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Abstract: This paper demonstrates the weakness of GNSS/INS-RTK (GIR) systems in mapping chal-
lenging environments because of obstruction and deflection of satellite signals. Thus, it emphasizes
that the strategy of mapping companies to commercially provide maps using expensive GIR systems
does not always work robustly. This limits the scalability of autonomous vehicle deployment in many
road structures and modern cities. Accordingly, different critical environments in Tokyo have been
analyzed and investigated to demonstrate the effects of the road structure complexity on the GIR map
quality with highlighting the relevant reasons. Therefore, this paper is intended to be a reference to
prove that the data of GIR systems cannot always be considered as ground truth and the integration
of SLAM technologies into the mapping modules is very necessary to enable the levels four and five
of autonomous driving.

Keywords: LIDAR maps; GNSS/INS-RTK; graph SLAM; intensity maps; elevation maps;
autonomous vehicles

1. Introduction

Mapping in critical environments is very important to enable many applications of
remote sensing and autonomous driving. Maps should clearly represent the environmental
details and accurately localize these details in the real world. There are different sensors
to densely encode environments, such as cameras in the 2D image domain to provide
color and appearance and LIDAR in the 3D point cloud domain to represent shape and
texture [1,2]. As maps are the main pillar for Advanced Driving Assistance Systems (ADAS)
and autonomous driving, researchers and companies tend to use expensive and accurate
GNSS/INS-RTK (GIR) systems to position the sensing data of environmental features in the
real world [3]. This tactic allows us to safely focus on solving problems in the perception,
path-planning, localization and motion controlling modules [4,5]. However, this strategy
cannot be applied in challenging environments such as long tunnels, high buildings and
dense trees because of obstruction and deflection of the satellite signals. Accordingly, the
maps are distorted due to the contradictions in positions, especially in the revisited areas.
Consequently, such maps cannot be utilized to enable safe autonomous driving, and the
corresponding road structures are excluded from autonomous vehicle deployment.

There are many approaches to recover environmental representations and compen-
sate for the GIR errors to generate precise maps, such as Simultaneous Localization and
Mapping (SLAM) technologies [6,7]. SLAM-based mapping systems have sufficiently
been developed and investigated in the literature, and various methods have been pro-
posed using different implementation tactics and sensor types [8–11]. The main idea is
to utilize the relationships between vehicle positions to improve low accurate trajectories.
This is achieved by compensating the localization errors in the revisited areas based on
matching the stationary environmental features. These compensations are integrated into
a probabilistic framework with the position measurements of other techniques such as
GIR and Dead Reckoning (DR) [12]. Meanwhile, the confidence of the measurements is
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modeled to provide the covariance errors. The estimations and the covariance errors are
then mathematically incorporated into a cost function to optimize the vehicle trajectory
and generate precise maps accordingly.

In the Advanced Mobility Research Institute at Kanazawa University in Japan, we
investigated both strategies of using GIR and SLAM-based mapping systems to generate
LIDAR maps and conduct autonomous driving in different cities and road structures [13,14].
The SLAM integration into the mapping module was considered after two years of using
GIR systems when observing low capabilities to map complex roads [15]. Based on the
gained lessons and the relevant experiences, we inferred that there is no common reference
in the literature to illustrate the GIR systems’ weak performances and demonstrate the
relevant effects on the maps. Therefore, this paper is presented to show the experimental
results of generating GIR maps in different challenging traffic junctions in Japan. In
addition, the map distortions are highlighted at various road segments in different patterns
to provide a complete idea of the effects in the mapping domain. Furthermore, different
autonomous vehicles (agents) and driving scenarios were taken into account to analyze the
map quality of the same environments with different traffic flows and data collection dates.
Thus, we believe that this paper can be sufficiently considered as a reference to prove the
low capabilities of GIR systems to generate precise maps and the necessity to integrate
SLAM technologies into the mapping modules.

The remainder of the paper is structured to provide a brief explanation in Section 2
on the map creation strategy to efficiently represent the effects of the GIR low mapping
capabilities in the XYZ plane. The candidate reasons for the error occurrence and the
corresponding distortion patterns in the maps are emphasized in Section 3. The exper-
iment setups and the relevant results of generating GIR maps in different challenging
environments are demonstrated in Section 4. Finally, the conclusion section in Section 5
summarizes the important points.

2. Mapping Strategy Using GNSS/INS-RTK System

LIDAR-based mapping modules can be implemented to generate different types of
maps. For example, the map is explained in ref. [16] by 3D point clouds to represent
the shape and feature distribution of environments. Another approach is to encode only
stationary environmental features such as poles, painted landmarks, barriers, guardrails,
traffic signs and so on [17,18]. This approach significantly reduces the storing size and
is compatible with cloud source-based mapping systems. On the other hand, it lacks in
providing dense details, especially in texture-less and feature-less environments such as
highways, long tunnels and rural roads. Therefore, a mapping module can be implemented
based on using the full LIDAR information of points’ xyz coordinates as well as the reflec-
tivity values, i.e., 2.5D elevation maps [19–21]. The xy coordinates and the intensity values
are utilized to represent the road surfaces in 2D intensity images, whereas the z coordinates
are used to encode the road slopes and the particular height of each pixel in the intensity
images. This approach can be placed between the above two explained methods in terms
of storing size. In contrast, it provides a continuous dense representation of the roads
and surrounding environments. Thus, it is very compatible with the scope of this paper
to illustrate the effects of GIR systems on the maps by clearly showing the distortions
using road surface intensity images in the XY plane and the elevation errors in the Z plane.
We implemented and modified LIDAR-based 2.5D mapping and localization systems to
conduct autonomous driving in different cities in Japan, and a technical explanation of the
map creation strategy is briefly provided in the next section [19].

2.1. 2.5D Map Creation (Intensity and Elevation)

A LIDAR point cloud is cut at a height of 0.3 m to encode road surfaces and converted
into 2D intensity and elevation frames in the image domain using a series of transformations
between vehicle, LIDAR and global coordinate systems. The intensity and elevation frames
are accumulated in two individual images according to the vehicle trajectory. The accumu-
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lation process is terminated when the number of the contained pixels exceeds a threshold β,
and a node is accordingly added to the map, as illustrated in Figure 1. The node is identified
in the Absolute Coordinate System (ACS) using the top-left corner. The xy coordinates of
the corner are determined by the maximum vehicle position in XY directions inside the
node’s driving area, whereas the z coordinate is obtained by averaging the non-zero pixel
values in the elevation image as in Figure 1b. The accumulation process is then reset to
create new nodes and extend the map size accordingly.
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Figure 1. Node strategy. (a) Intensity image to represent the road surface by accumulating LIDAR
frames according to the vehicle trajectory. Top-left corner is the identification of the node in the
XY plane and determined by the maximum vehicle position in the driving area with respect to ACS.
(b) Elevation image to express the height of each pixel in the road surface and identified in ACS by
the average value.

The node-based creation tactic is very important to divide roads into segments that
relatively represent wide road surfaces. The implicit representation of the vehicle trajectory
by β significantly prevents encoding a multilevel road structure in the same node, e.g.,
bridge and underpass road surfaces. This effectively facilitates automatically detecting,
extracting and arranging the relationships between nodes, such as scanning the same,
neighboring and opposite lanes in the same environments, i.e., loop-closure. Accordingly,
the GIR map quality can easily be analyzed to indicate distortions based on the driving
scenarios. Furthermore, this tactic enables us to study the distortions in the XY and Z planes
individually and collectively. Thus, the reasons and the types of these distortions are
detailed in the next section.

3. Reasons and Types of Map Distortions

Loop closures are very necessary to update environment representations and increase
the road surface density, especially on highways and streets with parked vehicles. In con-
trast, loop closures are the main reason to produce distortions in maps because of scanning
the same areas multiple times and merging these scans in ACS. The multiple scans might
be combined with different global position accuracies and lead to encode the same area at
different positions in the real world. Differences in the GIR accuracy occur due to receiving
satellite signals of low quality because of the complexity of the road structures and the
surrounding environments. For example, the urban roads with high buildings and dense
trees in Figure 2 deflect the signals, whereas long tunnels obstruct them considerably. These
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two effects may both exist in multilevel road structures where longitudinal bridges deflect
and obstruct receiving the signals in lower layers, e.g., underpass. Traffic flow may also
cause reflectance and deflection of the signals, especially in closed-sky areas such as tunnels
and multifloor parking lots. In addition, driving scenarios play the main role in producing
distortions in the maps because of visiting areas from different directions, e.g., scanning
an open-sky segment of a T-Junction and then returning via the other segment covered by
dense trees as in Figure 2 (top-left image). Accordingly, the open-sky segment is distorted
in the map due to the processing time to recover the signal accuracy by GIR after coming
out from the dense-tree segment. Furthermore, a special spatial distortion may occur in
the consistency between layers in multilevel environments in the XY plane, e.g., each layer
has a different global position relative to the other layers. The layer inconsistency may
considerably limit autonomous vehicle applications such as sharing traffic jam information
at different layers, i.e., if the layers are not perfectly aligned in the XY plane, the opposite
lanes between layers may wrongly share the same global xy coordinates as illustrated later
in Figure 12d. Finally, map combination is another main and critical reason to massively
distort GIR maps because of the high potential to collect mapping data by different agents,
sensor configurations, environment changes, driving scenarios and traffic flows.
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Figure 2. Challenging environments to be mapped by GIR. Dense trees, high buildings, long tunnels,
covered roads by railway bridges, longitudinal tunnels and multilevel road structures.

The map distortions in the XY plane appear in the image domain as duplications of the
road surface in the lane representations and ghosting effects around the printed landmarks.
Figure 3 demonstrates different distortion types in various road surfaces, structures and
painted landmarks. These distortions are magnified according to the number of loop
closures and the relative position errors in each closure. The effects of these deformations
on the localization accuracy during autonomous driving differ according to the road
surface conditions. For example, the duplication of lane lines produces multiple matching
patterns with the sensory observation data, whereas the ghosting in landmarks leads to the
weakening of the matching pattern.
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Figure 3. Different patterns of ghosting and duplications in distorting the road surface by
GIR systems.

The distortions in the Z plane appear in changing the road slopes and creating unreal
bumps in the road context. The road slopes affect the calculation of roll and pitch angles,
whereas the virtual bumps produce sudden changes in estimating the z vehicle position
that may lead to wrong calculations of the distances to other road users [22].

The effects of the above distortions in the XY and Z planes are magnified in mapping
the multilevel environments where different layers might be inconsistently structured in
the GIR maps because of the wrong xy positions in ACS or wrongly encoded in the same
elevation level because of the wrong z positions. This leads to a massive change in the road
representation compared to the observation data and may cause traffic accidents during
autonomous driving. In order to illustrate the above explanations and effects, different
real experiments in mapping challenging environments in Japan by the GIR systems are
demonstrated in the next chapter.

4. Challenging Environments for Mapping Using GIR Systems
4.1. Setup and Experimental Platforms

Figure 4 shows four experimental platforms that were used to collect mapping data in
different cities in Japan. These vehicles are equipped with many sensors and are usually
used to conduct autonomous driving. Lexus-1 and Lexus-2 are identical and have LIDAR
VLS-128-AP with 128 laser beams and a GIR system of Applanix PosLV 220, whereas Pruis
is equipped with Velodyne HDL-64 S2 and Applanix PosLV 110, and Alphard possesses
Velodyne HDL-64 S2 and Applanix PosLV 220.

In the data collection phase, the vehicle is manually driven to scan environments and
record the GIR measurements. The measurements are offline post-processed by a special
software provided by Applanix to optimize the vehicle trajectory in the real world. The
software is called POSPAC and uses some optimization techniques such as Kalman Filter,
closed-loop error controllers and positions smoothers to estimate the vehicle trajectory
and model the position accuracy based on both IMU and GIR measurements [23,24]. The
accuracy in open-sky areas is around 2~5 cm and changes considerably in the challenging
road structures to be in the meter order. These accuracy estimations are illustrated in
profiles along the test courses to demonstrate the relationships between the road structures
and the satellite signal quality. The LIDAR point clouds are then accumulated based on the
post-processed trajectories as explained in Section 2.1 to generate GIR intensity–elevation
maps, i.e., 2.5D maps.
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Figure 4. Experimental platforms with different sensor configurations. Prius with LIDAR HDL-64 S2
and Applanix PosLV 110 GIR, Alphard with LIDAR 64 and PosLV 220 and two identical Lexus cars
with LIDAR VLS-128-AP and PosLV 220.

The pixel resolution in maps is 0.125 m and the number of pixels to produce a node is
β = 1 M. The elevation images are stored in a float format to represent the exact height in the
real world of each pixel in the intensity images. Loop closures between nodes are detected
and determined based on the top-left corners in the XY plane and the IDs of sampling the
nodes into sub-images [25].

4.2. Mapping an Urban Area Using a Single Drive and a Single Agent

Urban roads in modern cities are challenging environments for mapping modules
because of the surrounding high buildings and dense trees. We chose Tokyo in Japan as a
test field for generating GIR maps because of the existing different complex road structures
and highways as well as long longitudinal bridges and tunnels. Therefore, enabling safe
autonomous driving is a very tricky and necessary demanded.

An arterial ground road in Tokyo that is fully covered by a longitudinal bridge was
scanned using Lexus-2, as illustrated in Figure 5. The road allows driving in two directions,
each of which has been scanned once. The number of nodes is 436, representing 46.5 km in
the real world and equivalent to 39,011 LIDAR point clouds. Thus, continuous loop closures
(240) mainly occurred between the two road shoulders, as indicated by the green links in
Figure 5a. Figure 5b shows the GIR accuracy profile of the nodes in the re-visited areas
in the X and Y directions, respectively. One can observe the huge differences between the
corresponding nodes in each direction, i.e., target (Tra) and reference (Ref ) nodes. Thus, the
GIR map is inaccurate all the way along the course, and ghosting effects exist in different
patterns of duplications of the road surface as demonstrated in Figure 5c. In addition, the
GIR system has flipped the global positions of the two direct and opposite lanes in ACS
at the referred area in Figure 5a. This area is indicated by the sudden changes of the GIR
accuracy at the loop closure ID 196 in Figure 5b and illustrated in Figure 5c at the most right
image. Accordingly, this massive wrong representation of the road structure compared to
the real world may considerably drift the vehicle during autonomous driving and cause a
deadly traffic accident.
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Figure 5. Driving under the bridge in two directions with surrounding high buildings. (a) The vehicle
trajectory is represented by nodes with indicating loop closures by green links. (b) Accuracy profiles
of the GIR system along the revisited areas (in two opposite lanes) in X and Y directions. (c) Different
ghosting patterns in GIR map in lateral and longitudinal directions by flipping the road lanes at the
most correct image.

4.3. Mapping an Urban Area Using Two Drives and a Single Agent

The capability to combine maps precisely is very important in the mapping modules
in order to update environments and create large-scale maps. However, this demand
becomes critical in complex road structures because the GIR system might be initialized at
different positions and create contradictions in the global accuracies. Tokyo’s waterfront
is a challenging mapping area because it considerably reduces the quality of satellite
signals due to the continuous existence of longitudinal railway bridges and tram stations as
illustrated in Figure 6a. The area was scanned by Alphard car in two data collection phases
on the same day as implied in Figure 6b,c. MapA is 35.6 km and consists of 364 nodes
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(77,423 frames) with 484 local loop-closure events. MapB is 28 km and consists of 276 nodes
that are equivalent to 49,283 frames with 150 loop-closure events. Finally, the number of
loop closures between two maps is 425, as demonstrated in Figure 6d.
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Figure 6. Mapping Tokyo’s waterfront with high buildings, dense trees and railways using two
collection phases. (a) The vehicle trajectories in the two phases highlight critical road segments. (b,c)
The node distribution in each phase with the local loop closures by green links. (d) Map combination
links between two phases.

Three road segments were mainly found to produce ghosting effects in the GIR
combined map as indicated in Figure 6a, i.e., the first segment encodes an underpass road
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of the railway bridge with high buildings whereas the second segment is surrounded by
dense trees and the third segment is fully covered by a railway station. These segments
were scanned twice during the first data-collection phase (mapA) and the third scan was
added in the second phase (mapB). Therefore, lateral and longitudinal deviations were
produced in the road surface representation in the GIR combined map.

Figure 7 shows four samples of the three road segments in Figure 6a, demonstrating the
combination of the node’s images using the GIR system. The first and second rows illustrate
two areas in the first road segment to emphasize the continuity of the ghosting effects.
The third and fourth rows encode areas in the second and third segments, respectively.
Particularly, Figure 7a,b show road patches in nodes of the same area in mapA, i.e., local
loop closures. Figure 7c shows the merging results of the two patches in Figure 7a,b based
on GIR. The nodes of mapB are shown in Figure 7d and the potential map combinations
with the nodes in mapA are represented in Figure 7e,f, i.e., loop closures between maps.
The combined map images in Figure 7e,f show different deviations in the longitudinal and
lateral directions. This implies that these areas always affect the map accuracy. In addition,
it can be emphasized that the driving scenario may play a significant role in distorting the
maps, i.e., driving in the same direction may yield an accurate combination as in Figure 7f
(last row) because of scanning the same road structure whereas a longitudinal deviation
occurred in merging the opposite lane in Figure 7c,e because of the surrounding high
buildings at the right roadside as can be compared in Figure 6a (right image). Accordingly,
it cannot be claimed that mapA is more precise than mapB and vice versa because both
of them provided different combination patterns in the same areas. Figure 8 shows the
combined GIR map images of the four road segments in Figure 7 with deformations in the
landmarks and misalignments of the road lanes in the longitudinal directions.
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sentation of local loop closures in the first collection phase in opposite directions. (c) GIR map images
with ghosting effects and deviations in landmarks. (d) Single scans by the second collection phase.
(e,f) Map combination: individual merging of images in (d) with (a,b), respectively.
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4.4. Mapping a Long Underground Tunnel Using Two Drives in the Same Driving Scenario and a
Single Agent

Tunnels are an optimal environment to approximately preserve road conditions and
driving scenarios fixed. This is because of the identical surrounding environments and the
less availability of maneuvering such as conducting lane changes and overtaking actions.
To restrict the scanning conditions, the world’s longest tunnel (Yamate Tunnel) was selected.
The tunnel consists of two independent underground tubes and each tube allows a single
driving direction and consists of only two lanes. The road slope in the first tube gradually
changes to reach 30 m underground. Therefore, it was scanned two times using Prius as
demonstrated in Figure 9a.
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Figure 9. Scanning the world’s longest tunnel two times by the same agent. (a) Nodes along the
course with showing identical distribution in two scans. (b,c) GIR accuracy profile in XY directions
indicating high accuracy in the open-sky area because of receiving good quality satellite signals and
low accuracy all the way inside the tunnel. (d) Road surface images in the first scan. (e) GIR-combined
map images showing the massive deviation between two scans.
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Figure 9b,c show the GIR accuracy profiles for the two scans in the X and Y directions.
In the open-sky area, the GIR accuracy is high in the two scans and the map was generated
precisely. The profiles indicate changes in the accuracy as soon as the vehicle enters the
tunnel and then gradually illustrate the low accurate positioning in ACS all the way inside
the tunnel. Furthermore, it can be observed that the two scans’ accuracies in each direction
are almost identical with slight differences. This is because of changing the traffic flow
inside the tunnel in each scan. Figure 9d illustrates different samples of the road surface
inside the tunnel in the first scan whereas Figure 9e shows the merging of the two scans in
the GIR-combined map. The combined map encodes various patterns of the lateral and
longitudinal deviations along the entire course. One can observe that the lateral deviation
is magnified gradually to form duplications of the road surface. This massively affects the
localization accuracy for a long distance by producing two identical matching patterns with
the observation data during autonomous driving. Thus, the vehicle position estimation
might be frequently switched between the two patterns and generate risky lateral drifting
in the real world. Accordingly, a deadly traffic accident may occur because the lateral
accuracy must be preserved as true in such a highway and narrow road structure.

4.5. Mapping a Long Underground Tunnel Using Two Drives in the Same Driving Scenario and
Tow Agents with Different Sensor Configurations

The capability to combine mapping data collected by different agents is very important
to be integrated into the mapping modules. This paves the way to implement cloud source-
based mapping systems and maintain the frequent updating process of the environment
representation. However, a technical problem emerges in dealing with the different types
of LIDARs due to the changes in the distribution pattern and the number of laser beams in
the point clouds. This problem is settled down in the node strategy by using the 2D image
domain to describe the road surfaces instead of the 3D point cloud domain. Another main
issue is the use of different GIR systems and sensor configurations that affect the global
accuracy of each agent. Therefore, the Yamate Tunnel (two tubes) was scanned by Lexus-1
(128 laser beams) in 2021 and combined with the map data of Prius (64 laser beams) in
2017. Figure 10a shows the corresponding GIR accuracy profiles in the two maps in the
X and Y directions. The trajectory inside the tunnel is the same as in Figure 9a for the first
tube for both agents; however, the driving scenario of the U-turn to visit the second tube
was different. Thus, there were no loop closures between the two maps in the U-turn. This
explains the reasons for the sudden change in the accuracy between the first and second
tubes in Figure 10a. In addition, one can observe the considerable differences between the
profiles to indicate that Prius’s map is more accurate than Lexus-1 in ACS. However, this
indication is not necessarily true and relies on sensor configurations, i.e., Lexus-1′s GIR
(PosLV 220) is more sophisticated than Pirus’s one (PosLV 110) in terms of manufacturing
and sensor accuracy.

Figure 10b demonstrates many road patches in the combined GIR map with showing
different patterns of distortions. Accordingly, the same analysis of the effects on the
localization system in the previous chapter can be considered. This indicates that scanning
such a challenging environment using GIR is not always accurate and merging multiple
scans precisely is almost impossible. Moreover, it emphasizes the necessity to implement
robust methods to improve the map accuracy because multiple scanning of such a highway
environment is very necessary to increase the map density and quality due to the regulations
of using high driving velocity.
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Figure 10. Scanning two tubes of the world’s longest tunnel using two agents with different sensor
configurations. (a) GIR accuracy of each agent in X and Y directions. (b) GIR combined map images
showing different deviations in lateral and longitudinal directions along the first and second tubes.

4.6. Mapping a Critical Course Simultaneously Using Two following Agents with Same Sensor
Configurations and Driving Scenarios

Lexus-1 and Lexus-2 were used to conduct this experiment, where they are identical
in terms of sensor configurations and mass volume. An arterial course in Tokyo, starting
from the waterfront area to the entrance of the Yamate Tunnel was scanned simultaneously.
Lexus-1 exactly followed Lexus-2 by keeping a short distance to unify the driving scenario
and the traffic flow. The course contains open-sky segments, underpasses covered by
longitudinal bridges, short tunnels (2 km) and bridges surrounded by high buildings, as
demonstrated in Figure 11a. As the vehicles were driven simultaneously, the loop closures
between two scans continuously exist along the entire course and Figure 11b,c show the
GIR accuracy profiles of the two agents in the X and Y directions, respectively. Surprisingly,
the Lexus-2′s GIR system began to provide low accuracy of the position estimation in the
underpass segment of the longitudinal bridge whereas this road structure did not affect the
Lexus-1′s GIR system considerably. The low global accuracy of Lexus-2′s GIR gradually
worsened all the way until reaching the entrance of the Yamate Tunnel. Accordingly, the
GIR-combined map of these two simultaneous scans encodes environments at different
global positions in ACS as demonstrated in Figure 11d. The images also show the scans of
the environments in the opposite direction, where the deviations are less. This indicates
that the GIR’s accuracy cannot be predicted and guaranteed in challenging environments
even though using the same sensor configurations, driving scenarios and traffic flow.
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Figure 11. Mapping a critical environment simultaneously using two agents with the same driving
scenario and sensor configuration. (a) Driving scenario by nodes from Odaiba area to the entrance of
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4.7. Mapping a Multilevel Environment Using Single Agent and Single Drive

Multilevel road structures are very critical to be mapped using GIR systems because
of the obstruction of satellite signals by high layers. This affects the position estimation in
both the XY and Z planes. In addition, the relative positions between layers must accurately
be maintained to guarantee the true separation of the layers in the Z direction and the
precise global consistency of the road structure in the XY direction. The GIR accuracy in the
Z direction usually illustrates the same pattern and quality as those in the XY directions.
Therefore, one can imagine the relevant effects of generating GIR elevation maps in the
previous examples.

Ohashii Junction has been chosen to demonstrate the low capabilities of the GIR
systems to accurately map multilevel environments. The junction is the terminal of the
Yamate Tunnel and consists of four stacked loops ranging from 30 m underground to 35 m
aboveground as demonstrated in Figure 12a. Two loops are connected to each tube of the
Yamate Tunnel to allow driving in a single direction (upward or downward) and interfered
with the other two loops in the Z direction, i.e., first and third loops are in the upward
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direction and linked with the first tube whereas the second and fourth loops are in the
downward direction and connected to the second tube. Lexus-2 was used to encode the
four loops starting from the deepest point at 30 m underground at the end of the Yamate
Tunnel’s first tube to scan the upward two loops until the exit. The vehicle was then driven
in an open-sky area to conduct a U-turn and visit the downward two loops.
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Figure 12. Mapping multilevel Ohashi Junction in Tokyo. (a) Rood structure ranging from 30 m
underground to 35 m aboveground using four loops. (b) GIR accuracy in X, Y and Z directions
indicating a big difference between upward and downward loops. (c) Upward loops have been
intersected with downward loops by GIR instead to be interfered with around 10 m relative positions
in the Z direction (the change of color demonstrates the change of height). (d) GIR map images in the
same xy coordinates in each pair showing the intersections between layers representing road surfaces
in opposite directions at the same elevation level.

Figure 12b shows the GIR accuracy profiles in Ohashi Junction in the X, Y and Z directions
based on the coordinates of the nodes’ top-left corners, respectively. One can observe the
massive change in the accuracy at the starting point because of driving inside the Yamate
Tunnel. The accuracy has relatively been recovered in the open-sky road segment (U-turn)
and distorted again when scanning the downward loops. This indicates the low quality
of the GIR map in terms of accuracy and consistency in the XY and Z planes. Figure 12c
illustrates the vehicle trajectory in Ohashi Junction by highlighting that the upward and
downward loops have been intersected and represented in two elevation levels in ACS
instead of four independent and interfered levels. Figure 12d illustrates this fact by showing
four samples of the intersections between the first and second loops as well as the third and
fourth loops in the same xy position. Therefore, each map image encodes the environments
in two elevation levels in two opposite driving directions due to the huge elevation error,
i.e., more than 10 m. Accordingly, the map in the upward direction will not be available
during autonomous driving. Moreover, one can observe in Figure 12a that the loops have
the same geometrical characteristics, especially in the exterior construction. On the other
hand, the images in Figure 12d show the wrong consistency between loop boundaries due
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to the map errors in the XY plane. Consequently, this significantly affects the localization
accuracy and makes conducting autonomous driving very risky using the GIR maps in the
XY and Z planes.

4.8. Mapping Longitudinal Bridge and Underpass Using Single Agent in Two Directions

Bijogi Junction in Tokyo represents a very challenging environment because the ground
road surface (underpass) is covered by a longitudinal bridge for more than 15 km, as
illustrated in Figure 13a. The driving scenario for collecting the map data started just
before Bijogi Junction at point (A) to continuously scan the ground road surface until point
(B). The direct lane in the bridge was then scanned until point (C), where the vehicle was
U-turned to scan the bridge’s opposite lane towards point (B) again. The opposite lane of
the underpass was then scanned until the corresponding road segment of point (A). The
course covers around 40 km and is encoded by 305 nodes as demonstrated in Figure 13b.
Accordingly, loop-closure events (289) continuously occurred because of scanning both
bridge and ground layers in two directions.
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course representation showing continuous covering of the underpass by the wide bridge shoulders. Figure 13. Mapping multilevel Bijogi Junction with longitudinal bridge and underpass. (a) The
course representation showing continuous covering of the underpass by the wide bridge shoulders.
(b) Nodes’ top-left corner distributed in ACS based on GIR coordinates with indicating the continuous
loop closures in each layer because of scanning direct and opposite lanes. (c) GIR standard deviation
of the top-left corners in x and y directions indicating the high quality of satellite signals of bridge’s
nodes and considerable low accuracy in the underpass’s nodes.
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Mapping longitudinal bridges and underpasses is a very crucial demand to enable
the deployment of autonomous vehicles in modern cities. However, this demand is very
difficult to be achieved using the GIR system due to the complexity of the road structures
and the surrounding environments. Figure 13c shows the standard deviation profiles
of the top-left corners in the X and Y directions that are obtained by the GIR system. It
can be logically observed that the bridge nodes possess higher accuracy compared to the
underpass road surface. This indicates the effects of the bridge obstructing the satellite
signals. Figure 14 demonstrates this fact by showing two loop closures in the bridge and
underpass layers, respectively. The GIR system particularly merges the bridge’s nodes
of the direct and opposite lanes precisely because of the high signal quality whereas the
underpass’s nodes demonstrate a massive longitudinal deviation.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 19 
 

 

(b) Nodes’ top-left corner distributed in ACS based on GIR coordinates with indicating the contin-
uous loop closures in each layer because of scanning direct and opposite lanes. (c) GIR standard 
deviation of the top-left corners in x and y directions indicating the high quality of satellite signals 
of bridge’s nodes and considerable low accuracy in the underpass’s nodes. 

Mapping longitudinal bridges and underpasses is a very crucial demand to enable 
the deployment of autonomous vehicles in modern cities. However, this demand is very 
difficult to be achieved using the GIR system due to the complexity of the road structures 
and the surrounding environments. Figure 13c shows the standard deviation profiles of 
the top-left corners in the X and Y directions that are obtained by the GIR system. It can 
be logically observed that the bridge nodes possess higher accuracy compared to the un-
derpass road surface. This indicates the effects of the bridge obstructing the satellite sig-
nals. Figure 14 demonstrates this fact by showing two loop closures in the bridge and 
underpass layers, respectively. The GIR system particularly merges the bridge’s nodes of 
the direct and opposite lanes precisely because of the high signal quality whereas the un-
derpass’s nodes demonstrate a massive longitudinal deviation. 

 
Figure 14. GIR map accuracy in the same global area in XY plane in the two layers of the bridge (1st 
row) and underpass (2nd row). (a) Node of the direct lane. (b) Node of the opposite lane. (c) Merging 
two nodes using the GIR system. The underpass layer shows a massive longitudinal deviation be-
cause of the obstruction of satellite signals by the bridge layer. 

Such multilevel environments require considering the consistency between layers to 
accurately share traffic information between vehicles during autonomous driving. There-
fore, the global positioning accuracy of the layers should be evaluated in the road struc-
ture representation in the GIR maps. Figure 15a shows the Bijogi Junction at point (A) in 
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lateral deviation between nodes created by different driving directions. In the second row, 
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the map accuracy [19,26]. 

Figure 14. GIR map accuracy in the same global area in XY plane in the two layers of the bridge
(1st row) and underpass (2nd row). (a) Node of the direct lane. (b) Node of the opposite lane.
(c) Merging two nodes using the GIR system. The underpass layer shows a massive longitudinal
deviation because of the obstruction of satellite signals by the bridge layer.

Such multilevel environments require considering the consistency between layers to
accurately share traffic information between vehicles during autonomous driving. There-
fore, the global positioning accuracy of the layers should be evaluated in the road structure
representation in the GIR maps. Figure 15a shows the Bijogi Junction at point (A) in
Figure 13a consisting of four road levels in a plus structure shape. Figure 15b (first row)
demonstrates the relative position error in the GIR map at the third layer by showing
a lateral deviation between nodes created by different driving directions. In the second
row, the GIR map demonstrated the inconsistency between the third and fourth layers by
showing a massive misalignment of the road structure representation. This indicates the
necessity to integrate SLAM technologies into the mapping modules in order to improve
the map accuracy [19,26].
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5. Conclusions 
We proved that challenging environments such as dense trees, high buildings, long 

tunnels, multilevel structures and bridges are very critical in achieving precise mapping 
even when using expensive GNSS/INS-RTK systems. This is because of the high possibil-
ity of merging map data at revisited areas with different global positioning accuracies. 
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autonomous driving because they affect the localization accuracy for long distances. Fur-
thermore, this paper emphasizes the necessity to integrate SLAM technologies into map-
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segments will be excluded from autonomous vehicle deployment in the future. Moreover, 
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Figure 15. GIR map inconsistency at Bijogi Junction in the same global area in XY plane. (a) Road
structure in Bijogi Junction consisting of four layers of a plus shape. (b) First row: relative position
error between two nodes at the third layer that were scanned in different driving directions. Second
row: GIR map inconsistency between third and fourth layers at the same global area in the XY plane
showing the misalignment of the road structure.

5. Conclusions

We proved that challenging environments such as dense trees, high buildings, long
tunnels, multilevel structures and bridges are very critical in achieving precise mapping
even when using expensive GNSS/INS-RTK systems. This is because of the high possibility
of merging map data at revisited areas with different global positioning accuracies. This
leads to deviations in positions, ghosting effects in landmarks, duplications in road surfaces
and misalignments in multilevel structures. The main reasons for distortions are proved and
concluded to be different driving scenarios, sensor configurations, map combinations and
traffic flows. Consequently, GIR maps become very risky to be used during autonomous
driving because they affect the localization accuracy for long distances. Furthermore, this
paper emphasizes the necessity to integrate SLAM technologies into mapping modules
in order to improve map accuracy. Otherwise, modern cities and many road segments
will be excluded from autonomous vehicle deployment in the future. Moreover, the paper
highlights many issues that are rarely discussed and investigated by researchers to be
considered in the SLAM implementation phase such as the map combination/updating
capability and the layer inconsistency in multilevel structures. Therefore, the challenging
structures in this paper and the relevant analysis of the GIR map quality can be considered
as baselines to create ideas and visions about the requirements of the mapping modules in
the fourth and fifth levels of autonomous driving.
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