal-confidence fire, and high-confidence fire data
under “MOD/MYD14A1, FireMask” (DN ≥ 7). Extract information, such as pixel quality
index, maximum fire radiation power (MaxFRP, unit is MW/pixel) corresponds to the fire
point position in the product. In this study, we use high spatiotemporal resolution data of
1 km per day to calculate FRP and estimate emissions over an 18-year period (2003–2020).

We also combined active fire data with Land Use/Land Cover (LULC) types from the
MODIS Land Cover Type product (MCD12Q1, Collection 6, https://modis.gsfc.nasa.gov/
data/dataprod/mod12.php (accessed on 16 June 2021)). The MODIS land cover type was
collected to determine the ecosystem types of the fire occurrences. The primary land cover
classification scheme in the MODIS land cover product (MCD12Q1) is provided by the
International Geosphere-Biosphere Program. MCD12Q1 contains 17 categories (Table 1).
However, based on the actual situation of the ARB and the main research objectives of this
study, we reclassified the land use data from 2003 to 2020 (Figure 1) using the framework
of Guo et al. [47]. We used the latest version of the MODIS land cover type product at a
spatial resolution of 500 m. Subsequently, in order to be consistent with the FRP data type,
we resampled to 1 km to explore the association between the fire point information and the
actual land use type.

https://modis.gsfc.nasa.gov/data/dataprod/mod14.php
https://modis.gsfc.nasa.gov/data/dataprod/mod14.php
https://modis.gsfc.nasa.gov/data/dataprod/mod12.php
https://modis.gsfc.nasa.gov/data/dataprod/mod12.php
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Table 1. Reclassification of Land Cover and Land Use Data in the Amur-Heilong River Basin (ARB).

IGBP This Study IGBP This Study

1. Evergreen Needleleaf Forests Forest 10. Grasslands Grassland
2. Evergreen Broadleaf Forests - 11. Permanent Wetlands Wetland
3. Deciduous Needleleaf Forests Forest 12. Croplands Agriculture
4. Deciduous Broadleaf Forests Forest 13. Urban and Built-up Lands Others
5. Mixed Forests Forest 14. Cropland/Natural Vegetation Mosaics Agriculture
6. Closed Shrublands Forest 15. Permanent Snow and Ice Others
7. Open Shrublands Forest 16. Barren Others
8. Woody Savannas Forest 17. Water Bodies Water
9. Savannas Grassland

(-) Indicates that there is no relevant classification result in the study area [47].

2.3. Methods
2.3.1. Estimation of Fire Radiation Power (FRP)

Pollutant emissions were calculated as the product of the dry matter burned (kg) and a
corresponding Emission Factor (EF, g kg−1) [18]. Compared with the traditional bottom-up
estimation method based on burned area, the FRP-based method has better monitoring
for small fires and avoids the accumulation of errors from multiple elements. At the same
time, burned dry matter can be calculated by multiplying FRE by a Conversion Ratio (CR,
kg MJ−1), which has the characteristic of not being significantly affected by the type of
surface vegetation [33]. Therefore, in this paper, we selected the FRP-based method to
estimate the emissions of each pollution.

E = FRE× CR× EF

where E is the emissions of a particular substance in a fire grid cell, FRE is the total radiative
energy during the fire lifespan for one grid cell, and CR is the conversion ratio used to
convert FRE to burned biomass [18,33].

Wooster et al. (2005) stated that the conversion ratio was 0.368 ± 0.015 kg MJ−1

and that CR was not significantly affected by vegetation type [33]. Freeborn et al. (2008)
evaluated this as 0.453 ± 0.068 kg MJ−1 [36]. However, Zhang et al. (2020) pointed out a
CR value of 0.368 ± 0.015 kg MJ−1 from a series of outdoor experimental straw fires that
were very similar to Chinese agricultural residue fires [34,48]. Therefore, in this study, we
chose the CR value derived by Wooster et al. (2005) for agricultural fire. For other land use
types, the CR value was selected as the average value (0.411 kg MJ−1) [18].

The MODIS active fire products provide fire detection at satellite overpass times [35].
The MODIS sensors are on board the polar-orbiting satellites Terra and Aqua. MODIS
crosses the equator at approximately 01:30 (Aqua, descending orbit), 10:30 (Terra, descend-
ing orbit), 13:30 (Aqua, ascending orbit), and 22:30 (Terra, ascending orbit) local time, which
provides near-global coverage four times a day [49]. Therefore, to calculate FRE and correct
for omission errors, we used a modified Gaussian function [50] to optimize the FRP diurnal
cycle. This parameter describes the discrete observations as a continuous function and
simplifies the integral process to calculate total fire power released. The modified Gaussian
function is

FRE =
∫

FRP =

24∫
0

FRPpeak

(
b + e−

(t − h)2

2σ2

)
dt

where FRPpeak represents the peak of the diurnal cycle, b represents background FRP, σ
represents the standard deviation of the curve, t is time, and h represents the hour of
peak FRP.

The monthly average Terra and Aqua FRP (x) ratio and the required parameters for
the calculation are as follows:
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b = 0.86x2 − 0.52x + 0.08
σ = 3.89x + 1.03

h = −1.23x + 14.57 + ε

FRPpeak =
FRPAqua Dayb+e

− (13.5 − h)2

2σ2

+

b+e
− (1.5 − h)2

2σ2


where x represents the daily FRP of each pixel [51]. A local time parameter (ε = 4) is
used to adjust the difference of the FRPpeak hour (h) to fit the diurnal curve in different
regions. If Terra and Aqua detected the same fire events, we used information from Aqua
for the estimates, as there were almost no differences when using Terra or Aqua data in this
situation. Therefore, choosing Aqua can also satisfy the FRPpeak calculation method [18,51].

2.3.2. Standard Deviation Ellipse Analysis

Standard deviation ellipse (SDE) analysis is commonly used to analyze the directional
characteristics of a spatial distribution with time. The size of the ellipse reflects the concen-
tration of the overall elements of the spatial pattern, and the declination (long semi-axis)
reflects the dominant direction of the spatial pattern. Using years of standard deviation
statistics enables us to understand the average center, major/minor axes, and azimuth
trends of the discrete point set in a time series [52,53]. Therefore, the standard deviation
ellipse can express the main distribution direction of a set of points and the degree of
dispersion in all directions. These two factors are usually used to describe the overall
characteristics of a geospatial distribution [5,53].

SDEx =

√
∑n

i=1
(
xi − X

)2

n
SDEy =

√
∑n

i=1
(
yi −Y

)2

n

where n is the total number of elements, xi and yi represent the spatial position coordinates
of each element, and X and Y represent the arithmetic mean center. SDEx and SDEy are
the calculated ellipse centers. The direction of the ellipse is then determined while taking
the X-axis as the standard, then setting true north (12 o’clock direction) to 0 degrees and
rotating clockwise. The calculation formula is as follows:

tan θ = A+B
C

A = (
n
∑

i=1
x2

i −
n
∑

i=1
y2

i )

B =

√(
n
∑

i=1
x2

i −
n
∑

i=1
y2

i

)2
+ 4
(

n
∑

i=1
xiyi

)2

C = 2
n
∑

i=1
xiyi

where xi and yi represent the difference between the average center and the xy coordinates.
The length of the XY-axis is then calculated by the following formula:

σx =
√

2
√

∑n
i=1(xi cos θ−yi sin θ)2

n

σy =
√

2
√

∑n
i=1(xi sin θ−yi cos θ)2

n

3. Results and Discussion

A total of 1,231,909 burned pixels were detected by Terra and 1,347,646 by Aqua in
the ARB from 2003 to 2020. In order to avoid duplicated calculations of Terra/Aqua fire
emissions, we combined Terra/Aqua fire distributions from the same dates and locations.
Freeborn and Wooster et al. (2014) stated that since the MODIS sensor is the same on Aqua
and Terra, results are very similar for the inversion of fire pixel information [4]. Therefore,
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if two satellites observed the same pixel of fire information on the same day, the Terra pixels
were removed and the Aqua pixels were selected for calculation. There was then a total of
1,931,160 fire pixel counts in the ARB. The grassland fires in the study area accounted for
the largest proportion, 43.5% (840,095 fire spots) of the total amount, followed by forest
fires (626,466, 32.4%), cropland fires (438,788, 22.7%), and others (25,811, 1.3%).

Based on the emission factors for each land use type (Table 2), the average annual
emissions of 11 air pollutants in the ARB are listed in Table 3. Over the 18-year study
period, the average emissions of CO2, CO, CH4, NMHCs, NOx, NH3, SO2, BC, OC, PM2.5,
and PM10 were estimated to be 153.57, 6.16, 0.21, 0.78, 0.28, 0.08, 0.06, 0.04, 0.39, 0.66, and
0.85 Tg/a, respectively. Taking CO2 emissions as an example, the maximum emission
occurred in 2003 (429.68 Tg), followed by 2008 (309.82 Tg), and the minimum emission
occurred in 2010 (54.17 Tg). These results will be discussed in detail in Section 3.2.

Table 2. Selected emission factors for each kind of land use type in g gas species per kg dry matter
burned. (Unit: g kg−1).

Category Land Use Type CO2 CO CH4 NMOCs NOx NH3 SO2 BC OC PM2.5 PM10

(IGBP) Unit: g kg−1

Forest Evergreen
Needleleaf Forest 1514.0 a 118.0 a 6.0 a 28.0 a 1.8 c 2.5 a 1.0 c 0.8 d 7.8 f 12.7 e 13.1 e

Evergreen
Broadleaf Forest - - - - - - - - - - -

Deciduous
Needleleaf Forest 1514.0 a 118.0 a 6.0 a 28.0 a 3.0 c 3.5 a 1.0 c 0.8 d 7.8 f 12.7 e 13.1 e

Deciduous
Broadleaf Forest 1630.0 a 102.0 a 5.0 a 11.0 a 1.3 a 1.5 a 1.0 c 0.8 d 9.2 a 12.3 e 12.8 e

Mixed Forest 1630.0 a 102.0 a 5.0 a 14.0 a 1.3 a 1.5 a 1.0 c 0.8 d 9.2 a 12.3 e 12.8 e

Closed Shrublands 1716.0 a 68.0 a 2.6 a 4.8 a 3.9 a 1.2 a 0.7 a 0.5 d 6.6 f 7.9 e 8.5 e

Open Shrublands 1716.0 a 68.0 a 2.6 a 4.8 a 3.9 a 1.2 a 0.7 a 0.5 d 6.6 f 7.9 e 8.5 e

Woody Savannas 1716.0 a 68.0 a 2.6 a 4.8 a 3.9 a 1.2 a 0.7 a 0.4 d 6.6 f 7.9 e 8.5 e

Grass Savannas 1692.0 a 59.0 a 1.5 a 9.3 a 2.8 a 0.5 a 0.7 a 0.4 d 2.6 d 6.3 e 9.9 e

Grasslands 1692.0 a 59.0 a 1.5 a 9.3 a 2.8 a 0.5 a 0.7 a 0.5 d 2.6 d 6.3 e 9.9 e

Crop Cropland 1353.5 b 76.1 b 2.8 b 9.8 b 2.9 b 1.4 b 0.4 b 0.6 d 2.0 d 5.0 b 6.3 b

Cropland/Natural
Vegetation Mosaics 1669.4 b 84.7 b 3.4 b 5.8 b 3.5 b 0.9 b 0.5 b 0.5 d 6.3 d 7.9 b 8.5 b

Note: superscript letters indicate the data source. a (Akagi et al., 2011 [14]); b (Yin et al., 2019 [18]);
c (Andreae et al., 2008 [54]); d (Akagi et al., 2011 [14]; Yin et al., 2019 [18]; McMeekin et al., 2008 [55];
Cao et al., 2006 [56]); e (Song et al., 2010 [26]); f (McMeekin et al., 2008 [55]).

Table 3. Annual biomass burning emissions for each species (Unit: Tg).

CO2 CO CH4 NMOCs NOx NH3 SO2 BC OC PM2.5 PM10

2003 430.00 17.00 0.59 2.00 0.82 0.24 0.18 0.12 1.20 1.90 2.30
2004 82.00 3.40 0.11 0.45 0.13 0.04 0.04 0.03 0.20 0.37 0.47
2005 140.00 5.60 0.18 0.76 0.25 0.07 0.06 0.04 0.32 0.60 0.80
2006 170.00 6.60 0.22 0.81 0.30 0.09 0.07 0.05 0.44 0.73 0.92
2007 130.00 5.10 0.16 0.68 0.23 0.06 0.06 0.04 0.31 0.55 0.74
2008 310.00 12.00 0.40 1.50 0.57 0.16 0.13 0.08 0.82 1.30 1.70
2009 94.00 3.90 0.13 0.49 0.16 0.05 0.04 0.03 0.25 0.42 0.53
2010 54.00 2.20 0.07 0.29 0.09 0.03 0.02 0.02 0.12 0.22 0.30
2011 130.00 5.10 0.17 0.66 0.22 0.06 0.05 0.04 0.30 0.54 0.70
2012 210.00 8.30 0.28 1.00 0.39 0.11 0.09 0.06 0.58 0.91 1.10
2013 61.00 2.50 0.08 0.33 0.10 0.03 0.03 0.02 0.15 0.26 0.35
2014 160.00 6.50 0.21 0.85 0.29 0.08 0.07 0.05 0.38 0.68 0.88
2015 210.00 8.20 0.26 1.10 0.37 0.10 0.09 0.06 0.45 0.85 1.20
2016 150.00 6.10 0.21 0.78 0.25 0.08 0.06 0.04 0.38 0.65 0.82
2017 95.00 4.10 0.14 0.54 0.17 0.06 0.04 0.03 0.22 0.40 0.52
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Table 3. Cont.

CO2 CO CH4 NMOCs NOx NH3 SO2 BC OC PM2.5 PM10

2018 190.00 8.10 0.29 1.00 0.35 0.12 0.09 0.06 0.55 0.89 1.10
2019 82.00 3.30 0.10 0.46 0.14 0.04 0.03 0.02 0.16 0.33 0.46
2020 69.00 2.90 0.10 0.39 0.12 0.04 0.03 0.02 0.14 0.28 0.37

Mean 153.72 6.16 0.21 0.78 0.28 0.08 0.06 0.04 0.39 0.66 0.85

3.1. Spatial Distribution of CO2 Emissions

Overall, average annual CO2 emissions showed significant spatial variation (Figure 2),
with the vast majority of fires occurring in parts of Russia, especially forest grassland fires in
Chita Oblast and Amur Oblast. China was dominated by large-scale continuous agricultural
fires in the Songnen Plain and Sanjiang Plain, which were inseparable from agricultural
production activities in Northeast China. It was evident that the border between China and
Russia or Mongolia manifests the differentiated CO2 emissions among the three countries
in this area. With the Amur River as a border, it has played an important role in interrupting
and suppressing the spread of fire. High fire occurrence is observed in southern Russia.
Shvidenko et al. (2011) stated that 90–95% of the burned area was in the Asian part of
Russia, mainly in its southern half [57]. The high-intensity fires (0.5–20 Gg/a) occurred
in Russia, especially in Chita Oblast and Amur Oblast. In China, human intervention
has had an important effect on fire occurrence, particularly in controlling the occurrence
and spread of high-emission fires (5–20 Gg/a). On the one hand, it can be ascribed to the
Chinese government’s policies on forest protection and restricted burning of agricultural
waste [58,59]. On the other hand, although most of the agricultural fire areas observed
during the study period were characterized by large spatial continuity, most regional
agricultural fires are significantly affected by human activities and large-scale agricultural
fires are more common in the days before planting in spring and after harvesting in autumn,
resulting in a limited number of crop fires and low total crop emissions (below 0.1 Gg/a).
In addition, the burning of agricultural waste (straw) in Northeast China was mainly
controlled by human activity [60], the burn time was short, and the burn area was limited;
the burning of straw therefore produced low carbon dioxide emissions compared with
forest or bush fires in Russia. In Mongolia, the number of fire points was significantly fewer
than in China, but there were more high-emission fire points than in China. An example is
the border between Mongolia and Russia in northern Mongolia, especially Khentii Province
and eastern Mongolian Dornod. As shown in Figure 3, at the national scale, Russia was the
major CO2 emitter in the ARB, contributing 80.56% of the total CO2 emissions for 2003–2020.
Although there were large areas of continuous fire emissions in China (Heilongjiang and
Jilin provinces), CO2 emissions from China accounted for only 12.24% of the total emissions
from the ARB. Mongolia produced the lowest emissions, contributing 7.19% of the total
CO2 fire emissions in the ARB area.

In terms of land cover types, grassland fires contributed an average of 59.41% of the
region’s total CO2 emissions each year (Figure 2), and 56.67%, 33.47%, and 97.56% of the
total CO2 emissions (2003–2020) in Russia, China, and Mongolia, respectively (Figure 3).
Most of the CO2 emissions caused by grassland fires were distributed in the Chita Oblast
and Amur Oblast regions of Russia, outside of the eastern and western parts of northern
China. In the central and western part of the Russian Jewish Autonomous Oblast, grassland
fires showed a clear trend of concentrated high emissions, and they extended to the central
grassland areas of Khabarovsk Krai. At the same time, the Sino–Russian border in the
western part of Primorsky Krai was also more obvious. In China, large-scale scattered
grassland fires appeared at the junction of Heilongjiang, Jilin, and Inner Mongolia, with
an average annual CO2 emission of 0–0.1 Gg/a. However, two distinct grassland fire
distribution bands appeared in the areas of the Greater Khingan Mountains and Lesser
Khingan Mountains, especially in northern Heilongjiang, where there were several signif-
icant high-emission areas (1–5 Gg/a) at the junction of the Greater Khingan Mountains
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and Lesser Khingan Mountains. The dominance of CO2 emissions by grassland fires is
expected. Most of the Mongolian territory is characterized by an arid and semi-arid climate,
and over 70% of Mongolia is covered by high-quality steppe grasslands [61]. However, due
to factors such as climate change, increased livestock grazing, and natural disasters, as well
as socioeconomic changes and overexploitation of natural resources, the area of meadow
steppe, desert steppe, bare land, and desert is increasing. In addition, the dry and windy
climate of the region favors fire spreading [62].
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Figure 3. Total CO2 emissions from biomass burning in the Amur River Basin for 2003–2020.

Forest fire CO2 emissions are relatively distributed in the entire ARB study area with
an average annual emission as high as 51.48 Tg/a (~2423 spots/year), contributing an
average of 32.25% of the region’s total CO2 emissions each year (Figure 2) and 41.61%,
25.80%, and 1.80% of total CO2 emissions (2003–2020) in Russia, China, and Mongolia,
respectively (Figure 3). Most forest fires occurred in the Russian region outside of the
northernmost part of China. At the same time, large-scale scattered fire areas also appeared
in eastern Russia, but the average annual emissions remained at a low level. Although
there was a large area of continuous forest cover in the ARB in China (Figure 1b), forest
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fires in China occurred mainly in the middle and high latitudes of the Lesser Khingan
Mountains in Heilongjiang Province and the Greater Khingan Mountains in eastern Inner
Mongolia. Despite the fact large areas of scattered forest fires also appeared in China, there
were few fire spots with emissions higher than 0.5 Gg/a, mainly benefiting from effective
forest fire prevention measures. Forest fires made the lowest contribution to CO2 emissions
in China (Figure 3). In Mongolia, except for the northwestern region of Khentii, almost no
forest fires occurred.

The characteristics of agricultural fires were the most obvious in the whole region,
contributing an average of 8.35% of the region’s total CO2 emissions each year (Figure 2)
and 1.72%, 40.73%, and 0.64% of total CO2 emissions (2003–2020) in Russia, China, and
Mongolia, respectively (Figure 3). This was largely caused by human factors. Poor control,
poor fire management policies, and new socio-economic conditions have contributed to
the frequent occurrence of fires in Siberia, especially in years with abnormal weather,
and more than 87% of fires in northern Russia were caused by humans [58]. Almost all
agricultural fires in the ARB area occurred in China, accounting for as much as 77.68% of
total agricultural fires. China was a large agricultural country, especially in the Northeast
Plain where Heilongjiang Province is located, and the burning of agricultural waste is more
serious. As a result, agricultural fires occur in a significant proportion of the China area and
have become the main source of CO2 emissions. Combined with the land use distribution
map in Figure 1, it can be seen that almost all agricultural land in China experienced
agricultural waste incineration from 2003 to 2020. Nonetheless, China has formulated many
policies and measures related to forests and grasslands and has achieved good results
in fire prevention, grain production in Northeast China has been increasing because of
socio-economic demands, and many agricultural wastes that are not treated in time are
burned on the spot [60].

3.2. Temporal Pattern of CO2 Emissions
3.2.1. Annual Variations

From 2003 to 2020 (Table 4), CO2 emissions from OBB showed a significant decreasing
temporal trend (−6.6 Tg/a). However, except for extreme fire events in 2003 and 2008,
the CO2 emissions from the ARB region were relatively stable (+0.1 Tg/a). Nevertheless,
the average annual fire CO2 emissions from 2004 to 2017 (excluding 2008) still reached
129.2 Tg /a, which was 1.46 times higher than those from all of China on average during
the same period, as shown by comparison with the results of Yin et al. [18]. Overall, from
2003 to 2020 in the ARB region, Russia’s CO2 emissions were greatly affected by two
extreme fire events, with an average annual change of −5.39 Tg/a (standard deviation
[Std] = 81.4), whereas China and Mongolia’s annual average changes were only−0.72 Tg/a
(Std = 12.9) and −0.49 Tg/a (Std = 11.08). This result shows that, despite the decreasing
trend of CO2 emissions, the fluctuations in CO2 from biomass burning in Russia were
significantly larger than those in China and Mongolia (Table 4). In more detail, except for
China’s agricultural fire CO2 emissions, which showed a clear upward trend, the rest of
the regions showed a downward trend, especially in Russia’s forest fires (−3.25 Tg/a) and
grassland fires (−2.08 Tg/a). The rapid changes in the Russian region were mainly affected
by the multi-year extreme fires in the early 2000s, while the increase in agricultural fires in
China was caused by the increased burning of agricultural waste and straw (Table 4).

Table 4. Annual CO2 emissions of different fire types in the Amur-Heilong River Basin (Unit: Tg).

Russia China Mongolia

Grass Forest Crop Total Grass Forest Crop Total Grass Forest Crop Total

2003 148.0 195.0 4.3 347.3 24.6 33.5 6.0 64.1 17.9 0.0 0.4 18.3
2004 35.7 14.4 1.7 51.9 11.8 8.3 3.1 23.3 7.0 0.2 0.1 7.3
2005 87.9 34.0 2.7 124.6 6.3 1.3 4.0 11.6 6.9 0.0 0.2 7.1
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Table 4. Cont.

Russia China Mongolia

Grass Forest Crop Total Grass Forest Crop Total Grass Forest Crop Total

2006 69.4 58.6 2.1 130.2 10.1 11.0 2.9 24.0 12.7 0.0 0.0 12.7
2007 67.7 37.0 2.1 106.8 3.0 1.4 3.3 7.8 16.7 0.0 0.0 16.7
2008 135.3 127.7 2.7 265.7 6.7 4.2 4.5 15.4 28.0 0.7 0.0 28.7
2009 42.4 29.1 1.6 73.1 4.4 4.0 4.6 13.0 5.4 2.4 0.5 8.3
2010 29.5 8.0 1.8 39.3 4.3 3.8 3.7 11.8 3.1 0.0 0.0 3.1
2011 65.0 36.7 2.1 103.8 5.6 2.4 7.3 15.3 6.4 0.0 0.0 6.4
2012 82.7 98.4 1.4 182.4 2.7 0.8 3.6 7.2 18.4 0.0 0.0 18.5
2013 31.2 14.5 0.9 46.6 3.0 2.0 4.7 9.8 4.8 0.0 0.0 4.8
2014 85.9 45.8 2.7 134.3 5.5 1.6 13.8 21.0 5.0 0.0 0.0 5.0
2015 94.1 42.2 2.7 139.0 6.4 3.5 17.2 27.1 44.3 0.1 0.0 44.5
2016 75.3 49.2 1.8 126.4 3.7 1.5 11.5 16.7 3.5 0.0 0.0 3.5
2017 35.2 23.8 1.9 61.0 4.3 2.2 19.9 26.4 7.4 0.0 0.0 7.4
2018 93.3 88.8 2.6 184.7 2.2 3.0 4.7 9.8 0.3 0.0 0.0 0.3
2019 49.6 10.9 1.9 62.4 4.9 1.6 8.6 15.1 4.6 0.0 0.0 4.6
2020 33.8 12.5 1.3 47.7 3.8 1.1 14.3 19.2 1.8 0.0 0.0 1.8

As far as the fluctuations in total CO2 emissions in the ARB are concerned, obvious
peaks occurred in 2003, 2008, 2012, 2015, and 2018. Total CO2 emissions were highest
in 2003, when they reached 429.68 Tg (Figure 4a). In May 2003, severe forest fires in the
southeast of Russia resulted in smoke plumes that extended widely across the Northern
Hemisphere. As the fire situation escalated in southern Russia, tens of thousands of fires
had destroyed more than 15 × 106 ha of land in the Russian Federation at the end of
May, including most of the ARB region [63]. In Northeast China, the burned area from
forest fires was very large in 2003 (9.2 × 103 km2) and 2008 (5.3 × 103 km2) compared
with the corresponding average area (1.2 × 103 km2). The burned areas of grasslands and
shrublands also peaked in 2003 and 2008, particularly those of grasslands at 5.0 × 103 km2

(2003) and 4.1 × 103 km2 (2008) [19]. In contrast, low values were observed in the ARB in
2004, 2010, 2013, and 2020, with the lowest value occurring in 2010 (54.17 Tg CO2).

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 4. Annual and monthly CO2 emissions from biomass burning in the Amur River Basin for 
2003–2020 (unit: Tg). (a,b) Annual CO2 emissions and contribution ratios to total emissions of dif-
ferent types of fires; (c,d) Monthly CO2 emissions and contribution rates to total emissions of dif-
ferent types of fires. 

3.2.3. Spatiotemporal Variation 
We used standard deviation ellipse analysis to assess the overall change in annual 

fire CO2 emissions (Figure 5). The standard deviation ellipse describes the distribution of 
elements in a dominant area and reveals the direction and degree of dispersion of the 
distribution of CO2 emission sources in the study area. As can be seen from the total emis-
sions from 2003 to 2020 (Figure 5, Total), the inclination angle of the ellipse has rotated 
from 89.31° to 94.37°, indicating that CO2 emissions in this study area have undergone 
significant changes and that the proportion of CO2 emissions from the southeast of the 
ARB has increased through time. At the same time, the long axis and short axis increased 
from 315.21 to 353.10 km and from 770.38 to 782.16 km, respectively, reflecting an increase 
in sources of biomass combustion emissions in this region over time. Meanwhile, the long-
to-short-axis ratio decreased from 2.44 to 2.22, indicating that the directional trend weak-
ened during the study period. Combined with Table 4, these results show that the increase 
in agricultural waste combustion emissions in China and the significant southward shift 
of the emission trend (Figure 5, Crop) were the main reasons for obvious changes in the 
CO2 emission pattern of the entire region. Especially in the past decade, emissions from 
Russia (−0.87 Tg/a) and Mongolia (−0.58 Tg/a) decreased, whereas some of the overall 
emissions from China increased significantly (+0.66 Tg/a), mainly owing to agricultural 
wastes (+0.81 Tg/a) as further detailed in the last paragraph of this subsection. 

For grassland fire emissions (except for 2011–2012 and 2017–2018), the main direction 
of emissions has not changed significantly, but the long and short axes have shown sig-
nificant changes (Figure 5, Grass). Over the years, the long axis has decreased but the short 
axis has remained relatively stable. At the same time, the ratio of the long axis to the short 
axis has also decreased, indicating that the CO2 emissions from grassland fires are gradu-
ally becoming more concentrated. It can be seen from the median centers that, in recent 
years, grassland fires have tended to migrate to the southeast. The CO2 emissions from 
forest burning are more complex and have changed significantly over the years, although 
the forest fires occur mainly in Russia (Figure 5, Forest). The median center only fell in 
China from 2003 to 2004, and the rest of the median centers appeared in the Russian region 
east of China at high latitudes in the study area. These irregular and large-scale changes 
mainly reflect the randomness of forest fires and the strong human interference factor. At 
the same time, after a forest area has been burned, fires are unlikely to recur in a short 
time owing to a lack of vegetation restoration. 

Figure 4. Annual and monthly CO2 emissions from biomass burning in the Amur River Basin for
2003–2020 (unit: Tg). (a,b) Annual CO2 emissions and contribution ratios to total emissions of
different types of fires; (c,d) Monthly CO2 emissions and contribution rates to total emissions of
different types of fires.
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3.2.2. Monthly Variations

The monthly average CO2 emissions showed clear seasonal differences in the ARB
area with the highest emissions in spring (March to May), followed by autumn (October).
There were two main seasonal fire periods: spring fires and late summer fires [57]. In
spring, grassland fires and forest fires occur frequently and spread rapidly [58]. In addition,
recent studies of large-scale fires in southeastern Siberia (45–55◦N, 100–150◦E) have also
shed light on the relationship between spring fire activity and the Arctic Oscillation [64]. In
autumn, owing to a lack of rain, the vegetation dries up, especially in the grassland areas,
and fire spreads rapidly, resulting in an increase in CO2 emissions [58,65]. There were
almost no burning emissions in winter (December–February). In summer (June–August),
CO2 emissions showed a significant decreasing trend (Figure 4c).

When examined monthly, grassland fires had two peaks each year, one in April and
one in October. The average emissions in April reached 30.8 Tg, almost twice the peak
in October (15.55 Tg). High CO2 emissions from grassland fires also occurred in March
(9.23 Tg) and May (19.9 Tg). As a result, throughout the spring, CO2 emissions from
grassland fires accounted for 68.75% of annual grassland fire emissions. Spring was also a
period of high forest fire incidence and the highest peak for forest fires occurred in May,
reaching 23.71 Tg, followed by April (14.98 Tg). CO2 emissions from spring forest fires
accounted for 72.21% of annual forest fire emissions. There was a small emission peak
in October, only 4.22 Tg, which was 89.52% of the monthly average and 17.79% of the
peak in May. Cropland fires showed a pattern similar to that of grassland fires. They
also had two peaks in spring and autumn, 3.35 Tg in April and 2.05 Tg in October. The
average monthly CO2 emissions from crop fires were only 6.42% of the annual average
monthly emissions. The first relatively concentrated fires occurred in burned areas after
the spring snowmelt and before greening, and the second fire period was due mainly
to dryness in autumn [63,65]. The main reason for this phenomenon is that the autumn
crop harvest results in a large amount of agricultural waste, especially in Northeast China.
However, the low temperatures in Northeast China in the winter (6 months) seriously
inhibit straw decomposition, and agricultural wastes in high northern latitudes do not
have the advantage of natural degradation in landfills [66] and are mostly treated by
incineration. As Stankowski et al. [67] reported, ashes from biomass burning are a natural
soil amendment that can be used as a valuable soil and/or plant fertilizer to provide
nutrients for a new round of planting. Therefore, with increasing crop yields in the ARB
region, emissions from agricultural fires in spring and autumn are becoming more and
more significant (Figure 4).

3.2.3. Spatiotemporal Variation

We used standard deviation ellipse analysis to assess the overall change in annual
fire CO2 emissions (Figure 5). The standard deviation ellipse describes the distribution
of elements in a dominant area and reveals the direction and degree of dispersion of the
distribution of CO2 emission sources in the study area. As can be seen from the total
emissions from 2003 to 2020 (Figure 5, Total), the inclination angle of the ellipse has rotated
from 89.31◦ to 94.37◦, indicating that CO2 emissions in this study area have undergone
significant changes and that the proportion of CO2 emissions from the southeast of the
ARB has increased through time. At the same time, the long axis and short axis increased
from 315.21 to 353.10 km and from 770.38 to 782.16 km, respectively, reflecting an increase
in sources of biomass combustion emissions in this region over time. Meanwhile, the
long-to-short-axis ratio decreased from 2.44 to 2.22, indicating that the directional trend
weakened during the study period. Combined with Table 4, these results show that the
increase in agricultural waste combustion emissions in China and the significant southward
shift of the emission trend (Figure 5, Crop) were the main reasons for obvious changes in
the CO2 emission pattern of the entire region. Especially in the past decade, emissions from
Russia (−0.87 Tg/a) and Mongolia (−0.58 Tg/a) decreased, whereas some of the overall
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emissions from China increased significantly (+0.66 Tg/a), mainly owing to agricultural
wastes (+0.81 Tg/a) as further detailed in the last paragraph of this subsection.
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For grassland fire emissions (except for 2011–2012 and 2017–2018), the main direction
of emissions has not changed significantly, but the long and short axes have shown signifi-
cant changes (Figure 5, Grass). Over the years, the long axis has decreased but the short axis
has remained relatively stable. At the same time, the ratio of the long axis to the short axis
has also decreased, indicating that the CO2 emissions from grassland fires are gradually
becoming more concentrated. It can be seen from the median centers that, in recent years,
grassland fires have tended to migrate to the southeast. The CO2 emissions from forest
burning are more complex and have changed significantly over the years, although the
forest fires occur mainly in Russia (Figure 5, Forest). The median center only fell in China
from 2003 to 2004, and the rest of the median centers appeared in the Russian region east of
China at high latitudes in the study area. These irregular and large-scale changes mainly
reflect the randomness of forest fires and the strong human interference factor. At the same
time, after a forest area has been burned, fires are unlikely to recur in a short time owing to
a lack of vegetation restoration.

The CO2 emissions from crop fires are most significantly affected by human activities
(Figure 5, Crop). Almost all CO2 emissions from crop fires occur in China (77.68%). In
addition, the long and short semi-axes have changed significantly, the long axis has been
reduced from 570.46 km to 354.76 km, the short axis has increased from 258.90 km to
291.08 km, and the ratio of the long to short axis has declined significantly, from 2.20 to 1.22.
At the same time, the median center of crop fires has moved significantly southward by
2.45◦ and westward by 1.95◦. These results show that, in the past 18 years, crop fires have
gradually become concentrated and their degree of dispersion has been significantly re-
duced. According to Shi et al. [19] who conducted a study on biomass burning in Northeast
China from 2001 to 2017, it can also be seen that the trend of agricultural fire in Northeast
China has increased, especially after 2010, and the proportion of belonging to Heilongjiang
and Jilin provinces has increased significantly. This is in high agreement with our study,
thus enhanced crop fire causes the center of gravity to show a clear southwestward shift.
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3.3. Daily CO2 Emissions from Biomass Burning

A long-term series of daily fire emissions was documented in the present study. From
the perspective of daily emissions, most CO2 emissions from biomass burning in the
study area were less than 5 Tg per day for 2003–2020 (Figure 6a,b). However, 54 days
of CO2 emissions had higher values than this; 66.7% of these days occurred before 2010,
predominantly in 2003 and 2008 when 15 and 11 such days were observed, respectively.
It can be seen from Figure 6a that these high CO2 emissions were mostly dominated by
forest fires and most of them occurred in the Russian part of the ARB area (Figure 6b).
For example, in May 2003, extensive forest fire activity occurred in the ARB region on the
Siberian border, resulting in the release of large amounts of particulate matter and gases
into the atmosphere [68]. In 2008, forest fires (62.09%) and grassland fires (37.59%) were
dominant, similar to the results of Vivchar (2011) relating to the distribution of fires in the
Russian Far East [69]. However, the 2008 fire season started earlier than usual in Siberia [70],
especially in the Russian (ARB) region which started about three weeks earlier than usual.
According to our results, this large-scale fire, which lasted about 6 days (67–72 days),
was dominated by grassland fire, especially in the area bordering the Jewish Autonomous
Oblast and Khabarovsk Krai. This may be related to the extreme special weather that year,
especially the low-pressure system under strong winds in this region [58].

There were two extreme fire events, one on 10 May 2016 and one on 9 May 2018. CO2
emissions in a single day exceeded 35 Tg (Figure 6a,b). Combined with our daily emissions
results, both extreme fire events occurred in Russia’s Amur Oblast. Among them, on
10 May 2016, grassland fires dominated and most of them showed a large-scale strip-like
spreading trend. On the contrary, the fires on 9 May 2018 were dominated by forest fires
which were more concentrated near the Zeya Reservoir and accompanied by a spatial
pattern of multiple points of high emissions. It is worth noting that, on 14 October 2004,
China contributed 84.56% of CO2 emissions, which was the largest single-day emission in
China and was mainly concentrated in the central area of the Lesser Khingan Mountains.
As a report, forest fires broke out in Heihe and Yichun areas in Heilongjiang Province
from 13 October 2004 and it took a week to put out the fires. This is consistent with the
anomalous fluctuation in OBB CO2 emissions for Heilongjiang Province in October 2004 as
observed by Shi et al. [19].

From the daily average results of CO2 emissions in the ARB area for 2003–2020
(Figure 6c,d), grassland fires made the largest contribution to CO2 emissions, especially
on days 68–157 and 274–312 of each year. The average contribution of grassland fire CO2
emissions in these two intervals reached 58.40%, whereas that of forest fires was 34.61% and
that of cultivated land was only 6.99%. May 10 was the peak emission date in the spring,
with an average emission of up to 2.33 Tg CO2, while the summer peak was around 30 June
with an average emission of 4.78 Tg CO2 and the autumn peak was on 18 October (1.23 Tg
CO2). The average daily emissions from crop fires were also high throughout the spring
and autumn. However, compared with grassland fires and forest fires, crop fires accounted
for only 6.99% of total annual emissions (Figure 4b). Although the number of agricultural
fire spots increased significantly after 2010 and peaked in 2017, the total emissions from
crop fires were still very low (10%).

Overall, the annual average daily emissions data show that Russia has always been
the main source of CO2 emissions in the ARB region (70.49%), especially in the summer
(Figure 6d) where its average contribution reaches 93.46% (DOY 181–225). In the ARB
area of Northeast China, spring fire emissions lasted for the longest time (DOY 54–149).
There were 32 days of high-intensity emissions in autumn (DOY 281–312). On ordinal day
288, the average daily emission from China was the highest, reaching 0.4 Tg CO2. Trends
in high CO2 emissions for Mongolia were similar to those in China, with high emissions
concentrated at 97–180 days in spring and 277–302 days in autumn.
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3.4. Comparison with Other Studies

We compared our results with the Global Fire Emissions Database data (GFED,
2003–2016, monthly, 0.25 × 0.25◦), the Fire INventory from NCAR (FINN, 2003–2019,
daily, 1 km2), and the Global Fire Assimilation System emissions (GFAS, 2003–2020, daily,
0.1 × 0.1◦). In general, this study was comparable to the above three data inventories and
there was strong agreement on a monthly scale (Figure 7). Among them, compared with
GFAS, our results have the strongest correlation with GFAS (r2 = 0.94, n = 216), though the
average error of GFAS was largest, reaching 7.5 Tg/m. Especially in the case of high emis-
sions, the GFAS results were significantly higher than our results, GFED data, and FINN
data. Meanwhile, compared with other results, there was an obvious anomaly in December
2009. Therefore, GFAS may overestimate CO2 emissions in the ARB area. Compared with
the FINN, the average deviation was reduced to 3.2 Tg/m and r2 reached 0.92 (n = 210).
Although the FINN results differed significantly from ours in May 2003, our results were
very consistent with the FINN results at other times. The GFED product CO2 emission
results based on burned area were the lowest, 2.92 Tg/m lower than our results (r2 = 0.89,
n = 168). The main difference appeared between April and May in spring and October
in autumn. More specifically, as agricultural fires increased significantly after 2010, the
difference in CO2 emissions between GFED and our study widened from an average of
1.1 Tg (2003–2010) to an average of 4.6 Tg (2011–2016) in April in Heilongjiang Province in
China. GFED will underestimate CO2 emissions in the ARB region, especially in Northeast
China after 2010.
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and GFAS data for 2003–2020.

In the 2003–2016 period, for which all the datasets have CO2 emission estimates, this
study yielded annual biomass burning CO2 emissions from the ARB (165.99 Tg/a), this
is higher than the value reported in GFED4.1s (130.98 Tg/a) but lower than the value of
FINNv2.2 (214.70 Tg/a) and GFAS (267.53 Tg/a). This difference is mainly due to the
fact that FINN’s estimation of emission inventories is based on the fire spots statistical
method [18], which overestimates the area burned by small fires. At the same time, the
specific discrimination of grasslands and shrubs causes uncertainties in the emission
inventory due to the types of surface combustibles [27]. The difference in biomass burning
emissions between FINN and GFAS is due to their use of different dry matter combustion
and emission factors. Specifically, GFAS also uses the FRP method for estimation and has
shown good performance in estimating fire emissions and timing, but GFAS uses biome-
specific conversion factors derived from multi-annual fits between dry matter burning
efficiencies for each biome in GFED3.1 [27]. Uncertainty typically appears to be about
30%, especially for exotic species [71]. Consequently, the monthly CO2 emission ratios
obtained by FINN/GFAS ranged from 0.01 to 6.95. Differences between the FINN and
GFAS estimates occur mainly in regions with high biomass burning intensity. Our results
were consistent with the CO2 emission results of Yin et al. (2019) in Heilongjiang Province,
China from 2003 to 2017 (Table 5). Therefore, under the same trend, our experimental
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results for high-resolution daily emissions are more stable (Figure 8). The estimated results
of this study have greater reference value for the ARB region.

Table 5. Comparison of annual mean CO2 emissions from biomass burning (Tg) calculated in our
study with estimates made by other methods. (Unit: Tg).

Region Amur Russia Mongolia China Heilongjiang (China)

Period 2003–2016 2003–2016 2003–2016 2003–2016 2003–2017

This study 165.99 133.66 13.20 19.14 13.80
GFED4.1s 130.98 98.41 12.29 20.29 15.22 *
FINNv2.2 214.70 178.75 5.65 30.30 23.75

GFAS 267.53 231.40 15.07 21.06 12.43
Yin et al. (2019) - - - - 13.81

*: Since 2017, GFED4.1s data are only available in beta version.
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It is worth noting that this study increased spatiotemporal resolution to the daily 1 km
grid level in order to minimize the effects of differences in the spatial distribution of surface
biomass on estimates of FRE (Figure 8). However, the vegetation types in each grid are
diverse and were determined by land-use classification; differences in vegetation cover
are one of the key factors contributing to large differences between emission inventories.
Therefore, mixed pixels and classification errors are inevitable, which is one of the key
reasons for the significant difference between the FINN and GFAS models. Compared with
GFED, FINN, and GFAS, the emission inventory results estimated by the FRE method in
this study were stable and reasonable in boreal forest areas such as the ARB. In this study,
the estimated results of other trace gases or aerosol particles in the Amur-Heilongjiang
River Basin from 2003 to 2020 were closer to the real situation. In future research, the
method of fusion for the difference in surface albedo and vegetation types can be used to
further optimize the results of land use classification and the area of fire pixels to improve
estimation accuracy.
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4. Conclusions

We used FRE data from MODIS to estimate a long-term (2003–2020) inventory of
daily emissions from OBB with high spatial resolution (1 km × 1 km grid). First, the fire
points in the Amur-Heilong River Basin were screened according to fire point confidence
(FireMask, DN≥ 7) and land use data. By integrating the daily maximum radiant energy in
the study area and combining it with the conversion ratio (CR) and emission factor (EF), we
ultimately obtained pollutant emission inventory estimates. We estimated the emissions of
11 kinds of pollutants produced by biomass combustion and found that the annual average
emissions of CO2, CO, CH4, NMOCs, NOx, NH3, SO2, BC, OC, PM2.5, and PM10 were
153.57, 6.16, 0.21, 0.78, 0.28, 0.08, 0.06, 0.04, 0.39, 0.66, and 0.85 Tg/a, respectively.

Taking CO2 as an example for detailed description, the following important obser-
vations have been made. The Russian Far East was the main source of CO2 contribution
from fires in the ARB, accounting for about 80.56% of the entire region, with grassland fires
accounting for the largest proportion at 57% and agricultural fires contributing 1.72% of
total CO2 emissions. China contributed 12.24% of CO2 emissions and crop fires dominated
these emissions (40.73%), followed by grassland fires (33.47%). Mongolia contributed the
least with grassland fires being the predominant source of CO2 emissions. Among the
total CO2 emissions (2764.3 TgCO2) of OBB in the ARB from 2003 to 2020, grassland fires
accounted for the largest proportion, reaching 56.77% (1569.3 TgCO2), followed by forest
fires and crop fires, accounting for 36.81% and 6.42%, respectively. In the study area, the
spatial distribution of grassland fires was relatively stable and most of the high emissions
occurred in eastern Russia. Most of the high emissions from forest fires occurred in the
northeastern part of the ARB but, due to the impact of many fires in 2003, 2008, and 2012,
the spatial distribution of emissions has changed significantly. High CO2 emissions from
agricultural fires occurred mainly in China (77.68%) and were significantly affected by
human disturbance. From 2003 to 2020, the center of gravity of CO2 emissions from agri-
cultural fires moved southward by 2.45◦, indicating that the burning of agricultural waste
showed a significant southward trend. There were clear seasonal differences in emissions,
which were highest in spring and autumn and lowest in summer and winter.

This study provides a daily inventory of biomass burning emissions at a resolution
of 1 km2. Considering the existence of large areas of permafrost in boreal forest areas,
frequent surface fires accelerate their degradation and release large amounts of greenhouse
gases. Especially in the context of carbon peaking and carbon neutrality, these results help
to monitor and evaluate the progress and effectiveness of emission control regulations.
Future work on estimating changes in soil greenhouse gases caused by fire disturbances in
permafrost regions will focus on accurate accommodation of complex vegetation types in
the Amur-Heilong River Basin.
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