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Abstract: Northeast China (NEC) produces 1/4 of the grain and 1/3 of the commercial grain in China,
and is essential for food security and a sustainable socio-ecological system development. However,
long-term annual crop type distribution in this vital area remains largely unknown, compromising
the scientific basis for planting structure adjustment and sustainable agriculture management. To
this end, we integrated 111-dimensional MOD09A1 features, feature optimization and random
forest algorithms on the Google Earth Engine (GEE) platform to classify annual crop types in the
NEC during 2000–2020, and adopted multi-source spatial data and geostatistical methods to reveal
anthropogenic and natural characteristics of crop type changes. The results demonstrated that
sample-based classification accuracies were 84.73–86.93% and statistics-based R2 were 0.81–0.95.
From 2000–2020, the sowing area of maize and rice increased by 11.92 × 106 ha (111.05%) and
4.03 × 106 ha (149.28%), whereas that of soybean and other crops decreased by 13.73 × 106 ha
(−64.10%) and 1.03 × 106 ha (−50.94%), respectively. Spatially, maize expanded northwestward, rice
expanded northeastward, and soybean demonstrated a south-north shrinkage. The soybean-to-maize
shift was the main conversion type, and its area largely reduced from 8.68 × 106 ha in 2000–2010 to
4.15 × 106 ha in 2010–2020. Economic comparative benefit and climate change jointly affected crop
types in NEC. Higher-benefits maize and rice were mainly planted in more convenient areas with
more population and closer to settlements, roads and waterways. The planting of maize and rice
required higher temperature and precipitation, and climate change in the NEC provided favorable
conditions for their expansion toward high-latitude areas. The crop type changes in the NEC have
boosted economic benefits, but increased water–carbon–energy costs. Thus, effective measures such
as subsidy policies, ecological compensation, and knowledge-exchange should be implemented to
aid crop type and rotation adjustment and ensure food-ecological security.

Keywords: annual crop classification; remote sensing; multi-dimensional features; recursive feature
elimination; random forest; Google Earth Engine; sustainable agriculture development

1. Introduction

Cropland is fundamental for food security and sustainable socio-ecological system
development, supplying essential goods (e.g., food, feed, fiber, and fuel) and ecosystem
services (e.g., carbon sequestration, climate regulation, and biodiversity maintenance) for
human society [1–3]. Global population and economic growth have risen the demand for
food, causing cropland intensification and expansion [4,5]. Moreover, rapid urbanization
and industrialization have consumed a large amount of high-quality cropland [5–7], and
climate changes have increased the risk to agricultural production [8]. Thus, scientific crop
type distribution and plantation are urgently needed to adapt to the changing environment
and to mitigate water consumption, greenhouse gas emissions, and soil quality decline [9–13].
Timely and reliable crop type classification map is the basis for optimizing planting structure
and reducing these negative impacts of cropland use.
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The commonly used methods to obtain crop type distribution include statistics and
remote sensing (RS) [14,15]. However, statistical data has shortcomings such as having
low spatial resolution, and being time-consuming and labor-intensive, which make it
difficult to timely obtain fine-resolution spatiotemporal distribution information of crop
types [14]. By virtue of the ability to provide large-scale, real-time, accurate, and consistent
ground information, RS has been widely used in crop classification studies. Many related
research projects and platforms have been carried out worldwide. For example, the Large
Area Crop Inventory Experiment (LACIE) [16], the Agriculture and Resources Inventory
Surveys through Aerospace Remote Sensing (AgRISTARS) [17], and the Cropland Data
Layer (CDL) in the United States [18]; the Monitoring Agricultural ResourceS (MARS)
project in the European Union; the Annual Crop Inventory (ACI) in Canada [19]; the GEO
Global Agricultural Monitoring (GeoGLAM) in the Group of Twenty (G20) [20]; the Crop
Monitoring System of Meteorological Bureau, the RS-based Crop Yield Estimation System
of Ministry of Agriculture, and the CropWatch system in China [21].

Developments in RS technology have improved the temporal, spatial, spectral, radio-
metric resolutions, and image computing capabilities. Crop classification platforms have
improved from local low-performance software to cloud-based big data platforms such
as Google Earth Engine (GEE) and Pixel Information Expert Engine (PIE-Engine) [22,23].
The GEE cloud platform provides multiple open-access RS datasets (e.g., MODIS, Landsat,
and Sentinel images), widely-used algorithms (e.g., cloud functions, models, and classi-
fiers), and high-performance computing ability, which makes large-scale and long-term
crop classification cost-, labor-, and time-efficient [22,24,25]. The GEE enables individual-
produced code and data be open-source and reusable for all researchers, which is beneficial
for the improvement of related studies [24,25]. Moreover, classification algorithms have
upgraded from traditional unsupervised and supervised methods to machine learning
(e.g., random forest, support vector machine, and CART) and deep learning (e.g., CNN,
RNN, and GANs) [26,27]. Classification features have developed from single one or a few
features to multi-dimensional spectral, spatial, and temporal features [26,28]. However, not
all features are useful for classification, and incorporating redundant features may reduce
accuracy. The optimal selection feature has become the key to improving classification
accuracy [29,30]. In addition, historical crop samples are difficult to obtain, which limits
long-term crop classification studies [31]. The lack of annual crop classification studies
has led to difficulties in accessing fine-time-interval change characteristics of crop types
and rotations [32]. Therefore, it is urgent to classify annual crop types by optimizing
multi-dimensional RS features on big data cloud platform, providing the scientific basis for
rationalizing crop structure and distribution.

Previous studies have analyzed the spatial distribution, changes, and drivers of crop
types in China. Statistical-based analysis found that the sowing proportion of grain crops
has declined whereas that of cash crops has increased in China in recent decades [15,33].
The sowing center of grain crops has moved northward, and the area of maize increased
significantly whereas that of rice and wheat decreased [4,34]. These changes in crop types
and patterns were jointly influenced by anthropogenic (e.g., economic benefits, policies, la-
bor, technology, and dietary structure) and natural factors (e.g., temperature, precipitation,
sunlight, soil, and topography) [10,14,33–35]. Cash crops had higher comparative benefits
than grain crops and were therefore favored by farmers [14,33]. Economic growth and rising
living standards have caused the increased demand for cash crops but decreased demand for
grain crops [33,34]. The off-farm transfer and rising costs of rural labors have driven farmers
to plant higher-benefits (e.g., cash crops) or easier-mechanization crops (e.g., maize) [14,36].
Natural conditions of climate, soil, and topography limit crop types and planting area, but the
improvement of agricultural technologies such as mulch, sprinkler irrigation, drip irrigation,
and terrace construction can help overcome these limitations [37,38]. Besides, global warming
has expanded the crop-planting area to higher latitudes and altitudes, providing favorable
conditions for the northward shift of grain planting center in China [34,39,40]. In general, pre-
vious studies have analyzed the characteristics and drivers of crop type changes from different



Remote Sens. 2022, 14, 4056 3 of 19

perspectives, but most of them were based on statistical data, which were difficult to reveal
fine-resolution information and support spatially differentiated decision-making. Therefore, it
is critical to integrate RS images and spatial raster data of anthropogenic and natural factors
to reveal fine-resolution information on crop type distribution, change characteristics, and
driving mechanisms.

Northeast China (NEC) produces 1/4 of the grain and 1/3 of the commercial grain,
and is one of the most important grain production bases in China [28,41]. In the context of
northward shift in China’s grain center, the NEC has become more important to national
food security [34]. Driven by economic benefits, climate warming, mechanization, rural–
urban migration and other factors, the maize and rice in the NEC has expanded significantly,
and the grain planting area has been shifted northward [39,42]. However, in recent years,
grain production in the NEC has faced challenges such as the decrease in rural labors,
climate warming and drying, and degradation of black soil [43–45]. Thus, in the context
of human-land system change, exploring the spatiotemporal change characteristics and
driving mechanisms of crop types in the NEC is essential for the national strategies of food
security as well as black soil conservation and utilization. To this end, based on the GEE big
data platform and MODIS MOD09A1 images, we used feature optimization and machine
learning algorithms to map the annual spatial distribution of maize, rice, and soybean in the
NEC from 2000–2020. We then integrated multi-source spatial data of anthropogenic and
natural factors to reveal the change characteristics, and provided policy recommendations
for crop planting structure adjustment and sustainable agriculture management.

2. Materials
2.1. Study Area

The NEC has an area of 1.24 × 106 km2, covering three provinces of Heilongjiang,
Jilin, and Liaoning and four eastern leagues of the Inner Mongolia autonomous region
(115.52◦–135.09◦E, 38.72◦–53.56◦N) (Figure 1). The NEC is one of the four major black soil
regions in the world, accounting for about 12% of the total area of the world’s total black soil
area. The area of NEC cropland in 2020 was about 3.75 × 105 km2, with concentrated and
continuous fields, fertile soil, suitable climate, and high mechanization level. Constrained
by the accumulated temperature, crops in the NEC are only one-season. The major grain
crops are maize, rice, and soybean, accounting for more than 90% of the crop sowing area in
the NEC [28]. The NEC produced about 41%, 19%, and 56% of the national yields of maize,
rice, and soybean respectively, making it the most important strategic grain production
base in China.

2.2. Data Sources

The multi-source data used in this study included RS images, land use, crop samples,
climate, topography, and statistical data. The annual MODIS MOD09A1 products in 2000–2020
were from the NASA LP DAAC (https://lpdaac.usgs.gov/, accessed on 20 November 2021),
with the spatial and temporal resolution of 500 m and 8 d, respectively [46]. The data
contained 7 bands, and were used to calculate spectral, spatial, and temporal image features
for crop classification on the GEE platform.

The 100-m resolution per 5-years land use data in 2000–2020 were from the Resource
and Environmental Science and Data Center of the Chinese Academy of Sciences (www.
resdc.cn, accessed on 15 September 2021). The data were based on the visual interpretation
of Landsat images, with an overall accuracy above 90% [47]. We used this dataset to mask
non-cropland land use types and to reduce their interference.

https://lpdaac.usgs.gov/
www.resdc.cn
www.resdc.cn
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Figure 1. Location and altitude of Northeast China. The vector boundary data of China and Northeast
China are from the Resource and Environmental Science and Data Center of the Chinese Academy of
Sciences (www.resdc.cn, accessed on 20 November 2021), and the altitude was obtained from the
SRTM DEM data (https://srtm.csi.cgiar.org/, accessed on 20 November 2021).

The crop samples were from the 10-m resolution crop type maps in the NEC during
2017–2019 [28]. The dataset was produced based on Sentinel-2 time series data and the
GEE platform, with the overall accuracies spanning from 81% to 86%. The classified crop
types in this dataset included maize, rice, soybean, and other crops. We randomly selected
3000 pure-pixel samples for each year (specifically, 1467, 1564, and 1521 for maize; 513, 503,
and 515 for rice; 861, 785, and 823 for soybean; and 159, 148, and 141 for other crops in 2017,
2018, and 2019, respectively), of which 50% were used for training and classification, and
the remaining 50% were used for accuracy validation.

The 30-m resolution topography data of altitude, slope, and aspect were calculated
based on the SRTM DEM data (https://srtm.csi.cgiar.org/, accessed on 20 November
2021) [48], which were used for crop classification and distribution pattern analysis.

The 1-km resolution of soil organic carbon (SOC) map was from the dataset of basic
soil property dataset of high-resolution China Soil Information Grids (2010–2018) [49],
which was used to analyze crop type change characteristics.

The 100-m resolution annual population density data in 2000–2020 were from the
WorldPop program (www.worldpop.org, accessed on 17 August 2021), and were used to
reveal crop type distribution.

The vector data of settlements, roads and waterways were from the OpenStreetMap
(http://download.geofabrik.de/asia/china.html, accessed on 17 August 2021), and were
used to calculate the 500-m resolution data of distance to settlements, distance to roads,
and distance to waterways for crop type analysis.

The municipal-level statistical data of annual crop sowing area were from provincial
statistical yearbooks [50–52], and were used for accuracy assessment.

www.resdc.cn
https://srtm.csi.cgiar.org/
https://srtm.csi.cgiar.org/
www.worldpop.org
http://download.geofabrik.de/asia/china.html
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3. Methods

In this study, we first extracted multi-dimensional spectral, temporal, spatial, and
topographic features based on the GEE platform and MOD09A1 data (Figure 2). We then
used the recursive feature elimination (RFE) algorithm to optimally select RS features for
random forest classification. Finally, we integrated anthropogenic and natural data to
reveal the change characteristics and driving mechanism of crop types.
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Figure 2. Framework for crop type classification and change characteristics analysis.

3.1. Multi-Dimensional Features’ Extraction

The multi-dimensional RS features used for crop type classification included spectral
indices, temporal phenology features, spatial texture features, and topographic features.

(1) Spectral indices. We calculated 9 commonly used spectral indices on the GEE
platform, including Normalized Difference Vegetation Index (NDVI) [53], Enhanced Veg-
etation Index (EVI) [54], Normalized Difference Water Index (NDWI) [55], Land Surface
Water Index (LSWI) [56], Normalized Differential Senescent Vegetation Index (NDSVI) [57],
Normalized Difference Tillage Index (NDTI) [58], Green Chlorophyll Vegetation Index
(GCVI) [59], Modified Soil-adjusted Vegetation Index (MSAVI2) [60], and Normalized
Difference Snow Index (NDSI) [61]. Their calculation formulas are as follows:

NDVI = (ρnir − ρred)/(ρnir + ρred) (1)

EVI = [2.5 × (ρnir − ρred)]/(ρnir + 6 × ρred − 7.5 × ρblue + 1) (2)

NDWI =
(
ρgreen − ρnir

)
/
(
ρgreen + ρnir

)
(3)

LSWI = (ρnir − ρswir1)/(ρnir + ρswir1) (4)

NDSVI = (ρswir1 − ρred)/(ρswir1 + ρred) (5)

NDTI = (ρswir1 − ρswir2)/(ρswir1 + ρswir2) (6)

GCVI = ρnir/
(
ρgreen − 1

)
(7)

MSAVI2 = 1/2 ×
[
2 × ρnir + 1 − (2 × ρnir + 1)2 − 8 × (ρnir − ρred)

1/2
]

(8)

NDSI =
(
ρgreen − ρswir1

)
/
(
ρgreen + ρswir1

)
(9)

where ρblue, ρgreen, ρred, ρnir, ρswir1, and ρswir2 refer to the reflectance of blue, green, red,
near-infrared, short-wave infrared 1 and short-wave infrared 2 bands, respectively, corre-
sponding to the 3rd, 4th, 1st, 2nd, 6th, and 7th bands of the MOD09A1 data.
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The growing season of major crops in the NEC was from April to October. We
calculated the median, mean, maximum, minimum, and standard deviation values in
growing season for these 9 spectral indices, and produced 45-dimensional spectral features
(Table 1).

Table 1. Multi-dimensional RS features for crop type classification.

Feature Types Metrics Periods Calculation Dimensions

Spectral Indices NDVI, EVI, NDWI,
LSWI, NDSI, NDSVI,

NDTI, GCVI, MSAVI2

Growing season
Median, mean,

maximum, Minimum,
standard deviation

9 × 1 × 5 = 45

Temporal Phenology
Features

Seeding stage, growth
stage, harvest stage median 9 × 3 × 1 = 27

Spatial Texture Features NDVI, LSWI Growing season Median and GLCM 2 × 1 × 18 = 36

Topographic Factors Elevation, slope, aspect 3

(2) Temporal phenology features. We used the 90th (April 1) day of year (DOY) as
starting date and 64 days as time intervals to divide the growing season into 3 phenology
periods, i.e., seeding (DOY of 90–154), growth (154–218), and harvest stages (218–282).
We calculated the median values in 3 phenology periods for 9 spectral indices to obtain
27-dimensional temporal phenology features.

(3) Spatial texture features. In this study, we adopted the Gray Level Co-occurrence
Matrix (GLCM) transform, a commonly used method based on the spatial correlation
relationships of image pixel brightness values (grey levels), to extract spatial texture fea-
tures [26,62]. The GLCM transform was performed based on 18 metrics (i.e., angular second
moment, contrast, correlation, variance, inverse difference moment, sum average, sum vari-
ance, sum entropy, entropy, difference variance, difference entropy, information measures
of correlation 1 and correlation 2, max correlation coefficient, dissimilarity, inertia, cluster
shade, and cluster prominence) for the median values of NDVI and LSWI to generate
36-dimensional spatial texture features.

(4) Topographic features. We also calculated the topographic features of altitude, slope,
and aspect based on the SRTM DEM data [63] for crop type classification, due to these
factors affecting farmers’ planting choices of crop types to a certain extent.

3.2. Feature Optimization Selection

(1) Ranking feature importance. We integrated 111-dimensional spectral, temporal,
spatial, and topographic features, and calculated and ranked their Gini importance coeffi-
cients (Figure 3). The feature importance of LSWI, NDSI, and NDSVI were relatively high,
and the mean LSWI value in growing season had the highest importance. However, the
importance of low-ranked features were only one-fifth of the highest value. Thus, for more
effective and accurate feature selection, we removed low-importance features and retained
approximately half of (55-dimensional) the features.

(2) Recursive feature elimination (RFE). The RFE algorithm is a feature selection
method that recursively removes the least important feature until it reaches the desired
number of features [64]. In this study, we used the RFE algorithm with cross-validation
(RFECV) of scikit-learn package in the Google Colab platform to select the optimal fea-
ture set from 55-dimensional features. The RFECV algorithm uses an automatic tuning
cross-validation loop to find the optimal number of features. Figure 4 showed the valida-
tion accuracies for different number of feature sets, and the optimal number of features
was determined as 23 with highest cross-validation accuracy. Thus, we finally adopted
23-dimensional optimal features for crop type classification.



Remote Sens. 2022, 14, 4056 7 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 20 
 

 

coefficients (Figure 3). The feature importance of LSWI, NDSI, and NDSVI were relatively 

high, and the mean LSWI value in growing season had the highest importance. However, 

the importance of low-ranked features were only one-fifth of the highest value. Thus, for 

more effective and accurate feature selection, we removed low-importance features and 

retained approximately half of (55-dimensional) the features. 

(2) Recursive feature elimination (RFE). The RFE algorithm is a feature selection 

method that recursively removes the least important feature until it reaches the desired 

number of features [64]. In this study, we used the RFE algorithm with cross-validation 

(RFECV) of scikit-learn package in the Google Colab platform to select the optimal feature 

set from 55-dimensional features. The RFECV algorithm uses an automatic tuning cross-

validation loop to find the optimal number of features. Figure 4 showed the validation 

accuracies for different number of feature sets, and the optimal number of features was 

determined as 23 with highest cross-validation accuracy. Thus, we finally adopted 23-di-

mensional optimal features for crop type classification. 

 

Figure 3. Ranking Gini importance coefficients of 111-dimensional spectral, temporal, spatial, and 

topographic features. 

Figure 3. Ranking Gini importance coefficients of 111-dimensional spectral, temporal, spatial, and
topographic features.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 4. Recursive feature elimination of 55-dimensional features. 

3.3. Random Forest for Annual Crop Classification 

Random forest (RF) is a widely used Bagging algorithm of ensemble learning con-

taining multiple decision trees [28,30], which improves the accuracy and stability of clas-

sification by training multiple models to reduce generalization error and avoid overfitting. 

Although RF has the ability to resist noise and deal with high-dimensional data, introduc-

ing too many invalid features can still lead to overfitting [30]. Therefore, feature optimi-

zation selection is necessary for RF-based crop classification of high-dimensional data. In 

this study, we used the RF algorithm with 500 decision trees to classify crop type based 

on the 23-dimensional optimal features on the GEE platform. 

In this study, we used the crop samples in 2017–2019 to conduct annual crop type 

classification during 2000–2020. Specifically, we first carried out the 2019 crop classifica-

tion, and then used the 2019 RF classifier with satisfactory accuracy to classify the 2017 

and 2018 crop types, and evaluated their classification accuracies based on samples. After 

proving that the year-specific classifier can be used effectively for the classifications of 

other years, we classified annual crop types for other years during 2000–2020 based on the 

2019 classifier, and assessed their classification accuracies using statistical yearbook data. 

3.4. Analysis of Crop Type Change Characteristics 

The distribution and change of different crop types are jointly influenced by anthro-

pogenic (e.g., economic benefits, policies, labor, and technology) and natural factors (e.g., 

climate, soil, and topography) [14,33]. Thus, revealing the spatiotemporal change charac-

teristics of crop types can help understanding the underlying causes. In this study, we 

used the geostatistical methods [65] in the ArcGIS 10.8 software (Environmental Systems 

Research Institute, Redlands, CA, USA) to analyze the crop type, area, and their changes 

and conversions in the NEC during 2000–2020. In addition, by integrating the factors of 

population density, distance to settlements, distance to roads, distance to waterways, pre-

cipitation, temperature, soil organic carbon (SOC), altitude, and slope, the buffering, over-

lay, and zoning statistics were used to reveal the anthropogenic and natural characteristics 

of crop type changes. 

4. Results 

4.1. Classification Accuracy Assessment 

Confusion matrix-based accuracy assessment found an overall accuracy of 86.93% 

and a Kappa coefficient of 0.79 for the 2019 crop type classification (Table 2). Using the 

2019 classifier to map the crop types in 2017 and 2018, the overall accuracies were 86.33% 

and 84.73%, and Kappa coefficients were 0.78 and 0.76, respectively. In terms of crop 

types, rice had the highest accuracy, and other crops had the lowest accuracy. The 

Figure 4. Recursive feature elimination of 55-dimensional features.

3.3. Random Forest for Annual Crop Classification

Random forest (RF) is a widely used Bagging algorithm of ensemble learning contain-
ing multiple decision trees [28,30], which improves the accuracy and stability of classifi-
cation by training multiple models to reduce generalization error and avoid overfitting.
Although RF has the ability to resist noise and deal with high-dimensional data, introducing
too many invalid features can still lead to overfitting [30]. Therefore, feature optimization
selection is necessary for RF-based crop classification of high-dimensional data. In this
study, we used the RF algorithm with 500 decision trees to classify crop type based on the
23-dimensional optimal features on the GEE platform.

In this study, we used the crop samples in 2017–2019 to conduct annual crop type
classification during 2000–2020. Specifically, we first carried out the 2019 crop classification,
and then used the 2019 RF classifier with satisfactory accuracy to classify the 2017 and 2018



Remote Sens. 2022, 14, 4056 8 of 19

crop types, and evaluated their classification accuracies based on samples. After proving
that the year-specific classifier can be used effectively for the classifications of other years,
we classified annual crop types for other years during 2000–2020 based on the 2019 classifier,
and assessed their classification accuracies using statistical yearbook data.

3.4. Analysis of Crop Type Change Characteristics

The distribution and change of different crop types are jointly influenced by anthro-
pogenic (e.g., economic benefits, policies, labor, and technology) and natural factors (e.g.,
climate, soil, and topography) [14,33]. Thus, revealing the spatiotemporal change characteris-
tics of crop types can help understanding the underlying causes. In this study, we used the
geostatistical methods [65] in the ArcGIS 10.8 software (Environmental Systems Research In-
stitute, Redlands, CA, USA) to analyze the crop type, area, and their changes and conversions
in the NEC during 2000–2020. In addition, by integrating the factors of population density,
distance to settlements, distance to roads, distance to waterways, precipitation, temperature,
soil organic carbon (SOC), altitude, and slope, the buffering, overlay, and zoning statistics
were used to reveal the anthropogenic and natural characteristics of crop type changes.

4. Results
4.1. Classification Accuracy Assessment

Confusion matrix-based accuracy assessment found an overall accuracy of 86.93%
and a Kappa coefficient of 0.79 for the 2019 crop type classification (Table 2). Using the
2019 classifier to map the crop types in 2017 and 2018, the overall accuracies were 86.33%
and 84.73%, and Kappa coefficients were 0.78 and 0.76, respectively. In terms of crop types,
rice had the highest accuracy, and other crops had the lowest accuracy. The misclassification
between maize and soybean was relatively high due to their close growing seasons.

Table 2. Confusion matrix between crop type classification result and validation samples.

Crop Types
Validation Samples in 2019 User

Accuracy (%)Maize Rice Soybean Other Crops Total

Classification
Result in

2019

Maize 696 12 82 4 794 87.66
Rice 15 239 6 0 260 91.92

Soybean 49 9 315 6 379 83.11
Other Crops 5 3 5 54 67 80.60

Total 765 263 408 64 1500
Mapping Accuracy (%) 90.98 90.87 77.21 84.38

Crop Types
Validation Samples in 2018 User

Accuracy (%)Maize Rice Soybean Other Crops Total

Classification
Result in

2018

Maize 703 21 70 5 799 87.98
Rice 17 218 4 3 242 90.08

Soybean 61 4 299 1 365 81.92
Other Crops 9 4 6 75 94 79.79

Total 790 247 379 84 1500
Mapping Accuracy (%) 88.99 88.26 78.89 89.29

Crop Types
Validation Samples in 2017 User

Accuracy (%)Maize Rice Soybean Other Crops Total

Classification
Result in

2017

Maize 652 18 78 11 759 85.90
Rice 11 223 13 2 249 89.56

Soybean 57 8 335 7 407 82.31
Other Crops 5 9 10 61 85 71.76

Total 725 258 436 81 1500
Mapping Accuracy (%) 89.93 86.43 76.83 75.31

Note: Overall accuracies were 86.93%, 86.33%, and 84.73%, and Kappa coefficients were 0.79, 0.78, and 0.76 in
2019, 2018, and 2017, respectively.
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We compared a municipal-level statistical data of crop area with annual mapped area,
and found that their coefficient of determination (R2) values were 0.81–0.95 (Figure 5). The
R2 values were the lowest in 2001, 2003, 2005, and 2010, and the highest in 2015. Further
analysis found that the crop classification in more recent years had higher R2 values with
statistical area than earlier years (2000–2005), indicating that the 2019 classifier performed
better for optimized features in recent years. This may be due to the impacts of climate
variations, seed shift, and field management changes on crop growth. In addition, the
areas of mapped different crops were mainly larger than statistical area, implying that the
statistics may miss part of the crop distributions.
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4.2. Annual Crop Type Distribution and Area Changes

The crop type distribution demonstrated significant spatial heterogeneity in the NEC
from 2000 to 2020 (Figure 6). In 2000, the crop distribution was dominated by soybean,
mainly located in the northwest. However, over time, the soybean distribution has shrunk
significantly from south to north, while the maize distribution has expanded dramatically
towards the northwest. As a result, the maize gradually became the dominated crop, mainly
distributed in the southern and central of NEC. In addition, rice was mainly concentrated
in the northeast of NEC, showing a trend of expansion. Other crops were distributed
scattered, with relatively low variation.

From 2000 to 2020, the most significant changes in crop types in the NEC were the ex-
pansion of maize and rice, and the shrinkage of soybean and other crops (Figure 7). The sow-
ing area of maize and rice increased from 10.74 × 106 ha and 2.70 × 106 ha to 22.66 × 106 ha
and 6.73 × 106 ha, increased by 11.92 × 106 ha (111.05%) and 4.03 × 106 ha (149.28%),
respectively. Conversely, that of soybean and other crops decreased from 21.42 × 106 ha and
2.01 × 106 ha to 7.69 × 106 ha and 0.99 × 106 ha, decreased by 13.73 × 106 ha (−64.10%) and
1.03 × 106 ha (−50.94%), respectively. Moreover, the maize area increased rapidly in 2002,
while soybean area fell sharply. After 2015, the maize area demonstrated a slight decrease,
whereas soybean demonstrated an increasing trend. In addition, the area proportion of
maize and rice increased from 29.12% and 7.32% in 2000 to 59.53% and 17.67% in 2012,
respectively. However, the proportion of soybean and other crops decreased from 58.10%
and 5.46% to 20.20% and 2.60%, respectively.
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4.3. Spatiotemporal Conversions of Crop Types

From 2000–2010, large amounts of soybean have converted to maize in the central
of NEC, mainly located in the Songnen Plain and Liao River Plain (Figure 8). The maize
and soybean in the northeast of NEC were largely converted to rice, mainly distributed
in the Sanjiang Plain and a few in the Songnen Plain. Furthermore, some of the maize in
the Inner Mongolia autonomous region were converted to other crops. From 2010–2020,
the converted area of soybean to maize was significantly reduced compared to 2000–2010,
and these conversions mainly occurred within Heilongjiang, and near the border between
Inner Mongolia and Jilin and Heilongjiang. Most of the expanded rice was converted from
maize and soybean distributed within Heilongjiang.

The crop type conversion in NEC was mainly the shift of soybean to maize. From
2000–2010, the area of soybean converted to maize was 8.68 × 106 ha, which accounted for
48.73% of the total maize area in 2010 (Table 3). In addition, the areas of maize and soybean
converted to rice were 1.68 × 106 ha and 1.38 × 106 ha, accounting for 31.09% and 25.59%
of the total rice area in 2010, respectively. Of the total area of other crops in 2010, 67.13%
(2.23 × 106 ha) was converted from soybean.

Table 3. Conversion matrix of crop types in the NEC from 2000 to 2020.

Gains in 2010 (106 ha)

Maize Rice Soybean Other Crops Total

Losses in 2000
(106 ha)

Maize 1.68 0.91 0.30 2.90
Rice 0.42 0.06 0.04 0.52

Soybean 8.68 1.38 2.23 12.29
Other Crops 0.78 0.03 0.48 1.30

Total 9.88 3.10 1.46 2.57 17.02

Gains in 2020 (106 ha)

Maize Rice Soybean Other Crops Total

Losses in 2010
(106 ha)

Maize 1.11 0.72 0.07 1.91
Rice 0.68 0.08 0.01 0.77

Soybean 4.15 0.50 0.10 4.75
Other Crops 1.51 0.04 0.86 2.41

Total 6.35 1.66 1.65 0.18 9.84
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From 2010–2020, the converted area of soybean to maize largely reduced compared
to 2000–2010, with only 4.15 × 106 ha, accounting for 18.32% of the 2020 maize area
(Table 3). The increased area of rice from 2010 to 2020 was also mainly from maize and
soybean, accounting for 16.57% (1.11 × 106 ha) and 7.50% (0.50 × 106 ha) of the 2020 rice
area, respectively.
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4.4. Anthropogenic and Natural Characteristics of Crop Type Changes

Geostatistical analysis found significant heterogeneities in the different crop types and
their changes (Figure 9). In terms of anthropogenic factors, maize and rice were mainly
located in more densely populated areas closer to settlements and roads than soybean and
other crops. The type-unaltered areas of different crops during 2010–2020 trended to be
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farther from settlements and roads than 2000–2010. Maize expanded closer to settlements
and roads during 2000–2010, while expanded farther during 2010–2020. The expanded
areas of rice and soybean were farther from settlements and roads than reduced areas
from 2000–2020.

In terms of natural factors, maize and rice were closer to waterways than soybean
and other crops, and rice was closest due to its highest water requirements. From 2000
to 2020, maize expanded farther from waterways, and soybean reduction was located
closer to waterways. Rice expanded nearer to waterways during 2000–2010, whereas its
characteristic was reversed during 2010–2020.
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The distributed areas of maize and rice had relatively higher precipitation and tem-
perature than soybean and other crops. From 2000 to 2020, expanded maize and rice, and
reduced soybean were mainly located in lower-precipitation areas. Reduced soybean was
mainly in higher-temperature areas. Maize expanded to higher-temperature areas and rice
expanded to lower-temperature areas during 2000–2010, while their characteristics were
reversed during 2010–2020.

In the type-unaltered areas, the SOC of rice and soybean were significantly higher
than that of maize and other crops. Expanded maize and reduced soybean had relatively
lower SOC, while expanded rice had higher SOC.

Among major crops, rice had the lowest altitude and smallest slope. From 2000 to
2020, expanded rice and reduced soybean were mainly in lower-altitude and smaller-slope
areas. Maize expanded toward lower-altitude and smaller-slope areas during 2000–2010,
while toward higher-altitude and smaller-slope areas during 2010–2020. Other crops had
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the highest altitude and biggest slope, and were distributed toward higher-altitude and
bigger-slope areas.

5. Discussion
5.1. Limitations and Future Improvements of Annual Crop Classification

Most previous studies have identified crop type distribution in recent years with
multi-year intervals [14,28,32]. However, long-term annual crop classification studies
remain rare due to hard-to-obtain historical samples, which made it difficult to reveal
fine-time-interval characteristics of crop type and rotation changes [28]. In the study, we
used sample-based classifier with satisfactory accuracy in 2017–2019 to classify the crop
types in other years without samples. Although the classification accuracies in no-sample
years have satisfactorily assessed by statistical data, the statistics-based R2 was relatively
low in the early years (2000–2005). Previous research found that climate variations over
the long-term may affect crop growth status and type classification [32], which was not
considered in this study. Future studies can use temporal transfer learning algorithms [66]
to generate historical virtual samples and introduce climate factors [32] as key features to
classify crop types more accurately.

Among the main crop types in the NEC, rice has its unique growing season, which
was significantly different from other crops. The rice phenology was also more sensitive to
water index than other crops. As a result, we adopted two commonly used water indices
(i.e., NDWI, LSWI) [56], assisted with multiple spectral, temporal, spatial, and topographic
features, to classify crop types, and rice was mapped with the highest accuracy. The high
performance of LSWI in the crop type classification involving rice was confirmed by our
study and previous studies [28,41]. However, the misclassification between maize and
soybean was relatively high due to their similar phenology, which was in line with previous
research [28]. To better identify these crop types, future studies can add more features (e.g.,
polarization features from SAR data) with finer time interval to map crop types. Besides,
the MOD09A1 products used in this study only has a spatial resolution of 500 m. Although
the data was suitable for the NEC with large-area plots, it was too coarse for the areas with
fragmented cropland [14]. Indeed, the classification based on higher resolution imagery
with finer time interval had a higher accuracy than this study [28]. Thus, fine-resolution
RS data such as 30-m Landsat and 10-m Sentinel data are urgently needed for future crop
classification [27,28,32]. Moreover, we only used RF algorithm to classify annual crop types,
but did not compare its performance with other machine learning algorithms such as SVM
and CART. Therefore, future research should compare the accuracies of multiple classifiers
to find more stable optimization features and to improve crop classification.

5.2. Potential Applications of GEE-Based Annual Crop Type Distribution

By virtue of open-access datasets, widely-used algorithms, and high-performance
computing ability, the GEE cloud platform is cost-, labor-, and time-efficient in producing
large-scale and long-term crop type classification [22,24,25,28]. Moreover, individual-
produced code and data based on the GEE platform can be open-source and reusable
for all researchers [24,25]. Thus, both the code of data processing, feature extraction and
selection and classifier setup, and annual crop type classification results in this study were
beneficial for the improvement of related studies, which can make some contributions to
the RS community.

Crop classification, especially long-term classification, is the basis for understanding
the process, pattern, drivers, and economic-ecological effects of crop type distribution
and their changes. Compared to crop classification studies with multi-year interval, long-
term annual crop classification can provide finer time-interval information on crop type
and change trajectories for sustainable agriculture management. Previous studies have
mainly revealed crop rotation information based on time-consuming field surveys or
observations for consecutive years [67–69]. Moreover, previous studies have analyzed
the effects of different crop rotation types on soil organic carbon (SOC) based on field
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experiments or observations [68,69]. However, due to the lack of crop rotation map, the
critical and fundamental information on fine spatial heterogeneity of these effects remain
unknown. Thus, the large-area and long-term spatial distribution of crop rotation and its
multidimensional (e.g., yield, carbon, water, and energy) effects are urgently needed to be
mapped based on annual crop classification, supporting scientific basis for crop type and
rotation optimization.

5.3. Causes, Effects, and Policy Implications of Crop Type Change

Crop type changes are jointly affected by anthropogenic and natural factors [33,34,39,40,70].
Specifically, economic benefits and labor cost were two key anthropogenic factors for the crop
type changes in the NEC. With the growth of social economy and labor income, most farmers
migrated to cities for off-farm employment, and the remaining farmers preferred to plant
higher-benefits or labor-saving crops [70]. Although rice was labor-intensive, it had the highest
comparative economic benefits among major crops [14]. Maize had higher comparative benefits
and was easier-mechanization than soybean. Thus, the planting area of maize and rice increased,
and that of soybean decreased in the NEC, which were consistent with previous studies [28].
Moreover, farmers tend to plant higher-benefits maize and rice in more convenient areas, i.e.,
the areas closer to settlements, roads, and waterways. In addition, climate change, especially
global warming, was the main natural factor for the crop changes of NEC [39]. The planting
of maize and rice required a higher accumulated temperature and water requirement than
soybean. Thus, maize and rice were mainly located in the areas with higher precipitation and
temperature, and climate warming trend provided favorable conditions for maize and rice
expansion in high-latitude areas of NEC [39,40].

Although maize and rice have relatively higher economic benefits, they also consume
more water, fertilizer, and energy [38]. Thus, the expansion of maize and rice has boosted
farmers’ incomes, but also increased the costs of water, carbon, and energy consumption in
the NEC [50–52]. As a result, groundwater has declined and black soil has been degraded
in the NEC over the past few decades [45,71]. In addition, previous studies found that
rice was an important emission source of greenhouse gases such as methane (CH4) and
nitrous oxide (N2O) [72,73]. As soybean have been shown to increase soil nitrogen, it would
be better to expand maize in the form of maize-soybean rotation instead of continuous
maize [74]. Thus, decision-makers should adopt effective measures such as subsidy policies,
ecological compensation, and knowledge-exchange to enhance farmers’ awareness of low-
carbon planting and guide farmers to practice more environmentally friendly rotation
form and field management [3,38]. To achieve food security and sustainable agricultural
development, multi-objective optimization and scenario simulation studies should be
emphasized on the basis of revealing the process-mechanism-effect of crop type and
rotation spatiotemporal changes in the future.

6. Conclusions

In this study, we provided a GEE-based methodological framework to map annual crop
type distribution and spatiotemporal change. By integrating multi-dimensional MOD09A1
features, multi-source anthropogenic and natural data, and multiple methods of feature
optimization, random forest and geo-statistics, we classified annual crop types with sample-
based overall accuracies of 84.73–86.93% and statistics-based R2 of 0.81–0.95, and revealed
anthropogenic and natural change characteristics in the NEC during 2000–2020.

The result demonstrated that maize was mainly planted in the south and central of
NEC and expanded northwestward by 111.05%. Rice was concentrated in the northeastern
and expanded by 149.28%, whereas soybean was located in the northwestern and showed
a south-north shrinkage of –64.10%. Consequently, the proportion of maize and rice
increased from 29.12% and 7.32% to 59.53% and 17.67%, while that of soybean and other
crops decreased from 58.10% and 5.46% to 20.20% and 2.60%, respectively. The soybean-to-
maize shift was the main conversion type, and its area largely reduced from 8.68 × 106 ha in
2000–2010 to 4.15 × 106 ha in 2010–2020, accounting for 48.73% of the 2010 maize area and
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18.32% of the 2020 maize area. Higher-benefits maize and rice were mainly planted in more
convenient areas with more population and closer to settlements, roads, and waterways.
Their planting required higher temperature and precipitation, and climate change in the
NEC provided favorable conditions for their expansion toward high-latitude areas. The
crop type changes in the NEC have boosted economic benefits, but increased water-carbon-
energy costs. Thus, effective measures such as subsidy policies, ecological compensation,
and knowledge-exchange should be implemented to ensure food-ecological security. Future
studies could focus on multi-objective optimization and scenario simulation to aid crop
type, rotation adjustment, and sustainable agriculture management.
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