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Abstract: Flooding is one of the catastrophic natural hazards worldwide that can easily cause dev-
astating effects on human life and property. Remote sensing devices are becoming increasingly
important in monitoring and assessing natural disaster susceptibility and hazards. The proposed
research work pursues an assessment analysis of flood susceptibility in a tropical desert environ-
ment: a case study of Yemen. The base data for this research were collected and organized from
meteorological, satellite images, remote sensing data, essential geographic data, and various data
sources and used as input data into four machine learning (ML) algorithms. In this study, RS data
(Sentinel-1 images) were used to detect flooded areas in the study area. We also used the Sentinel
application platform (SNAP 7.0) for Sentinel-1 image analysis and detecting flood zones in the study
locations. Flood spots were discovered and verified using Google Earth images, Landsat images, and
press sources to create a flood inventory map of flooded areas in the study area. Four ML algorithms
were used to map flash flood susceptibility (FFS) in Tarim city (Yemen): K-nearest neighbor (KNN),
Naïve Bayes (NB), random forests (RF), and eXtreme gradient boosting (XGBoost). Twelve flood
conditioning factors were prepared, assessed in multicollinearity, and used with flood inventories as
input parameters to run each model. A total of 600 random flood and non-flood points were chosen,
where 75% and 25% were used as training and validation datasets. The confusion matrix and the area
under the receiver operating characteristic curve (AUROC) were used to validate the susceptibility
maps. The results obtained reveal that all models had a high capacity to predict floods (AUC > 0.90).
Further, in terms of performance, the tree-based ensemble algorithms (RF, XGBoost) outperform other
ML algorithms, where the RF algorithm provides robust performance (AUC = 0.982) for assessing
flood-prone areas with only a few adjustments required prior to training the model. The value of
the research lies in the fact that the proposed models are being tested for the first time in Yemen to
assess flood susceptibility, which can also be used to assess, for example, earthquakes, landslides,
and other disasters. Furthermore, this work makes significant contributions to the worldwide effort
to reduce the risk of natural disasters, particularly in Yemen. This will, therefore, help to enhance
environmental sustainability.
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1. Introduction

Among the most devastating natural disasters, flooding is particularly deadly in the
high-frequency tropical cyclone zones of South and East Asia, where it can cause catas-
trophic damage and affect over 20,000 lives each year worldwide [1]. According to the
Emergency Events Database (EM-DAT), natural catastrophes affect about 100,000 people
annually in Yemen. Floods have caused significant economic and crop losses [2]. Fur-
thermore, many world climate models predict that the high precipitation will potentially
increase future flood severity and frequency in Yemen [3]. In October 2008, prolonged heavy
rains in the Wadi Hadramout of Yemen caused disastrous flooding. With high population
growth, largely unregulated urbanization, and a lack of environmental controls, Yemen has
become increasingly prone to natural hazards [3]. The total damage caused by the flood
was estimated to be $1638 million, and over 70 individuals were killed, 25,000 people were
displaced, and over 2800 homes were destroyed; at least 340 dwellings were destroyed
in Tarim, Al-Kotn, and Shibam, all of which were located in Hadramaut [4]. Whenever a
river’s discharge exceeds its network’s capability, the river overflows its floodplain, causing
flooding [5]. Flash floods, which occur primarily in river systems less than 200 km2, are
unique among such natural dangers because of their ferocity [6]. Due to continuous global
climate change, flash flood dangers have increased in frequency and size in recent decades.
Climate change has changed the current rainfall pattern, causing heavy rains in short peri-
ods and flooding as the rainfall surpasses the soil permeability capacity [7]. Deforestation
precipitates in riverbeds, human settlements encroaching on riverbeds, dam construction,
and unsustainable urbanization are just reasons why large-scale human-environmental
interventions cause devastating flash floods [8].

Nevertheless, forecasting flash floods remains a challenging undertaking because of
the complicated causes of this event [9]. For this reason, a high-precision model must be
developed that could predict and map the possibility of flash floods. Thus, local govern-
ments and decision-makers could control disaster risks and minimize the effects of climate
change. The first and most important step in flood modeling and risk assessment is flood-
ing susceptibility mapping. Flood-prone locations can be detected via flood susceptibility
mapping, and appropriate structural and non-structural solutions can be implemented to
mitigate flood-related losses [10].

Flood susceptibility mapping (FSM) refers to determining the area vulnerable to flood-
ing based on chosen risk variables [11]. Nevertheless, various elements contribute to the
flood, including elevation, aspect, rainfall, drainage conditions, geology, geomorphology,
land use, and cover [12]. Furthermore, all of the parameters may or may not be compati-
ble with a specific model; additionally, all factors may or may not contribute to flooding
susceptibility models [13]. FSM is an essential step in preventing and managing future
flooding [10]. On the other hand, flooding is characterized by complicated conditions that
make accurate forecasting impossible. FSM has been the subject of numerous research
using a variety of approaches. During the last several decades, geographic information
systems (GIS) and remote sensing (RS) have demonstrated their efficacy in managing
massive hydrological datasets in order to develop increasingly realistic flood susceptibility
maps [14]. Inferred RS approaches provide fast and reliable options for obtaining flood
event spatial data, even in physically unapproachable areas [14]. It was reported that the
use of synthetic aperture radar (SAR) is an optimized choice. Because radar flash has
increased penetrating capacity, it resolves the cloud cover problem. However, its use in de-
veloping countries, in particular, has been restricted by its high cost and limited range [15].
Several modeling techniques have been used to model flood hazards and predict their oc-
currence in literature reviews, such as Konadu and Fosu (2009) modeled watercourses and
predicted floods in Accra, Ghana, using a vector-oriented GIS and a digital elevation model
(DEM) [16]. At present, techniques for order preference by similarity to an ideal solution
(TOPSIS) [17], analytic network process (ANP) [18], analytic hierarchy process (AHP) [18],
and logistic regression [19] are examples of multivariate or multi-criteria decisions making
(MCDM) methods utilized in flood hazard assessments [20]. The MCDM methodologies
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are regarded as subjective but straightforward [21]. Physically-based modeling systems
can describe the specifics of a flash flood, but they require a large amount of input data
and significant processing resources [22]. Compared to the MDCM and physically-based
simulation approaches, the statistical and machine learning methods transcend the MDCM
and physical simulation methods’ drawbacks and can rapidly and accurately predict the
flooding susceptibility [13,23–26]. The frequency ratio (FR) [27], weights of evidence [28],
index of entropy [29], and statistical index [7] are the main statistical tools employed in
flood susceptibility mapping. However, because of the complex mechanism by which
floods occur, the accuracy of these statistical approaches is limited [30]. Therefore, various
ML methods are being used to solve the problems mentioned, e.g., logistic regression
(LR) [19], support vector machine (SVM) [31], artificial neural network (ANN) [32], random
forest (RF) [33], Extreme gradient boosting (XGBoost) [34], decision tress (DT) [5], Naïve
Bayes (NB) [35]. At present, deep learning models, e.g., convolutional neural network
(CNN), recurrent neural network (RNN) [36], deep neural network (DNN) [37], are widely
used in disaster prediction, which shows higher accuracy in predicting flash flood and
landslides, but the drawback in using DL models is a large dataset, which is always a
problem in data-scarce regions like Yemen.

Several studies have demonstrated that ensemble machine learning models can make
accurate predictions of natural hazard susceptibility, such as flood hazards [30,38–41], air
pollution [42], droughts [43], gully erosion [44,45], land subsidence [46], landslides [47,48],
groundwater [49], and earthquakes [50]. Madhuri et al. [51] used various machine learning
models, namely LR, KNN, AD-boost, and XGboost for flood risk management in Hyder-
abad (India), and found XGboost to be the more accurate model in delineating flood-prone
areas with the AUC score of 0.83. Abedi et al. [33] assessed flash flood susceptibility by
using RF, Xgboost, CART, and BRT in which RF achieved the highest accuracy with AUC
values of (0.956) followed by BRT with AUC values of (0.899), Xgboost (0.892), and CART
with AUC values of (0.868). These approaches are founded on considering past flood
events as dependent variables and flood conditioning factors as independent variables.
Additionally, past flood data may be utilized to assess the performance of these models,
which is one of their advantages. However, no universal model has been demonstrated to
be superior in all areas of research [38].

Tarim city, Yemen, is prone to flash floods and experiences several episodes of flash
floods during the rainy season almost yearly, resulting in the loss of lives, properties, and
ecological environment [52]. However, no effort has been made to map flood susceptibility.
Therefore, this study aims to delineate flood-prone locations and determine the causative
factors of flood occurrences in Tarim city. The novelty of this study is that the advanced
machine learning methods, namely KNN, XGBoost, RF, and NB algorithms in Tarim, Yemen,
are used to assess flash flood susceptibility based on twelve flash flood conditioning factors.
In addition, RS data (Sentinel-1 images) were used to detect flooded areas in the study
area. This study is valuable since it is the first time proposed models are being used in a
tropical desert area of Yemen to assess flood susceptibility. The models can also be used
to analyze other disasters, such as earthquakes, landslides, and other natural disasters.
Additionally, this study contributes significantly to the global effort to mitigate the risk
of natural disasters, notably in Yemen. The model’s performance and validation of the
FFS maps are assessed using the confusion matrix and AUROC. The results of this study
may be helpful to legislators and city planners for sustainable land use and infrastructure
planning.

2. Methods and Data
2.1. Study Area

The study area, Tarim city, is located in the Hadhramout province of Yemen (15◦45′–16◦15′N,
48◦45′–49◦15′E) (Figure 1). The geology of the study area is a series of thick, flat-lying
sedimentary formations eroded into a complicated Wadi pattern, including limestone [53].
The soil type’s classifications in Wadi Hadramout are dominated by rock (73.09%), which
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directly affects increased runoff. Gravel soil is classified as the second type (13.18%). This
results in reduced soil infiltration and surface water flow (Runoff). Sand, clay, and silt are
the remaining categories, accounting for 13.52% [54].
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Figure 1. Study area map containing 2008 and 2021 images of flood damages.

During summer, the mean temperature of the study area is around 35 ◦C, while the
mean temperature in winter is approximately 19.7 ◦C. The annual mean precipitation of
the area is 100 mm [55]. Due to changes in land-use patterns, rapid population growth,
migration, unplanned urbanization, and facilities construction in flood-prone areas without
adequate drainage capacity, environmental degradation and global climate change are
significant reasons for unexpected flooding. Another cause is that hills surround the study
area; the rainfall-runoff from this hilly area brings a considerable water inflow to Tarim city
during the monsoon season [55,56].

During 1996 and 2008, several floods occurred in the study area, which destroyed,
killed, and washed away human and animal lives, hydraulic structures, and fertile land [3,54].
On 2 May 2021, a flash flood affected the area, resulting in four confirmed deaths and
injuries; officials and partners claimed that 167 households were impacted, where their
homes were either partially or wholly destroyed [57]. The intensity of precipitation on
27 October 2008, was nearly 91 mm, which resulted in catastrophic floods in the Hadramout [3].
The majority of the damaged structures in the study region were composed of conventional
mud bricks with stone foundations (Figure 1) [55]. The natural disaster had a tremendous
impact on housing, with 561 dwellings demolished, and floods not only damaged buildings
but also wreaked havoc on agricultural land [52]. While the studied region received heavy
precipitation in 2021, flooding in the neighborhood of “Al-Shabika” and Amid Aldan
Hadrami’s “Al Kef’s palace” destroyed dozens of historic dwellings and caused large-scale
damage [57].

2.2. Flood Susceptibility Mechanism and Conceptual Framework

Flood susceptibility is closely related to disaster-causing factors (hazard), the vulnera-
bility environment, and management measures. The disaster-causing factors mainly refer
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to the precipitation factors, such as heavy rain. The vulnerability environment mainly refers
to the underlying surface characteristics, topographic characteristics, vegetation status, soil
factors, land use, and management measures refer to disaster prevention and reduction
factors, mainly including drainage pipe network and river drainage capacity (Figure 2).
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The cause and mechanism of flood susceptibility are the basis for selecting flood
susceptibility indicators. This study will estimate flood susceptibility based on this mecha-
nism and propose a conceptual framework for flood susceptibility based on the cause and
mechanism (Figure 3).

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 30 
 

 

 

Figure 3. The conceptual framework of flood susceptibility. 

2.3. Multicollinearity Assessment 

In a dataset, multicollinearity is the presence of two or more linked variables that are 

linearly dependent on one another [58]. Therefore, it is a type of data disorder, and if it 

exists, statistical inferences formed from the data may not be accurate or trustworthy [59]. 

A multicollinearity test can aid with the selection of appropriate factors for hazard map-

ping, which can improve the model’s results [60]. The most common causes of multicol-

linearity are inaccuracies in using dummy variables, variables of the same kind being re-

peated, and a high degree of relationship among the variables [61]. The multicollinearity 

test is performed using tolerance (TOL) indices. It is not error prone if TOL > 0.1 because 

the variables are not multi-collinear. Multi-collinearity in the linear domain is a common 

feature of every statistical application and should be noted. The below equation was used 

to calculate tolerance [62]. 

Tolerance = 1 − 𝑅𝑗
2

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

where 𝑅𝑗
2 is the coefficient of determination, TP (true positive) and TN (true negative) rep-

resent the number of pixels appropriately identified, and FP (false positive) and FN (false 

negative) represent the number of pixels classified incorrectly. 

2.4. Detection of Flood-Prone Area by Sentinel-1 

Sentinel-1A and Sentinel-1B, launched in April 2014 and April 2016, respectively, are 

the first of a series of Earth-imaging satellite constellations operated under the Copernicus 

program of the European Space Agency. The Sentinel-1 satellites collect data in four sep-

arate imaging modes: interferometric wide-swath (IW), strip map (SM), extra wide-swath 

(EW), and wave (WV), each with its own acquisition configurations [63]. The fact that 

radar beams cannot penetrate dense foliage is its fundamental disadvantage [64]. Sentinel-

1 SAR data packages, which are freely available through the Sentinel Scientific Data Hub, 

can be used to identify backscatter signals from underwater areas (scihub.copernicus.eu, 

accessed on 6 May 2021). Sentinel-1 Level-1 ground range detected (GRD) data were pro-

jected onto the land using an Earth ellipsoid model (WGS84) in the current work since the 

specular reflection of C-band signals over flooded areas is substantially lower than over 

bare ground. Finally, using the SAR approach, Sentinel-1 SAR data were used to locate 

and map flooded areas [38,65]. 

Figure 3. The conceptual framework of flood susceptibility.

2.3. Multicollinearity Assessment

In a dataset, multicollinearity is the presence of two or more linked variables that are
linearly dependent on one another [58]. Therefore, it is a type of data disorder, and if it
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exists, statistical inferences formed from the data may not be accurate or trustworthy [59]. A
multicollinearity test can aid with the selection of appropriate factors for hazard mapping,
which can improve the model’s results [60]. The most common causes of multicollinearity
are inaccuracies in using dummy variables, variables of the same kind being repeated,
and a high degree of relationship among the variables [61]. The multicollinearity test is
performed using tolerance (TOL) indices. It is not error prone if TOL > 0.1 because the
variables are not multi-collinear. Multi-collinearity in the linear domain is a common
feature of every statistical application and should be noted. The below equation was used
to calculate tolerance [62].

Tolerance = 1− R2
j

TP + TN
TP + TN + FP + FN

(1)

where R2
j is the coefficient of determination, TP (true positive) and TN (true negative)

represent the number of pixels appropriately identified, and FP (false positive) and FN
(false negative) represent the number of pixels classified incorrectly.

2.4. Detection of Flood-Prone Area by Sentinel-1

Sentinel-1A and Sentinel-1B, launched in April 2014 and April 2016, respectively, are
the first of a series of Earth-imaging satellite constellations operated under the Copernicus
program of the European Space Agency. The Sentinel-1 satellites collect data in four separate
imaging modes: interferometric wide-swath (IW), strip map (SM), extra wide-swath (EW),
and wave (WV), each with its own acquisition configurations [63]. The fact that radar
beams cannot penetrate dense foliage is its fundamental disadvantage [64]. Sentinel-1 SAR
data packages, which are freely available through the Sentinel Scientific Data Hub, can be
used to identify backscatter signals from underwater areas (scihub.copernicus.eu, accessed
on 6 May 2021). Sentinel-1 Level-1 ground range detected (GRD) data were projected onto
the land using an Earth ellipsoid model (WGS84) in the current work since the specular
reflection of C-band signals over flooded areas is substantially lower than over bare ground.
Finally, using the SAR approach, Sentinel-1 SAR data were used to locate and map flooded
areas [38,65].

2.5. Data Pre-Processing and Processing

Sentinel-1 (GRD and IW) data for 12 April 2021 (before the flood) and 6 May 2021 (after
the flood) for Tarim City were acquired to identify and detect flood locations in the study
area. The Sentinel Application Platform (SNAP 7.0) was used to manipulate radar data [66]
and used the interferogram creation technique to apply pre- and post-flood data [38]. In
addition to threshold data collected during the flood (Table 1). First of all, the data were
clipped as the study area using the SNAP application, and their orbit files were successfully
updated, followed by calibration to optimize extracted data.

Table 1. Technical attributes of Sentinel-1 data used for this work.

Dates Product Type Sensor Mode Platform Path

12 April 2021
6 May 2021

Ground range
detected (GRD)

Interferometry
Wide swath (IW) S1A Ascending

In most cases, raw satellite data contains speckle. As a result, they were smoothed
using the SNAP speckle filtering tool. The pixel values in SAR imaging can be related
to the scene’s radar backscatter; calibration transforms the pixel values from the sensor’s
digital values into backscatter coefficient values, which are effectively calibrated backscatter
coefficient values [66].

The purpose of speckle filtering is to reduce image noise and provide higher-quality
imagery. All of the preprocessing steps are detailed below:
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(i) Apply orbit file: Orbit state vectors, which are included in the metadata of SAR
results, are frequently inaccurate. The precise orbits of satellites are computed over several
days and are available days to weeks after the product is created. The SNAP application
of a precise orbit allows for the automatic download and update of the orbit state vectors
for each SAR scene in its product metadata, delivering exact satellite location and velocity
information [67]. (ii) Calibration: The process of converting digital pixel data to radio-
metrically calibrated SAR backscatter is known as calibration. The calibration applies a
constant offset and a range-dependent gain, including the absolute calibration constant, and
reverses the scaling factor used during level-1 product development. (iii) Terrain correction:
Terrain correction is the use of a digital elevation model to correct the location of each
pixel to rectify geometric distortions induced by topography, such as foreshortening and
shadows [67]. Distances can be altered in SAR images due to topographical changes and
the tilt of the satellite sensor. Image data that are not in the nadir location of the sensor will
be distorted. Terrain adjustments are meant to compensate for these distortions, bringing
the geometric representation of the image as close to the real environment as possible
(SNAP Toolbox) [68]. SAR geometry effects such as foreshortening, layover, and shadows
may all be corrected with terrain correction [69]. (iv) Creating dB bands and stacking both
data. In this step, a logarithmic transformation is used to convert the unitless backscatter
coefficient to dB [68] Equation [69]:

β
◦
db = 10 ∗ log10

(
β
◦
)

(2)

where β◦ is the digital number value of the image and β◦ db is the backscattered value
in dB.

To extract the maximum amount of information, a dB band was generated for both
images. The data were then layered for further processing in ArcGIS.

The free satellite data of Sentinel-1 were employed to detect the flooded areas. For
the same place, two images on different dates were used, and the images represent the
area before and after the flood occurrence; this method depends on the unique SAR
interaction nature with water surface and flooded vegetation compared with the other
features. Geometric distortions because of terrain effects of the study area are not considered
in GRD imagery provided by ESA. Therefore, the GRD scenes have to be terrain corrected
to improve the geolocation accuracy of the imagery [70].

After performing all of the necessary processing steps and terrain corrections, we used
an RGB combination of the before flood image in the red (R) channel and the after-flood
image in green (G) and blue (B) channels. Figure 4 resumes all steps followed to process
Sentinel-1 in order to identify flooded areas in the study area.

2.6. Methods
2.6.1. Random Forest (RF)

RF is an ML classification algorithm that improves the classification tree’s flexibility
and accuracy [71]. It is a variant of bagged decision trees created from many de-correlated
trees and only requires tuning a few parameters [72]. The number of a split attribute
(Mtry), which sets the number of parameters to divide at each tree node, is the most critical
parameter to tune in RF. For classification and regression, RF is a highly efficient method. It
can deal with multidimensional, categorical, and continuous data. RF does not necessitate
any assumptions regarding the data’s statistical distribution, and it is resistant to changes
in the dataset’s composition. One of the advantages of the RF is that it has a quick training
speed and can detect the mutual influence of characteristics. RF can balance faults in
uneven datasets, and even if a large portion of the features is missing, accuracy can still
be maintained [73,74]. These characteristics come in handy when working with nonlinear
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mutual relationship variables [74]. It consists of K integrated decision trees composed of a
set of unrelated regression decision trees {h(x, θk), kε1, 2, · · ·K}.

h(x) =
1
N ∑ h(x, θk) (3)

where x is the conditioning factor of flood and k are the numbers of the decision tree, θk is
an independent, identically distributed random variable. N is the total number of decision
trees generated by the model.

I(xi) =
K

∑
k=1

Ik(xi)

K
(4)

where Ik is the importance of factor xi, and I is the importance of factor x in all random
forests.
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In contrast, RF is complicated and could overfit the training data when dealing with
noisy regression or classification problems. RF outcomes will be influenced more by
attributes with more values. In general, RF is an effective integrated learning method [73].

2.6.2. K-Nearest Neighbor (KNN)

KNN algorithms are supervised ML algorithms; however, they are also called lazy
algorithms because they do not require learning [47]. KNN can be used to handle regression
and classification issues. KNN computes the k nearest samples utilizing the distance
between samples and uses their value to predict the value of the desired selection [75].
These k samples are most similar to the sample examined. Once the method has selected
the k nearest samples, it may simply output a weighted sum of their values as the model’s
prediction for the target sample [75]. KNN’s drawbacks include the necessity for extensive
calculation and the requirement for a large memory [76]. The distance formula in KNN is
as follows.

Lp
(
xi, xj

)
= (

n

∑
l=1
bxl

j − xl
jcP)

1
p

(5)

where p = 2, the Euclidean distance used in this study.
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2.6.3. Naïve Bayes (NB)

NB is a simple and extensively used algorithm applied in various fields (computer
science, earth sciences, text classification, and medicine). This approach is practical when
sample S can be characterized as conjugating conditionally independent attributes [77].
Using Bayesian learning, based on the Bayesian probability theory, we can compute the
posterior probability given the last possibilities [78]. The primary advantage of the NB
model is that it is relatively simple to implement and does not necessitate the use of
extensive hyperparameter tuning [76]. One of the advantages of the NB is that it has a solid
mathematical foundation and stable classification efficiency. NB excels with small-scale
data, can handle a variety of classification problems, and is well-suited to incremental
training [73]. The disadvantage of the NB model is that it is susceptible to how the input
data are represented; it is necessary to compute the prior probability [73]. The probability
of Ci under the samples S is calculated as follows:

p(Ci|S) =
p(x1|Ci)p(x2|Ci) · · · p(xn

∣∣∣Ci)
Li
L

∑m
i=1 p(Ci)p(S|Ci)

(6)

where S is unknown class sample data, Ci is the class of study object, Li is the number of
samples in Ci, L is total samples.

2.6.4. Extreme Gradient Boosting (XGBoost)

XGBoost is a sophisticated ensemble learning algorithm based on classification or re-
gression trees [79]. First, this algorithm generates several subsequent decision trees utilizing
the prediction errors or residuals from the preceding tree instead of averaging independent
trees; consequently, it focuses on samples with a higher level of uncertainty. The decision
trees generated in previous steps are combined to arrive at the final output [79]. XGBoost
aims to minimize computational complexity while optimizing computer resources [79]. In
contrast to the above algorithms, XGBoost contains several tunable parameters that add
complexity. XGBoost has a few parameters in common with other tree-based algorithms,
but it also requires hyperparameters to limit the risk of overfitting, reduce prediction
variability, and increase accuracy [76]. XGBoost’s key advantages are flexibility and speed.
Due to its outstanding performance in a growing several of Kaggle contests, XGBoost has
established itself as a unique inclusive algorithm [79]. However, XGBoost has only been
used in a few research thus far to map geological hazard susceptibility. The target value
(Ot) of the algorithm after t iterations is calculated using Equations (8)–(10) [79]:

Ot ∼= −
1
2

T

∑
r=1

G2
r

Hr + σ
+ γT (7)

where σ and γ are penalty factors, Gr and Hr are calculated as follows, T is the number of
leaf nodes, and l denotes the loss caused by differences between the predicted and true
values.

Gr = ∑
i∈Ir

δyi,t−1 l(yi, yi,t−1) (8)

Hr = ∑
i∈Ir

δ2
yi,t−1 l(yi, yi,t−1) (9)

where yi is an actual factor, yi,t−1 is the value after t times calculations.

2.7. Model Validation

The validation and accuracy assessment in modeling is critical. A machine learning
model should preferably not be assessed on the same data on which it was trained, as this
can cause the model to overfit the data, producing mildly more robust results than they
would have been. Thus, to obtain an independent model assessment, it is essential to run
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it on testing data that the model has not utilized previously [80]. Here, 25% (150 points)
of the total inventoried flood points were used to validate each model. The receiver
operating characteristic (ROC) curve and confusion matrix were used to assess each model’s
performance, which are frequent and critical features used in most statistical or probabilistic
applications, especially in susceptibility mapping [80,81]. Moreover, the area under the
curve (AUC), a summary of the ROC curve, was computed. ROC curve is a graphical
depiction of how well locations are classified as non-events or events [81]. The AUC
values range from 0 to 1, where value0 indicates a low predictive accuracy that does not
accurately categorize the FFS, and value 1 indicates a perfect predictive accuracy with
absolute FFS pixel categorization [81]. The kappa index was also computed to assess the
model performance, where their values ranged between 0 to 1 denoting a low to a high
kappa index [82].

Confusion matrices are the primary tool for evaluating classification errors (sorting
items into classes, i.e., categories or kinds of items). Machine learning under supervision
is a typical application of confusion matrices. They provide the complete specification of
misclassifications: the number of misclassified items for each pair of original classes to
which items should be classified and incorrect class to which items are classified incorrectly.
From a trusted collection of pre-classified things, it is known that items belong to an original
class (a ground truth) [83].

This study used five statistical evaluation measures to assess the trained FFS models’
performance: accuracy, specificity, sensitivity, negative predictive value, and positive pre-
dictive value. Accuracy refers to the proportion of FFS and non-FFS pixels successfully
classified by the resulting models. Sensitivity refers to the proportion of FFS pixels accu-
rately detected as flood occurrences, and specificity refers to the proportion of non-FFS
pixels correctly classified as non-FFS. The positive predictive value indicates the likelihood
that pixels will be correctly identified as FFS, while the negative predictive value indicates
the likelihood that pixels will be correctly classed as non-FFS.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Sensitiviy =
TP

TP + FN
(11)

Specificity =
TN

FP + TN
(12)

Positive predictive value =
TP

FP + TP
(13)

Negative predictive value =
TN

FN + TN
(14)

where TP (true positive) and TN (true negative) represent the number of pixels appropri-
ately identified, while FP (false positive) and FN (false negative) represent the number of
pixels classified incorrectly.

2.8. Factor System of Flood Susceptibility and Model Building
2.8.1. Flash Flood Conditioning Factors

A significant phase in FSM is the selection of dominant key variables for assessing
flood risks [12]. In general, flooding occurs due to natural and human factors. When
mapping sensitivity to floods or other natural disasters, the number of conditioning factors
must be specified [84,85]. The flood conditioning factors were chosen based on the geo-
environmental condition of the study area and related studies from areas with similar
climatic circumstances [86,87].

Twelve (12) independent variables were prepared as separate maps in R software, spa-
tially registered (Table 2), and resampled to a determined pixel size resolution proportional
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to the land use map we extracted using ArcGIS 10.3 from a map issued jointly by ESRI and
the Impact Observatory Institute (resolution10 m).

Table 2. Lists the sources of data types used in this work.

No Data Type Source Period Mapping Output

1 ALOSPALSAR
(D.E.M./12.5 m)

Alaska satellite facility (ASF)
https://search.asf.alaska.edu
(accessed on 1 January 2021)

2021
Elevation, Slope, Aspect,
Curvature, SPI, Drainage

Density, and TWI.

2 Sentinel 2 (10 m) https://scihub.copernicus.eu
(accessed on 6 May 2021) 2021 NDVI map

3 Land use/Land cover
(10 m)

https://livingatlas.arcgis.com/landcover
(accessed on 26 June 2021) 2021 LU/LC map

4 Rainfall data https://code.earthengine.google.com
(accessed on 1 January 2021) 1996–2021 Rain Intensity, Rain

Duration maps
5 Soil Data (RNRRC.) in (AREA), Dhamar, Yemen 2006 Soil type

Rainfall: As far as floods are concerned, rainfall is the most significant factor [40].
Due to no more current ground-station rainfall measurements for the study area, gridded
data derived from Climate Hazard Infrared Group Precipitation Station (CHIRPS) that
were explored on Google Earth Engine (GEE) were used to derive the average of maximum
annual rainfall per year. CHIRPS data were also used to attain the average of the most
extended period of consecutive days of rainfall per year from 1996 to 2021 (Figure 5h,i).
These data can equally be used in difficult-to-reach locations with scant or time-incomplete
observational data [88]. This study selects the rain intensity and rain duration to measure
the hazard.

Elevation: Previous research has established that elevation significantly influences
flooding [12,22]. The elevation map of the research area was produced from an ALOS
PALSAR sensor-derived digital elevation model (DEM) with a 12.5 m pixel size (Figure 5a).

Topographic wetness index (TWI): The terrain-driven balance of catchment water
supply and local drainage for each cell in a DEM is expressed by the topographic wetness
index (TWI), which integrates water supply from the upslope catchment area and downs-
lope water drainage [89]. TWI provides information about the spatial distribution and
saturation sources contributing to runoff generation. As a result, the TWI has an indirect
role in affecting runoff systems in a given area. TWI values were computed in this work
using the DEM model, as shown in the following equation [90] (Figure 5b):

TWI = ln(As/tan(β))

where As is the specific contributing area and β is the gradient or slope.
Stream power index (SPI): The power of the stream, shear stress, and velocity are all

essential elements in the development of flood damage and the erosion of river channels.
SPI is a statistic that measures the erosive strength of discharge compared to a specific area
within a watershed. It is also a measure of the erosive force of the flowing water [91]. SPI
can be accounted for using the following equation [92]:

SPI = As × tan(β)

The SPI map was derived from DEM by applying the equation above in ArcGIS 10.3
software (Figure 5c).

https://search.asf.alaska.edu
https://scihub.copernicus.eu
https://livingatlas.arcgis.com/landcover
https://code.earthengine.google.com
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Slope: The slope is affected by surface runoff and infiltration and thus is critical in
the flood susceptibility mapping [93]. The slope is the ratio of a feature’s steepness or
degree of inclination relative to the horizontal plane [94]. The slope map was created
simply in ArcGIS 10.3 software using the DEM and divided into five categories, as shown
in Figure 5d.

Aspect: Aspect is another factor that influences flooding water flow directions, evap-
otranspiration, local climate, soil moisture, evapotranspiration, and infiltration [95]. The
aspect factor influences the occurrence of natural occurrences on the earth’s surface since it
is influenced by climatic elements such as precipitation direction and sunshine intensity [6].
Although this element only has a minor impact on flooding, most researchers have included
it as one of the factors to consider when mapping flood susceptibility [6,96]. Aspect was
classified into nine groups, each corresponding to a cardinal direction. Flood pixels are
spread very evenly throughout these nine types as shown in Figure 5e.

Curvature: Curvature is another factor affecting floods event; a surface part can
be concave or convex and influences the flow’s divergence and convergence across the
surface [12]. The curvature was extracted from DEM in ArcGIS (Figure 5f).

Normalized difference vegetation index (NDVI): The normalized difference vegeta-
tion index (NDVI), another critical factor for flood susceptibility mapping, is an essential
indicator of vegetation cover and its impact on flooding in a catchment [33]. The NDVI
value is calculated using the following equation [97]:

NDVI = (IR− R)/(IR + R)
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where the R-value is the red portion of the electromagnetic spectrum and the IR value is
the infrared portion of the electromagnetic spectrum. For this study, the NDVI map was
obtained from Sentinel-2 data by combining bands B8 and B6, as shown in the equation
below (Figure 5j):

NDVI = (B8− B4)/(B8 + B4)

Land use/land cover (LU/LC): LU/LC types play an influential role, directly or in-
directly influencing some hydrological methods components, such as runoff generation,
infiltration, and evapotranspiration [28]. Land-use, land-cover (LULC) maps can be ob-
tained from high-resolution satellite sensors. We derived the research area’s land use map
from a global map issued jointly by ESRI and the Impact Observatory Institute. Access to
the entire global GeoTIFF zip file is available on (https://livingatlas.arcgis.com/landcover,
accessed on 26 June 2021). The data were accessed and downloaded on 26 June 2021. We
then categorized the study area into seven groups: water, trees, grass, crops, scrub/shrub,
built area, and bare ground using ArcGIS 10.3 (Figure 5k).

Soil type: Soil type is an essential factor in flood susceptibility mapping, as primary
water infiltration is dependent on soil characteristics [26]. The national soil map of Yemen
was compiled in 2006 by Renewable Natural Resources Research Center (RNRRC) in the
Agricultural Research and Extension authority (AREA), Dhamar, Yemen [98]. From conver-
sion tools In ArcGIS 10.3, we converted soil map polygon to raster layer, then extracted
study area, and categorized into two groups, namely Etc (dry soil, dry sedimentary, soil dry,
and limestone soil), and Rcc (dry limestone, soil dry, shallow calcareous soil, and shallow
soil) (Figure 5l).

Drainage density (Dd): Hydrological networks are measured by the average length of
rivers in a river basin, which determines their length. Dd is the ratio of drainage length (km)
to area km2 [99]. It is an essential factor in determining flood-prone areas. The drainage
density is used to describe the management measures (Figure 5g).

2.8.2. Flood Inventory Map

The key to accurately predicting flash-flood-prone areas is to survey the areas already
affected by torrential events. It is necessary to investigate prior flooding incidents in the
study area to determine the chance of future flooding. Rapid surface runoff frequently
induces flash floods that spread down the valley’s slope [6]. To identify and detect flood
areas in the study area, we gathered a set of Sentinel-1 images (level-1 ground range
detected (GRD), more interferometric wide swath (IW)) acquired between 12 April 2021 and
6 May 2021, and we manipulated them using the sentinel application platform (SNAP 7.0).
The time-series interferogram construction technique was applied on pre-and post-flood
Sentinel-1 data to map flooded areas [38,66]. Two images from separate dates were utilized
to represent the area before and after the flood occurred; this strategy is based on the
unique nature of SAR interaction with the water surface and flooded vegetation compared
to other features. The flood inventory map was created using data from flood occurrences
between 1996, 2008, and 2021. The Sentinel-1 images and interpretation of satellite and
Google Earth images and news reports were used to create the flood inventory map [27].
For flooding susceptibility mapping, flood and non-flood points are required [100]. The
training flood areas (300 points) were chosen based on past disaster reports and sentinel
data and the same number of non-flooded areas were randomly created [101]. Figure 6
shows the spatial distribution of the 600 points (flooded and non-flooded) used to prepare
flooding susceptibility maps. A flood layer was prepared as a dependent component. In
this layer, the points corresponding to flood and non-flood areas were indicated by the
values 1 and 0, respectively. Of the total points, 75% were used to train the models and the
remaining 25% were used for the validation of the trained models [102,103].

https://livingatlas.arcgis.com/landcover
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2.8.3. Applied ML Models for Flood Susceptibility Mapping

In this study, ArcGIS 10.3 and R 3.6.1 software are used to analyze flood susceptibility.
Figure 7 shows the methodology used in this research study. The first step involved
data collection and preprocessing, second—multicollinearity testing of flood causative
factors, third—data split into 75% for model training and 25% for validation, fourth—the
preparation of flood susceptibility maps by RF, XGboost, NB, and KNN, and the last step is
the validation and comparison of flood susceptibility maps.
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3. Results
3.1. Multicollinearity Analysis

In this study, we proceeded with the assumption that there would be no linear de-
pendency among conditioning factors that would have a detrimental impact on our sus-
ceptibility models. Table 3 lists the results of the multicollinearity analysis of the 12 flood
conditioning factors. The TOL of all variables used in this study are higher than 0.292,
indicating no multicollinearity between these variables. Thus, we used them all in the
modeling step.

3.2. Flood Detection Results Using Sentinel-1 Data

In Figure 8, the flooded areas are differentiated (in red) from the other areas (pre-flood
water bodies). The flooded areas on the map were zoomed in to make them more visible.

3.3. Variable’s Importance

The relevance of each conditioning factor for the four models was assessed using R
software. The results indicate that the slope is the most critical factor for all used algorithms,
followed by the drainage density, TWI, and elevation (Figure 9). These findings support
earlier research revealing that these factors are essential in the flood susceptibility [22,104].
Further, the other factors show low and various variable importance, whereas the factors
(rain duration and aspect) show the least essential variables. It is worth noting that flooding
is associated with rainfall; however, in our study, rainfall duration was the least important
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factor after aspect contributing to flooding susceptibility because flash floods are sudden
and caused by sudden heavy rainfall in a short period of time. Elevated areas typically
receive more rainfall, which flows downward and inundates areas with gentle slopes and
low elevated areas. Our findings are consistent with previous studies where rainfall is the
least important contribution to flood susceptibility [27,105–107].

Table 3. Multicollinearity analysis of the flood conditioning factors.

No. Factors
Collinearity Statistics

Tolerance

1 Aspect 0.916
2 Curvature 0.905
3 Drainage density 0.514
4 Elevation 0.393
5 LANDUSE 0.775
6 NDVI 0.726
7 Rain duration 0.565
8 Rain intensity 0.592
9 Slope 0.292
10 SOIL 0.497
11 SPI 0.871
12 TWI 0.369
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In summary, there is a similarity in the significance rankings of RF, KNN, NB, and
XGBoost variables may be seen (Figure 9), and factor distribution by floods occurrences
(Figure 10)

The relevance of each conditioning factor for the four used models was assessed using
R software. The variables in the RF model with the highest importance were found to be
slope and drainage density, while variables with medium to lesser importance included
TWI, elevation, SPI, curvature, and NDVI. In the case of soil, land use, rain intensity,
rain duration, and aspect, no such importance was discovered in the modeling of flood
susceptibility.

The variables with the highest importance in the KNN model are slope, TWI, drainage
density, elevation, SPI, and soil, while those with medium to low importance are land use,
NDVI, and curvature. There is no such importance in flood susceptibility modeling for
factors such as rain duration, rain intensity, and aspect.

The highest importance of the variables in the NB model was found in the slope
variable, TWI, drainage density, elevation, SPI, and soil, while the other variables, such as
land use, NDVI, and curvature had a medium to less importance. There was no importance
found in flood susceptibility modeling for rain duration, rain intensity, and aspect.

The only variable with the highest importance in the XGBoost model is the slope,
while those with medium to less importance are drainage density and elevation. There is
no such importance in flood susceptibility modeling for curvature, NDVI, TWI, SPI, soil,
land use, rain intensity, rain duration and aspect.

Flooding probability was calculated independently by investigating the link between
every explaining variable and flash flooding frequency. Using histogram analysis, a flood
factor distribution (FD) was produced for each of the variables, with each variable being
separated into different classes. The distribution of flood incidence among the various
classes of each variable was evaluated using FD analysis.

The FD analysis was carried out (Figure 10). The majority of flood incidents occurred
in low-lying areas, as well as locations with high accumulate water (TWI) and area of low
SPI. Floods were also found to be concentrated on slopes facing east, northeast, southeast,
areas with almost flat slopes and surface curvature of convex to flat. Floods were also
found to be close to areas with high drainage density. Most floods occurred in areas of
gravels, bare ground, with low shrub.
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3.4. Flash Flood Susceptibility Mapping

The maps of flood susceptibility for each pixel in the basin were computed using
four machine learning models: RF, KNN, NB, and XGBoost. Based on the aforementioned
experiment findings, the RF model has been proven to be the highest-performing prediction
model across all benchmark models for geospatial datasets. In ArcGIS 10.3, there are several
approaches for reclassifying flood susceptible models, including a natural break, equal
interval, quantile, regular interval, standard deviation, and manual methodology. Quantile
and natural break methods are two of these strategies that have been frequently described
in flood susceptibility studies literature [96,108].

The FFS maps are divided into five classes using Jenks’ natural break method in
ArcMap: very high, high, moderate, low, and very low [41,51]. The flooding areas are
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located along the main WadiRiver and tributary streams (Figure 11). The flooded areas
appear to be highly influenced by distances from streams, where the areas nearest to
streams are more flood-prone than those far away. The FFSM also shows that drainage
density and elevation have relatively significant contributions to flood modeling where
low elevation zones tend to gather more water (high drainage density) and then increase
the probability of flooding. In a similar vein, the slope had clear significance for flooding,
where the low slope areas typically have the potential to collect water. RF susceptibility
map reveals that the very low, low, moderate, high, and very high classes cover 42.58%,
23.24%, 13.52%, 11.59%, and 9.05% of the total study area. For the KNN model, the surface
area is computed as; 26.97% for the very low class, 22.57% for the low class, 20.30% for the
moderate class, 16.79% for the high class, and 13.34% for the very high class. Further, in the
case of the NB model, the obtained susceptibility map indicates that 91.65%, 1.18%, 0.89%,
1.13%, and 5.13% of the total surface area corresponds to the very low, low, moderate, high,
and very high classes, respectively. Last, the XGBoost susceptibility map indicates that
75.14%, 8.72%, 7.05%, 4.53%, and 4.53% of the total surface area correspond to the very low,
low, moderate, high, and very high classes, respectively (Figure 12).
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3.5. Performance and Validation of Models

Figure 13, Tables 4 and 5 show the ROC curve, the AUC, and the classification accuracy
of the used models. The RF model has achieved the highest performance (AUC = 0.982).
The Kappa index reported by all models varied between 0.57 and 0.89. The RF model
has achieved the highest predictive positive value (0.949), indicating a high probability of
correctly predicting flood susceptibility. While the KNN, NB, and XGBoost models have
achieved the values of 0.820, 0.730, and 0.948, respectively.
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Table 4. Model performance in this study.

Parameter RF KNN NB XGBoost

Positive predictive value (%) 0.9494 0.8202 0.7308 0.9487
Negative predictive value (%) 0.9437 0.9016 0.9348 0.9306

Sensitivity (%) 0.9494 0.9241 0.962 0.9367
Specificity (%) 0.9437 0.7746 0.6056 0.9437
Accuracy (%) 0.9467 0.8533 0.7933 0.9402

Table 5. AUC and Kappa index for the models.

Models AUC 95% of Confidence Interval (CI) Kappa Index

RF 0.982 0.8976–0.9767 0.893
KNN 0.928 0.7864–0.9057 0.7037
NB 0.920 0.7197–0.8551 0.578

XGBoost 0.979 0.8892–0.9722 0.8797

On other hand, the RF model has the largest negative predictive value (0.943), indicat-
ing that the model has a high probability of correctly categorizing non-flood susceptibility
areas correctly. For the models KNN, NB, and XGBoost, this probability is 0.901, 0.934,
and 0.930, respectively. The RF and XGBoost models have the highest sensitivity (0.949),
indicating that 0.936% of the pixels were classified correctly as a flood. The pixels properly
classified as flood are 0.924% and 0.962% for the KNN and NB models, respectively. Fur-
thermore, the RF model likewise scored the best specificity (0.943), indicating that 0.94% of
the non-flood areas were adequately classified as non-flood. The KNN, NB, and XGBoost
models are 0.774, 0.605, and 0.943, respectively. These results indicate that, in the case of the
KNN model, certain study area zones would be medium or highly susceptible to flooding.
In contrast, in the instance of the RF, NB, and XGBoost models, these zones would be less
prone to flooding. The findings indicate that the models used in this study adequately
depict the positive connections between susceptibility maps and flood inventory points.

4. Discussion

The first and most critical stage in flood risk assessment is determining how sensitive
an area is to floods through flood susceptibility mapping. Flood-prone areas can be
identified, and the necessary support solutions can be put in place to reduce flood-related
losses. In this study, we used various geospatial datasets integrated with machine learning
and geographic information systems to investigate and analyze flood susceptibility in the
data-scarce region.

Due to the annual monsoonal rains, Yemen is prone to flooding. Flooding is a nat-
ural occurrence that cannot be avoided entirely, causing significant economic losses and
infrastructure and natural ecosystem damage [1]. Commonly, climate change has been
found to impact flood occurrences substantially. It is still unclear how climate change may
affect floods in the future, notably the seasonal effects of climatic factors, which need more
investigation. However, a poor understanding of flood management might emerge from
a lack of information about the spatial variability of floods. Flood impact reduction can
be achieved by determining the primary factors influencing flood events and producing
a flood susceptibility map. Nevertheless, numerous other hydrological, geological, to-
pographical, and morphological factors influence floods [108]. Furthermore, only some
of these factors are included in flood susceptibility models; hence, choosing appropriate
flood-affecting factors is a critical step in flood susceptibility modeling.

Therefore, for reliable flood susceptibility maps, the research area must be affected by
understood factors. No systematic research has been done on flood events in Tarim city
(Yemen). This study tries to fill this knowledge gap by comparing four ML algorithms to
find the most effective one for predicting FFS in a semi-arid area. In America, Europe, and
Asia, similar research has been conducted for flood susceptibility maps. The performance
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of susceptibility modeling utilizing different suitable ML algorithms has been the focus of
several studies in this field. Commonly, techniques based on ML and artificial intelligence
(AI) save time and money and can provide a high degree of accuracy.

Based on results of variable importance, the most important factor that may cause
flooding in this study is the slope, followed by drainage density, TWI, and elevation. These
findings are in agreement with results from other recent studies [109,110], which stated
that slope is the most important factor in flood occurrence [111,112]. Drainage density is a
fundamental feature of river basins that represents relief, flood peak, and geology from a
hydrological standpoint [113]. Floodwaters usually inundate areas with flat slopes at low
elevations. Increased rainfall at higher elevation zones is less prone to flooding because the
water flows from high elevation zone to low-lying areas, and therefore elevated areas are
less prone to flooding [27]. Additionally, the areas of high TWI have saturated soil, so the
flood potential increases as TWI increases as the soils cannot absorb more water resulting
in flooding [39,114].

The AUC values of all four models were greater than 0.90 in terms of ROC results,
indicating that the four models performed well in predicting flash flood susceptibility.
Besides that, the outcomes of other statistical metrics like kappa index, sensitivity, specificity,
and accuracy, revealed that all models produced good and reasonable results. In our study,
in terms of performance, the tree-based ensemble algorithms RF and XGBoost outperform
other ML algorithms, where the RF algorithm provides robust performance (AUC = 0.982)
for assessing flood-prone areas with only a few adjustments required prior to training
the model. These findings are consistent with previous research, which has shown that
tree-based ensemble algorithms perform better than other algorithms [33,51]. According
to a study [51] for flood susceptibility assessment in Musi River, Hyderabad, India using
ML models, RF and XGBoost outperform other ML algorithms, logistic regression, support
vector machine, K-nearest neighbor, adaptive boosting (AdaBoost), which are compatible
with the results of this research.

Zhao et al. [115], in the study Mapping flood susceptibility in mountainous areas on
a national scale in China, by using the RF model, stated that the RF model could identify
the flood susceptibility with satisfactory accuracy. Chen et al. [116] in modeling flood
susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree,
and random forest methods stated that the RF method is an efficient and reliable model
in flood susceptibility assessment. Abedi et al. [33] assessed flood susceptibility by using
RF, XGboost, and boosted regression trees and stated that RF was the most accurate in
predicting flash flood susceptibility. That study’s outcome was in line with what we found
in our research. Although it had the lowest predicted accuracy of the three ways evaluated,
the NB method was similarly beneficial. As a result, based on their performance and ease
of interpretation, this study shows that the chosen models are genuinely possible. On the
other hand, one of the drawbacks of the study was the lack of critical hydrological data,
such as flood depth, velocity, and discharge, making developing a robust model difficult.

Flood modeling is a complicated operation fraught with uncertainties. As long as
credible historical flood inventory maps are available, machine learning algorithms can
efficiently address these uncertainties [117]. So, to avoid the uncertainties, we made a flood
inventory map of the study area by using flood damage reports and Google earth pro and
field visits for historical floods from 1996, 2008, and 2021 and verified the flood inventory
by flood sentinel-1 SAR data for flood episode 2021 [38]. All the spatial data resembled
12.5 m resolution to avoid uncertainties arising from inconsistent spatial data resolution. As
long as credible historical flood inventory maps are available, machine learning algorithms
can efficiently address these uncertainties [38]. The proposed models could be a valuable
and novel strategy for managing flood threats in dry and semi-arid regions like Tarim
(Yemen).

However, as with any other study, the results of the current study are susceptible to
error and uncertainty due to factors such as subjective classification of flood-influencing
factors, selection of performance indicators, training, and testing datasets. Each of these
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factors necessitates more research to demonstrate how these uncertainties influence the
final flood susceptibility maps and subsequent decisions. Future research should consider
the effect of these uncertainties by choosing other flood factors, such as daily or sub-
daily rainfall, classifying the flood factors in collaboration with stakeholders [117,118],
conducting a sensitivity analysis of the effect of classification of the observed dataset (other
than 75% and 25% for training and testing), and evaluating the efficacy of the four methods
using alternative goodness-of-fit measures [117,119].

5. Conclusions

Flooding is a natural disaster that threatens people’s lives, and the structural integrity
of buildings in flood-affected communities can never be avoided entirely. Because of this,
it is very important to improve flood forecasting and prevention methods to reduce the
number of people who die and the negative social and economic effects of floods.

RS data (Sentinel-1 images) were used to detect flooded areas in the study area.
Used the Sentinel application platform (SNAP 7.0) for Sentinel-1 image analysis and
detecting flood zones in the study locations. Flood spots were discovered and verified
using Google Earth images, Landsat images, and press sources to create a flood inventory
map of flooded areas in the study area. This study used four ML algorithms (RF, KNN,
NB, and XGBoost). The models were built using a spatial database that comprised 12
topographic and geo-environmental flood conditioning factors and data from 300 previous
flooding occurrences. The tests revealed no evidence of multicollinearity between the
identified conditioning factors. The validation findings revealed that all of the models
utilized performed admirably, with the RF and XGBoost models outperforming the others.
However, RF is more computationally efficient than XGBoost since training the model with
RF requires less execution time. Thus, the RF model might create a flood susceptibility map
and a potential method for flash flood prediction in the era of big data due to its capacity to
handle multiple types of variables and represent complex non-linear interactions.

In addition, we discovered that the KNN model provided us with a false alarm area in
some locations, even though there was no flood in the actual observations, but there was
a flood predicted by the model. These locations were on higher ground, and it was not
possible for floods to occur there.

The results show that approximately 4.53% to 13.34% of the overall area is highly
vulnerable to floods. The resultant map may serve as a basis for establishing plans for
minimizing flood susceptibility and assisting in developing adaptation measures. The
difficulty in obtaining relevant intense precipitation records and combining them with the
results of flood simulation models is a limitation of this study. Moreover, several factors
are pertinent to flood occurrences, such as flood depth and velocity parameters, but we
couldn’t acquire them. These data could be used in future work to make it more robust.
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Forecasting in India Using Supervised Machine Learning Classifiers. Sustainability 2021, 13, 971. [CrossRef]

51. Madhuri, R.; Sistla, S.; Raju, K.S. Application of Machine Learning Algorithms for Flood Susceptibility Assessment and Risk
Management. J. Water Clim. Chang. 2021, 12, 2608–2623. [CrossRef]

52. Root, K.; Papakos, T.H. Flooding Impacts and Modeling Challenges of Tropical Storms in Eastern Yemen. In Proceedings of
the World Environmental and Water Resources Congress 2010: Challenges of Change, Providence, RI, USA, 16–20 May 2010;
pp. 1970–1979.

53. United Nations Development Program. Water Resources Management Studies in the Hadramaut Region Draft Final Report; UNDP:
Washington, DC, USA, 2002.

54. Soliman, M.M.; El Tahan, A.H.M.H.; Taher, A.H.; Khadr, W.M.H. Hydrological Analysis and Flood Mitigation at Wadi Hadramawt,
Yemen. Arab. J. Geosci. 2015, 8, 10169–10180. [CrossRef]

55. Al-Masawa, M.I.; Manab, N.A.; Omran, A. The Effects of Climate Change Risks on the Mud Architecture in Wadi Hadhramaut,
Yemen. In The Impact of Climate Change on Our Life; Springer: Wadi Dawan, Yemen, 2018; pp. 57–77. [CrossRef]

56. El Tahan, A.H.M.H.; Elhanafy, H.E.M. Statistical Analysis of Morphometric and Hydrologic Parameters in Arid Regions, Case
Study of Wadi Hadramaut. Arab. J. Geosci. 2016, 9, 88. [CrossRef]

57. UN OCHA YEMEN: Flood Update; United Nations Office for the Coordination of Humanitarian Affairs: Hadramaut, Yemen, 2021;
pp. 1–2.

58. Arabameri, A.; Saha, S.; Roy, J.; Chen, W.; Blaschke, T.; Bui, D.T. Landslide Susceptibility Evaluation and Management Using
Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sens. 2020, 12, 475. [CrossRef]

59. Bui, D.T.; Lofman, O.; Revhaug, I.; Dick, O. Landslide Susceptibility Analysis in the Hoa Binh Province of Vietnam Using
Statistical Index and Logistic Regression. Nat. Hazards 2011, 59, 1413–1444. [CrossRef]

60. Pradhan, B.; Seeni, M.I.; Nampak, H. Integration of LiDAR and QuickBird data for automatic landslide detection using object-
based analysis and random forests. In Laser Scanning Applications in Landslide Assessment; Springer: Berlin/Heidelberg, Germany,
2017; pp. 69–81. [CrossRef]

61. Arabameri, A.; Pourghasemi, H.R. Spatial modeling of gully erosion using linear and quadratic discriminant analyses in GIS and
R. In Spatial Modeling in GIS And R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherland, 2019; pp. 299–321.

62. Miles, J. Tolerance and variance inflation factor. In Encyclopedia of Statistics in Behavioral Science; Everitt, B.S., Howell, D.C., Eds.;
John Wiley and Sons: Hoboken, NJ, USA, 2005; pp. 2055–2056.

63. DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and Robust Monitoring of Flood Events Using
Sentinel-1 and Landsat Data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [CrossRef]

64. Geudtner, D.; Torres, R.; Snoeij, P.; Davidson, M.; Rommen, B. Sentinel-1 System Capabilities and Applications. In Proceedings of
the 2014 Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1457–1460.

65. Abbot, J.; Marohasy, J. Input Selection and Optimisation for Monthly Rainfall Forecasting in Queensland, Australia, Using
Artificial Neural Networks. Atmospheric Res. 2014, 138, 166–178. [CrossRef]

66. Mohammadi, A.; Kamran, K.V.; Karimzadeh, S.; Shahabi, H.; Al-Ansari, N. Flood Detection and Susceptibility Mapping Using
Sentinel-1 Time Series, Alternating Decision Trees, and Bag-ADTree Models. Complexity 2020, 2020, 42713761. [CrossRef]

67. Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Multidiscip. Digital Publ. Inst. Proc. 2019, 18, 11. [CrossRef]
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