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Abstract: A heatwave (HW) is a spatiotemporally contiguous event that is spatially widespread and
lasts many days. HWs impose severe impacts on many aspects of society and terrestrial ecosystems.
Here, we systematically investigate the influence of the selected threshold method (the absolute thresh-
old method (ABS), quantile-based method (QTL), and moving quantile-based method (QTLmov))
and selected variables (heat index (HI), air temperature (Tair)) on the change patterns of spatiotem-
porally contiguous heatwave (STHW) characteristics over China from 1961–2017. Moreover, we
discuss the different STHW change patterns among different HW severities (mild, moderate, and
severe) and types (daytime and nighttime). The results show that (1) all threshold methods show
a consistent phenomenon in most regions of China: STHWs have become longer-lasting (6.42%,
66.25%, and 148.58% HW days (HWD) increases were found from 1991–2017 compared to 1961–1990
corresponding to ABS, QTL, and QTLmov, respectively, as below), more severe (14.83%, 89.17%, and
158.92% increases in HW severity (HWS) increases), and more spatially widespread (14.92%, 134%,
and 245.83% increases in the summed HW area (HWAsum)). However, the HW frequency (HWF)
of moderate STHWs in some regions decreased as mild and moderate STHWs became extreme;
(2) for threshold methods that do not consider seasonal variations (i.e., ABS and QTL), the spatial HI
exceedance continuity was relatively weak, thus resulting in underestimated STHW characteristics
increase rates; (3) for different variables defining STHWs, the relative changing ratio of the HI-based
STHW was approximately 20% higher than that of the Tair-based STHW for all STHW characteristics,
under the QTLmov threshold; (4) for different STHW types, the nighttime STHW was approximately
60% faster than the daytime STHW increase considering the QTL threshold and approximately 120%
faster for the QTLmov method. This study provides a systematic investigation of different STHW
definition methods and will benefit future STHW research.

Keywords: spatiotemporally contiguous heatwaves; heatwave definitions; heat index

1. Introduction

Heatwaves (HWs) severely impact many aspects of society and terrestrial ecosys-
tems [1–4]. For example, HWs can directly cause organ damage and a range of cardiovas-
cular diseases (e.g., myocardial infarction and heat exhaustion) and indirectly increase the
risk of spreading viruses [5–8]. Additionally, HWs can reduce food and water supplies and
increase potential conflicts, such as the mortality caused by HW and other environmental
and social problems. For example, the 2012 extreme HW in the United States led to a
maize production decrease of 13% compared to the 2011 level [9]; the 2013 extreme HW in
southern China led to a net reduction of 101.54 Tg C in regional carbon sequestration in
two months and the most extensive crop failures since 1960 [10].
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In the past few decades, many researchers have devoted themselves to revealing the
change patterns of HWs in the warming climate. However, different researchers have used
different methods to define HW events. It is generally accepted that an HW is an episode
when the temperature variable exceeds a certain threshold. However, when selecting
a more particular definition, divergences arise regarding which threshold method and
temperature variable to use [11–13]. For the threshold, there are three prevalent methods:
the absolute threshold method (ABS), the quantile-based method (QTL), and the moving
quantile-based method (QTLmov) [12,13]. For example, a HW is recognized by the Royal
Netherlands Meteorological Institute as a period when the daily maximum temperature is
greater than 25 ◦C for more than five consecutive days. Following the World Meteorological
Organization’s (WMO) suggestions, HWs occur when the daily maximum temperature
surpasses the average maximum temperature by 5 ◦C for five consecutive days. In China,
HWs are defined as events exceeding 35 ◦C and lasting at least three consecutive days,
according to the Chinese National Meteorological Administration. These commonly used
threshold features are summarized in Table 1. Regarding the temperature variable, some
studies have used air temperature (Tair) [14–17]. However, many studies have argued that
the heat index (HI) is more relevant to human-perceived temperature [18] and is thus
more suitable to define HWs [19–22]. Although some significant progress has been made,
the impacts of variable selection on the spatiotemporal change pattern of HWs are not
well understood.

Table 1. The features of commonly used thresholds to define HWs.

Threshold Mathematics Spatially
Variable

Temporally
Variable Description

ABS Custom No No

Custom defined,
the thresholds
are static both
with different
grids and on

different dates

QTL Quantile Yes No

Calculated by
quantile, the

thresholds vary
spatially, but are
temporally static

QTLmov Quantile Yes Yes

Calculated by
rolling quantile,
the thresholds

vary both
spatially and
temporally

On the other hand, HW is a kind of spatiotemporally continuous event that are
spatially widespread and last many days, transferring from one region to another, and
merging or splitting over time during their development and diminution. However, most
previous studies have ignored these HW characteristics and studied HWs simply at the
grid or site scale. With advances in the spatiotemporal clustering technique [23,24], it
has become feasible to track spatiotemporally contiguous heatwaves (STHWs) and study
their change patterns on the 3-D event scale [12,25–27]. However, HW studies performed
at this 3-D event scale are much fewer than those performed at the grid and site scales.
Consequently, the problem of the effects of the variable and threshold method selection on
the STHW changing pattern is increasingly prominent.

Therefore, in this study, we mainly attempt to illustrate the influence of threshold
method selection (the absolute threshold method (ABS), quantile-based method (QTL),
and moving quantile-based method (QTLmov)), variable selection (heat index (HI), air
temperature (Tair)) on the change patterns of spatiotemporally contiguous heatwaves
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(STHWs) characteristics over China from 1961 to 2017. In addition, we provide an in-depth
discussion on the drivers of differences in the intercomparison of HW definitions.

2. Data and Methods
2.1. Data

The daily maximum air temperature (Tmax), minimum air temperature (Tmin), and
relative humidity (RH) are used in this study. The Tmax and Tmin data are derived from
CN05.1 [28] at a spatial resolution of 0.25◦ covering 1961–2021 period. The CN05.1 dataset is
interpolated from 2416 stations in mainland China with strict quality control [28]. Previous
studies have revealed that unhomogenized RH could lead to a fake decreasing trend of
HI in South China [29,30]. To avoid this problem, we used ChinaRHv1.0, a homogenized
dataset containing site observations from 746 stations on the Chinese mainland from
1960–2017 [30]. We interpolated ChinaRHv1.0 into 0.25◦ by the same method as that applied
to CN05.1 [28], where the thin-plate spline method was proposed for the climatology and
the angular distance weighting method was proposed for the anomaly. The interpolated
climatology-plus-anomaly result forms the final gridded RH dataset. Limited by the RH
coverage period, we analyze STHW only from 1961 to 2017.

2.2. Heat Index

In previous research, either Tair or HI was used to evaluate HW. However, there is no
definite conclusion as to which of these is more suitable. In this paper, both variables are
used for comparison. HI (in ◦C), also known as the apparent temperature, is more corre-
lated with the human-perceived temperature [31,32] and is calculated through Rothfusz
regression [21,22,33]:

HI = −8.784695 + 1.61139411 · Tair − 2.339549 · RH
−0.14611605 · Tair · RH − 1.2308094× 10−2 · T2

air
−1.6424828× 10−2 · RH2 + 2.211732× 10−3 · T2

air · RH
+7.2546× 10−4 · Tair · RH2 + 2.211732× 10−3 · T2

air · RH

(1)

The general HI is calculated when Tair is above 4.4 ◦C (40 ◦F); otherwise, HI is equal to
Tair, where Tair can be Tmax or Tmin. When RH and Tair encounter the following situations,
further adjustments are applied to HI [22,33]:{

HI = HI − (13−RH)
4 ×

√
1− |1.8Tair−63|

17 , RH < 13% and 26.7◦C < Tair < 44.4◦C
HI = HI + RH−85

10 × (11− 0.36Tair), RH > 85% and 26.7◦C < Tair < 30.6◦C
(2)

2.3. HW Thresholds

If the temperature of a grid cell exceeds its corresponding threshold, we consider that
a HW has occurred here. The determination of thresholds consists of two main components:
quantiles and calculation methods. The detailed classification is described below:

The quantile can also refer to the HW severity levels depending on its magnitude:
(1) 90th (i.e., mild level), (2) 95th (i.e., moderate level), and (3) 99th (i.e., severe level). When
the quantile is greater than the 99th percentile, only a few HW events are identified. Such a
small sample size would considerably impair the reliability of the estimated trends. This
could lead to an uncertainty factor that is too large to reflect the variation trend patterns of
most HW events.

Regarding the calculation methods, three methods are selected, including (1) ABS,
(2) QTL, and (3) QTLmov.

(1) For the ABS method, all grid cells share the same threshold and eastern China (longi-
tude ≥ 105 ◦E) is used to compute the threshold. First, the regional area-weighted
average of Tair or HI is calculated at each time step. The thresholds are determined in
accordance with certain percentiles (i.e., 90th, 95th and 99th corresponding to mild,
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moderate and severe HWs, respectively) during the 1961–1990 reference period from
the time series.

(2) For the QTL method, each grid has a unique threshold. For each grid, the threshold is
calculated as a certain percentile during the 1961–1990 reference period.

(3) For the QTLmov method, the threshold varies among each day of the year (doy) from 1
to 366 in the Julian calendar. For each grid, a 15-day moving window (i.e., 7 days prior
and posterior to the corresponding calendar day sampled from each year) for each
doy is used to create a subset, and a specific quantile calculated during the 1961–1990
reference period is used as the threshold corresponding to the center date. For instance,
all 1 January to 15 January data from 1961–1990 are selected, and the threshold for
8 January is the quantile of these 450 days. Due to the dramatic temperature changes
that have occurred in China since the 1990s, it is appropriate to take 1961–1990 as
the reference period for a historical comparison and climate change monitoring; this
application is also recommended by the WMO [34].

2.4. STHW Detection

In spatiotemporal detecting, the HW spatial-state array (i.e., whether the temperature
is greater than or equal to the threshold) is used as the input, and temporally and spatially
contiguous grid cells are connected to the same STHW event. This idea has been applied in
drought studies previously [35]. The 3-D connectivity algorithm is relatively common but
is rarely used in HW identification tasks. It is often used for lesion tracking in medical and
3D image denoising, and similar functions can be found in the Python package scikit-image,
MATLAB tool Pixel Connectivity, R package neuroim, and so on [36].

Here, we rewrite the spatiotemporal clustering algorithm of Samaniego [24] to detect
STHWs. Compared to the original version, ours has an excellent computing efficiency (e.g.,
30~50 times faster, thanks to the speed of the Julia language), low memory consumption
(e.g., uses the disjoint-set data algorithm) and can also connect contiguous temporally
related HW events (e.g., all merging, splitting, expanding, and receding HW events associ-
ated with a specific event) into the same STHW event. Figure 1 briefly illustrates the main
steps of this process, and the computational implementations are as follows:

(1) The original data are converted to the HW spatial-state array. Initially, the original
data have three dimensions (i.e., longitude × latitude × time). For each voxel, if
the value is greater than the corresponding threshold, it is marked as “True” and
considered as HW grid; otherwise, it is marked as “False”. The threshold is calculated
as described in Section 2.3. Therefore, the data are converted to an HW spatial-state
array that is stored in a “True/False” Boolean format.

(2) Spatially adjacent HW grids are connected to spatial HW events. In this step, the
HW state array is cyclically traversed moment-by-moment in a top-to-bottom, left-to-
right order to search for spatially adjacent voxels in each time layer. If an HW grid
is detected, it is given a unique clusterId. After that, according to the 4-connected
neighborhood principle (i.e., two adjoining cells are part of the same object if they are
both on and are connected along the horizontal or vertical direction), all recursively
searched edge-adjacent HW grids are given the same clusterId. Here, a merged spatial
HW event with a grid number less than nconnect is eliminated, because a small isolated
HW event is usually unable to develop into a regional or impactful STHW event;
nconnect is set to 16.

(3) The spatial HW events are connected to spatiotemporally contiguous HW events. If
there are at least noverlap grids at the same location in the preceding and following time
steps from two spatial HW events, the events are merged into one STHW event and
given a new clusterId (clusterIdnew = year× 1000 + clusterIdold, where clusterIdold
is the clusterId of the previous spatial HW event). Here, noverlap is set to correspond
to nconnect. Because HW events usually have a small scale when appearing and dying,
this threshold can be set to better distinguish different STHW events from the onset
and demise. Finally, the clusterId values are stored in three dimensions as original
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data (i.e., longitude × latitude × time). Due to the thresholds, the identified STHW
can ensure that the spatial coverage is not too small and lasts at least 2 days.
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Figure 1. The proposed method for detecting STHWs. (a) The identified STHW events from 28 June
to 1 July 2017, in China; the features of merging and splitting events are labeled in the third step.
(b) Explanation of the STHW clustering process, including three steps: (1) identifying HWs;
(2) spatially connecting HWs; and (3) temporally connecting HWs.

Based on the selection of the temperature and data variables, the STHW types are
separated into two groups: (1) daytime STHWs identified by the daily maximum temper-
ature and (2) nighttime STHWs identified by the daily minimum temperature. Similarly,
Tair-based STHWs and HI-based STHWs are identified by the air temperature and heat
index, respectively.

To date, these diverse HW definitions can be derived from different threshold calcula-
tion methods (ABS, QTL and QTLmov), severity levels (mild, moderate and severe), types
(daytime and nighttime), and data variables (Tair and HI). The rest of this study is based
on the use of control variable methods to compare these definitions.

2.5. STHW Characteristics

To evaluate STHW, STHW characteristics are defined separately at temporal and
spatial scales. The temporal characteristics are all counted at the event scale (Table 2). Here,
we focus only on the most impactful STHW event of the year, corresponding to the largest
HW severity (HWS) each year. Because the number of small STHW events is much larger
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than that of typical HW events, tracking only the annual largest STHW event can prevent a
large number of small events from offsetting the real temporal variants. Here, HW days
(HWD) expresses the duration of STHW events, HW intensity (HWI) and HWS are used
to describe the intensity and cumulative intensity, respectively, and HW area (HWA) is
the occurrence area, which is further divided into three aspects: the mean, maximum, and
total area.

Table 2. Temporal metrics used to characterize STHW events. In each STHW event, t0 + 1 is the start
date, t0 + d is the end date, and k refers to each grid cell.

Metric Equation Unit Description

Duration HWD = ∑t=t0+d
t=t0+1 1 day For an STHW event, the number of

days from onset to demise

Intensity HWI = 1
d ∑t=t0+d

t=t0+1

[
∑k Sk,t(Tk,t−Tk

trs)
∑k Sk,t

]
◦C

For an STHW event, the average
daily area-weighted average
anomaly over all grid cells

Severity HWS = ∑t=t0+d
t=t0+1 ∑k

∑k Sk,t(Tk,t−Tk
trs)

∑k Sk,t

◦C·day
For an STHW event, the aggregate

daily area-weighted average
anomaly over all grid cells

Mean Area HWAavg =
∑

t=t0+d
t=t0+1 ∑k Sk,t

∑
t=t0+d
t=t0+1 t

106 km2 For an STHW event, the average
daily areas over all grid cells

Maximum Area HWAmax = max(∑k Sk,t0+1, . . . , ∑k Sk,t0+d) 106 km2 For an STHW event, the maximum
daily areas over all grid cells

Total Area HWAsum = ∑t=t0+d
t=t0+1 ∑k Sk,t 106 km2 For an STHW event, the aggregate

daily areas over all grid cells

In contrast to our focus only on the severest HW event temporally, all HW events
that occur over the year are counted in the spatial analysis (Table 3). This is because the
spatial HW characteristics should reflect the overall spatial HW distribution, while the
largest annual event cannot mask the entire country. Here, HWD is calculated based on the
number of days the HW occurs; HW frequency (HWF) is added to express the number of
HW events; and HWI and HWS are still calculated by obtaining the anomaly between the
temperature and threshold.

Table 3. Spatial metrics used to characterize STHW events.

Metric Equation Unit Description

Duration HWD = 1
ni

ni

∑
j=1

Ti,j

∑
ti,j

1 day

For each grid i, the number of days Ti,j
over which STHW event j occurred; n
is the number of HW events that take

place annually

Frequency HWF = ni time For each grid i, the number of STHW
events that take place annually

Intensity HWI = 1
ni

ni

∑
j=1

1
Ti,j

Ti,j

∑
tj=0

aj,tj

◦C

For each grid, i, the average mean
anomaly across all STHW events; n is
the number of STHW events that take

place annually

Severity HWS = 1
ni

ni

∑
j=1

Ti,j

∑
tj=0

aj,tj

◦C·day

For each grid i, the average total
anomaly across all STHW events; n is
the number of STHW events that take

place annually

3. Results
3.1. STHW Characteristics of Different Threshold Methods

Figure 2 shows the annual variations in the characteristics of the most severe STHW
events that occurred in China from 1961–2017, defined by three different threshold methods:
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ABS, QTL and QTLmov. The magnitudes of the STHW characteristics vary substantially
among different threshold methods. For HWD, HWI, and HWS, the magnitudes ob-
tained with the ABS method are significantly larger than those obtained with QTL and
QTLmov, with the rank of ABS > QTL > QTLmov. The mean values obtained with ABS are
100.00 days, 6.33 ◦C, and 632.71 ◦C·days for HWD, HWI, and HWS, respectively. In compar-
ison, these mean values are only 58.00 days, 2.50 ◦C, and 145.82 ◦C·days, respectively, for
QTL and 18.75 days, 1.86 ◦C and 35.88 ◦C·days, respectively, for QTLmov. For HWAavg and
HWAmax, the situation is reversed. The rank becomes QTL > QTLmov > ABS, and the mean
values of HWAavg are 2.38 × 106 km2, 1.58 × 106 km2 and 1.20 × 106 km2, respectively,
while the mean HWAmax values are 5.31 × 106 km2, 3.77 × 106 km2 and 2.51 × 106 km2,
respectively, for those three threshold methods.
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Figure 2. Annual variations in daytime HI-based STHW temporal characteristics from 1961–2017: for
(a) HWD, (b) HWI, (c) HWS, (d) HWAavg, (e) HWAmax and (f) HWAsum. The STHW characteristics
were calculated at the event scale, and only the most serious annual STHW event was selected. The
dashed lines represent the annual variations in STHW characteristics; the solid lines represent the
corresponding Sen’s slope trends. In each subplot, Sen’s slope for each threshold method is labeled
on the top right. The symbols “*”, “**” and “***” indicate that slopes are significant at the 0.05, 0.01
and 0.001 levels, respectively, while “ns” represents slopes that are not significant.

Regarding the trends, for HWD, the QTL threshold exhibits an increasing trend
of 7.42 days/decade, much higher than the trends obtained using the other methods
(1.08 days/decade and 2.88 days/decade) but not significantly so. HWI and HWS ex-
hibit similar results. The ABS threshold always indicates the highest slope, reaching
0.24 ◦C/decade and 28.24 ◦C·day/decade. However, for HWI, only the ABS threshold
shows significance, while all methods show significance for HWS. For all area-related
characteristics, the QTL threshold identifies the highest increasing rate. Especially for
HWAsum, the QTL threshold shows an amazing trend of 25.3 × 106 km2/decade, approxi-
mately 4–5 times higher than those obtained with the other methods. In comparison, the
ABS threshold has the lowest increasing rates of 0.03 km2/decade, 0.03 km2/decade, and
4.04 km2/decade corresponding to HWAavg, HWAmax, and HWAsum, respectively.

Regarding the spatial magnitude (Figure 3), except for HWF, the magnitudes obtained
with QTL and QTLmov are similar for all STHW characteristics. Because the QTL method
focuses only on the highest temperature period, while QTLmov considers all periods in a
year, QTLmov detects more STHWs than QTL, resulting in a higher HWF (Figure 3b2,b3).
Using the ABS method, the derived spatial distribution of the multiannual average STHW
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characteristics is substantially different from those obtained with QTL and QTLmov. Most
STHWs are detected in the North China Plain and South China, while no STHWs are
detected on the Tibetan Plateau because of the low climatological temperatures there.

Regarding the spatial trend, the three analyzed methods show consistently increasing
trends for all STHW spatial characteristics except HWI (Figure 4). The STHWs become
longer in duration, more widespread in impact, and more intense in intensity and severity.
Regarding HWD, HWAavg, HWAmax and HWAsum, the ranking of the increase rates is
QTL > QTLmov > ABS. For HWD, HWI, and HWS, there is a prevalent and consistent
increasing trend among QTL, QTLmov, and ABS. However, for HWF, the increasing trend
is not significant in most regions of China (Figure 4a2,b2) and even becomes negative in
North China (Figure 4b2). This is mainly because mild and moderate STHWs gradually
turn into severe STHWs under the warming climate conditions. The frequency of mild and
moderate STHWs decreases, while that of severe STHWs increased (Figures S1 and S2).
Additionally, for HWD, HWS, and HWI, noticeable decreasing trends arise in the middle
of the North China Plain and across large parts of Northeast China.

3.2. HI-Based and Tair-Based STHWs

Many researchers utilize Tair rather than HI to measure HWs, though this may pro-
duce errors when attempting to accurately reflect HWs’ impacts on humankind. Moreover,
the results may differ to a relatively great extent due to the addition of relative humidity.
Hence, we compare the difference between HI-based and Tair-based STHWs.

Figure 5 presents the difference between the HI-based and Tair-based moderate day-
time STHWs from the perspective of the relative change ratio between the present period
of 1991–2017 and the historical period of 1961–1990 in China. Regarding the QTLmov
threshold, the relative change ratio of the HI-based STHW is approximately 20% higher
than that of the Tair-based STHW for all STHW characteristics (Figure 5). For the three
threshold methods, the differences in the relative change ratio between the HI-based and
Tair-based STHWs are extremely small, especially when using the ABS threshold. More-
over, regarding the QTL method, the result is even reversed; the relative change ratio of
the HI-based STHW is lower than that of the Tair-based STHW. For threshold methods
that do not consider any seasonal variation (i.e., ABS and QTL), the spatial continuity
of the HI-based exceedance is weaker than that of the Tair-based exceedance, thus con-
tributing to the weak and reversed phenomena observed when using the ABS and QTL
threshold methods.

3.3. STHWs with Different Severity Levels

Figure 6 shows the relative change ratios of STHW characteristics between the present
and historical periods under different HW severity levels in China. As the severity level
rises, most characteristics show increased growth trends together with significance. Specif-
ically, under extreme severity levels, the HWAmax values obtained with the QTLmov and
QTL threshold methods reach 0.51 and 0.53, respectively, with increases of nearly 50%
and at least threefold compared to the mild and moderate levels (0.17 and 0.18 for the
QTLmov threshold, 0.08 and 0.18 for the QTL threshold). Generally, compared to mild
STHWs, the average relative change ratios of moderate and severe STHWs among different
STHW characteristics are approximately 1.2 and 2.4 times higher, respectively, indicating
that extreme STHWs increase much faster than mild and moderate STHWs; this finding
is consistent with the results of previous HW studies performed at the grid scale [22].
However, when using the ABS threshold method, these values are approximately 0.87 and
0.93 times smaller than those of mild STHWs, further confirming that the spatial continuity
of the results obtained using the ABS threshold method is weak and may be unsuitable
for STHW detection. Because most nonsignificant trends occur in the HWI results, we
mainly focus on comparing the other five indexes. Among those five indexes, the relative
changing ratio of HWAmax is the highest, while that of HWAsum ranks second, indicating
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that the impacted spatial areas of extreme STHWs increase much faster than their duration,
intensity, and severity.
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Figure 3. Spatial distributions of the multiannual average daytime, moderate, HI-based STHW spatial
characteristics from 1961–2017: the combination results of using (a) ABS, (b) QTL and (c) QTLmov

method and (1) HWD, (2) HWF, (3) HWI and (4) HWS characteristics. The frequency distribution is
shown in the lower-left corner of each subplot.
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Figure 4. Spatial distribution of the annual trend of HI-based, moderate, daytime STHW character-
istics from 1961–2017: the combination results of using (a) ABS, (b) QTL and (c) QTLmov method
and (1) HWD, (2) HWF, (3) HWI and (4) HWS characteristics. The filled color represents the value
of Sen’s slope. The hatches denote trends that are significant at the 0.05 level. For each subplot, the
percentages of positively significant (PS) and negatively significant (NS) trends are shown in the
top-center, and a histogram of trends is plotted in the lower-left corner. The frequency distribution is
shown in the lower-left corner of each subplot. In b4, the highlighted area is the focus area used to
explain the negative trends in Section 4.1.
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Figure 5. The change ratios of temporal STHW characteristics between the present period of 1991–2017
and the historical period of 1961–1990: for (a) HWD, (b) HWI, (c) HWS, (d) HWAavg, (e) HWAmax

and (f) HWAsum. Daytime, severe STHWs are used here. The change ratio equals (xnow − xhis)/xhis,
where xhis and xnow are the mean values of the considered STHW characteristics during the historical
and present periods, respectively. The “*” symbol denotes that the Sen’s slopes of the STHW
characteristics from 1961–2017 are significant at the 0.05 level.
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Figure 6. Same as Figure 5, but comparing different HW severity levels. The HI-based, daytime
STHW results are used here.

3.4. Daytime and Nighttime STHWs

Figure 7 compares the differences in the relative change ratios of STHW characteristics
between daytime and nighttime STHWs. Surprisingly, daytime STHWs show higher ratios
only for HWI but lower ratios for HWD, HWS, HWAavg, HWAmax, and HWAsum. For
instance, for the HWI values identified by the QTL threshold, the ratios corresponding to
daytime and nighttime STHWs are 0.10 and 0.07, respectively. For the QTLmov threshold
method, daytime STHWs possess at least twofold higher HWD (1.84 and 0.87), HWAavg
(0.36 and 0.16), HWAmax (0.56 and 0.18), and HWAsum (3.11 and 1.22) values than night-
time STHWs. Overall, the results show that the average increase in nighttime STHWs is
approximately 60% faster than that of daytime STHWs when using the QTL threshold, and
approximately 120% faster when using the QTLmov method.
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Figure 7. Same as Figure 5 but comparing daytime and nighttime HWs. The HI-based, severe STHW
results are used here.

4. Discussion
4.1. Explanation of Negative STHW Characteristic Trends in North China and Northeast China

Although prevalent increasing trends in spatial STHW characteristics (e.g., HWD,
HWI, and HWS) are observed in most regions of China, significant decreasing trends are
presented in parts of North China and Northeast China (Figure 4). Taking one representative
region, North China, as an example, we further illustrate the underlying reasons for these
decreasing trends (Figures 8 and 9).
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Figure 8. Sen’s slope of HI from 1961–2017 in North China, exhibiting one representative region
with significant decreasing STHW characteristics and as depicted in Figure 4b4. For each month, the
HI values are averaged from all grid cells in the analyzed region. The lower and upper whiskers
correspond to the 10th and 90th quantiles, respectively, and outliers are removed. β on the top right
is the annual HI trend averaged across all grid cells.
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Figure 9. The empirical cumulative distribution function (ECDF) results of the QTL threshold-based
anomalies of (a) HI and (b) Tair and the QTLmov threshold-based anomalies of (c) HI and (d) Tair in
North China, a representative region with significantly decreasing STHW characteristics as depicted
in Figure 4b4. In each subplot, the right panel shows a zoomed image of the gray window in the
left panel.

We found that negative STHW trends can be attributed to the following two aspects:
(1) On the one hand, temperature warming is spatially asymmetric. Although increasing
temperatures are prevalent in most regions of the globe [37], some regions are experiencing
the inverse trend, with significant decreasing temperature trends. North China is one
of these cases [38,39]. Undoubtedly, the decreasing local temperatures contribute to the
decreasing STHW characteristics at the spatial level. (2) On the other hand, temperature
warming is asymmetric over time. As shown in Figure 9, strong increasing temperature
trends are observed in spring and autumn; a weak increasing trend is observed in winter;
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and reverse decreasing trends are observed in summer and at the end of spring. We
also found that decreasing RH primarily contributes to the decreasing HI in summer
(Figure 8) and, hence, to the asymmetric warming observed among different methods.
This phenomenon directly leads to the decreasing trends of QTL threshold-based STHW
characteristics, as the QTL threshold method mainly focuses on the hottest period each
year (namely, summer), when significant decreasing trends occur. Moreover, regarding
the QTLmov threshold-based STHWs, this phenomenon weakens the increasing STHW
trends. However, whether the trend direction becomes negative depends on the increasing
STHW magnitudes in other seasons, as QTLmov focuses on HI anomalies throughout the
whole year.

Figure 9 further investigates the offsetting effect of summertime cooling and warming
in other seasons regarding the QTLmov -based STHW results in North China. The figure
shows that although the annual averaged HI and Tair have positive trends, the 90%, 95%
and 99% quantiles of their QTLmov -based anomalies in the current period from 1991–2017
apparently decrease compared to those in the historical period from 1961–1990 (Figure 9).
This indicates that summertime cooling has a stronger impact on the negative STHW trends
in the spatial component than warming in other seasons in North China and explains the
negative STHW characteristics trends derived in North China.

4.2. Possible Reasons for the STHW Characteristic Differences among Different STHW Definitions

There is evidence that HI increases faster than Tair regardless of the area-weighted
original value or area-weighted anomaly (Figure 10a1–d1). This result is consistent with
previous findings that the joint impact of reduced RH and increased temperatures leads to
more unprecedented HWs [3,13,36]. However, only for the QTLmov threshold do the HI-
based STHW characteristics always present higher ratios than the Tair-based characteristics
(Figure 5). This result implies that the QTLmov threshold is more suitable for STHW
detection. For threshold methods that do not consider seasonal variations (i.e., ABS and
QTL), the spatial continuity of the HI exceedance is relatively weak, thus resulting in the
increase rates of STHW characteristics being underestimated.

Regarding different HW severity levels, the averaged relative change ratios of moder-
ate and severe STHWs among different STHW characteristics are approximately 1.2 and
2.4 times higher than those of the mild STHW for the QTLmov and QTL threshold methods,
respectively, implying that extreme STHWs will increase much faster. Due to relatively the
low numbers of STHW events identified as the severity level increases. The occurrence of
fewer events will cause the extreme values to be more prominent, and more STHW events
may “average” the results, resulting in relatively low change ratios.

Regarding daytime and nighttime STHWs, the increase in nighttime STHWs is ap-
proximately 60% faster than that in daytime STHWs using the QTL threshold and ap-
proximately 120% faster using the QTLmov method. In addition, the latter method usually
results in a higher change ratio than the former. This finding is consistent with previous
studies [17,40,41] and is mainly the result of intensified heating at nighttime compared
to daytime (0.46 ◦C·decade−1 at nighttime and 0.42 ◦C·decade−1 at daytime) [17,42,43],
further leading to an increasing tendency for nighttime HWs to replace the previously
dominating independent daytime events [17]. As a further explanation, Luo [44] revealed
that increased cloud cover can reduce the solar radiation received by the land surface, thus
potentially increasing the downward longwave radiation emitted by the atmosphere and
clouds at the surface at night and leading to reduced cooling of longwave radiation and
increased nighttime temperatures. This may be the root cause of such rapid increases in
nighttime HWs.
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Figure 10. The seasonal (left panel) and monthly (right panel) Sen’s slope values of the area-weighted
original temperature variables (a1,a2) and different threshold-based area-weighted anomalies (b1–d2)
from 1991–2017 in China. The annual trend β and significance level are presented on the top in each
subplot of the right panel. The symbols “**” and “***” indicate that the slopes are significant at the
0.01 and 0.001 levels, respectively.

4.3. Significance and Limitations

Recently, Luo [25] proposed a 3D perspective to analyze the spatiotemporal patterns
of HWs. In his result, the characteristic trends are 1.14 days/decade for the HW lifetime,
0.04 ◦C/decade for the HW intensity, 0.18 × 106 km2/decade for the maximum area and
1.30 × 106 km2/decade for the total area, while the corresponding metrics obtained in our
study are 2.88 days/decade for HWD, 0.06 ◦C/decade for HWI, 0.19× 106 km2/decade for
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HWAmax and 5.77 × 106 km2/decade for HWAsum. Compared to his approach, we focused
on the most impactful STHW events regarding the temporal characteristics, resulting in
relatively high increasing growth in HWD and HWAsum. Apart from these indexes, our
results show a high degree of consistency. Despite the divergences among the analyzed
methods, both results showed significantly positive trends, demonstrating the robustness
of our results.

The study offers some important insights, outlined as follows:

(1) An improved algorithm is used to detect STHWs. Instead of simply merging all
temporally and spatially adjacent HW grids into a single STHW event, we set
two thresholds: nconnect and noverlap. Compared to the ordinary 3D connection al-
gorithm, this method considers the merging and splitting behaviors of STHW events
during their development and diminution.

(2) Past articles rarely used spatiotemporal clustering algorithms to compare the spa-
tiotemporal patterns under different HW definitions. The majority of investigations of
spatial or temporal variations focused only on the grid scale and ignored joint spatial
and temporal evolution pattern. In addition, HI-based HWs are closely relevant to
human perception, and while most past studies used either Tair or HI, the difference
among these variables remains largely unexplored. In our study, we compare these
HW definitions as comprehensively as possible.

Due to practical constraints, this paper cannot provide a comprehensive review of the
following considerations:

(1) The data selection method may influence the results, especially for RH. According
to our early study, using unhomogenized RH data can produce entirely different
results. To ensure the objectivity of the results, we replaced the original RH with a
homogenized RH. However, the differences introduced by different homogenization
methods were not assessed. It is thus better to use multiple datasets to demonstrate the
robustness of the results. In addition, the selection of temperature data may produce
differences, as expressed in the trend magnitudes and the different distributions of
spatial characteristics, but not to the same extent as the RH selection.

(2) Different selections of the nconnect and noverlap thresholds were not investigated herein.
Comparing the similarity of the results derived with different thresholds may enhance
the robustness of our result.

Overall, our study can provide a more comprehensive understanding of the change
patterns of STHW events in China and help researchers select a suitable HW definition
in China in future research. However, the influence of the chosen data and nconnect and
noverlap values remains unknown in this work, and this will be an important issue in
future research.

5. Conclusions

In this study, we used a modern spatiotemporal clustering algorithm to detect spa-
tiotemporally contiguous heatwaves (STHWs) from a 3-D perspective in China from
1961–2017. We systematically investigated the influence of various threshold methods
(ABS, QTL, and QTLmov), variables (Tair and HI), severity levels (mild, moderate, and
severe), and time (daytime and nighttime) selections on the STHW change characteristics.
The results suggest the following:

(1) Although the trends’ magnitudes were divergent, all threshold methods showed a
consistent phenomenon in most regions of China: STHWs have become longer-lasting,
more severe, and have impacted larger areas spatially. However, the HWI increasing
trends identified in most cases are insignificant. Moreover, the HWF of the moderate
STHWs has decreased mainly because the transfer of mild and moderate STHWs
to extreme STHWs decreased the frequency of the former events. In small parts of
central-eastern and northeast China, some negative STHW trends were observed
due to asymmetric warming in these areas, i.e., these regions experience negative HI
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trends in summer but positive trends in other seasons. For threshold methods that
do not consider any seasonal variation (i.e., ABS and QTL), the spatial continuity
of the HI exceedance is relatively weak, resulting in the increase rates of STHW
characteristics being underestimated. In addition, the ABS method uses eastern China
to calculate the threshold, and it is difficult to identify HWs for the lower-elevation
areas in western China (e.g., the Tibetan Plateau). In comparison, QTLmov performs
much better and is more suitable for use across China.

(2) Regarding HI-based and Tair-based STHWs, when using the QTLmov threshold, the
relative change ratios of all HI-based STHW characteristics are approximately 20%
higher than the Tair-based STHW characteristics, suggesting that the contribution
of RH to HW variability is visible and causes human-perceived HWs to increase
rapidly, as hot temperatures are even more unbearable as the presence of humidity
in the environment reduces the ability of the human body to cool itself. Therefore,
HI-based STHW should be priorly used. Tair alone without considering RH may
underestimate the increasing STHW magnitudes. However, this phenomenon is
weak when considering the QTL threshold and is even reversed when using the ABS
method due to the weak spatial continuity of these two methods.

(3) Regarding different HW severity levels, the averaged relative change ratios of mod-
erate and severe STHWs among different STHW characteristics are approximately
1.2 and 2.4 times higher than those of mild STHWs when using QTLmov and QTL
threshold methods, respectively, implying that extreme STHWs will increase much
faster than mild or moderate STHWs; this finding is inextricably related to climate
warming. Therefore, this phenomenon requires preparation and mitigation programs
to avoid or mitigate the effects of the rapid growth of extreme weather events.

(4) Regarding daytime and nighttime STHWs, the increase in nighttime STHWs is approx-
imately 60% faster than that of daytime STHWs when applying the QTL threshold and
approximately 120% faster when applying the QTLmov method. Increasing nighttime
exposures may increase the risk of heat-related illnesses.

Our study provides a systematic investigation of different STHW definition methods
and will benefit HW studies in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14164082/s1 and https://zenodo.org/record/7012026. Figure S1.
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Figure 3, but the HI-based, daytime, severe STHW results are used here.
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Abbreviations
The following abbreviations are used in this paper:

HW Heatwave
STHW Spatiotemporally continuous heatwave
ABS Absolute threshold method
QTL Quantile-based threshold method
QTLmov Moving quantile-based threshold method
Tair Air temperature
Tmax Daily maximum air temperature
Tmin Daily minimum air temperature
RH Relative humidity
HI Heat index
doy Day of year
HWD Heatwave duration
HWI Heatwave intensity
HWS Heatwave severity
HWAavg Heatwave mean occurrence area
HWAmax Heatwave maximum occurrence area
HWAsum Heatwave total occurrence area
HWF Heatwave frequency
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