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Abstract: Lianas are self-supporting systems that are increasing their dominance in tropical forests
due to climate change. As lianas increase tree mortality and reduce tree growth, one key challenge in
ecological remote sensing is the separation of a liana and its host tree using remote sensing techniques.
This separation can provide essential insights into how tropical forests respond, from the point of
view of ecosystem structure to climate and environmental change. Here, we propose a new machine
learning method, derived from Random Forest (RF) and eXtreme Gradient Boosting (XGBoosting)
algorithms, to separate lianas and trees using Terrestrial Laser Scanning (TLS) point clouds. We test
our method on five tropical dry forest trees with different levels of liana infestation. First, we use a
multiple radius search method to define the optimal radius of six geometric features. Second, we
compare the performance of RF and XGBoosting algorithms on the classification of lianas and trees.
Finally, we evaluate our model against independent data collected by other projects. Our results
show that the XGBoosting algorithm achieves an overall accuracy of 0.88 (recall of 0.66), and the
RF algorithm has an accuracy of 0.85 (recall of 0.56). Our results also show that the optimal radius
method is as accurate as the multiple radius method, with F1 scores of 0.49 and 0.48, respectively.
The RF algorithm shows the highest recall of 0.88 on the independent data. Our method provides
a new flexible approach to extracting lianas from 3D point clouds, facilitating TLS to support new
studies aimed to evaluate the impact of lianas on tree and forest structures using point clouds.

Keywords: life forms; classification; machine learning; geometric feature; point clouds

1. Introduction

Lianas are climber plants with woody stems, and they can climb to the forest canopy
with the support of trees [1,2]. Although lianas occupy a small proportion (less than
10%) of the above-ground biomass in tropical forests [3], they represent a large percentage
(up to 40%) of leaf productivity [1,4,5]. Apart from competing with trees for available
resources [5], lianas also occupy gaps and illuminated areas on the upper part of the
canopy more efficiently [2,6]. During the last two decades, liana abundance and biomass
have experienced increases in tropical forests [7,8]. These increases tend to be associated
with changes in forest structure [9]. An increase in liana abundance can suppress tree
regeneration, promote tree mortality, and decrease tree growth, thereby causing a cascade
effect on carbon storage, biodiversity, and primary productivity [10–12].

Unlike other structure parasites such as epiphytes and hemi-epiphytes, lianas grow
their roots into the ground [13,14]. There are many growth strategies that lianas can link to
their infested trees and grow to the forest canopy. Those strategies contain stem twining,
clasping tendrils arising from the stem, leaf, and branch modification, downward-pointing
adhesive hairs, adhesive adventitious roots, and thorns and spines that link lianas and
trees [12]. The final climbing mechanism that lianas use from the above strategies is
determined by the forest successional stages or disturbance level [12,15]. Since lianas have
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irregular growth forms, they contribute considerably to the architectural complexity of a
given forest [5,16].

Many studies report the prevalence of lianas and their importance in tropical forests.
However, few of them utilize quantitative methods to study their structure and their respec-
tive impact on an individual tree [17,18]. Recent advances in remote sensing techniques,
in particular, Terrestrial Laser Scanning (TLS), provide a great opportunity to study the
relationships between tree and liana structures in an unprecedented manner [9,19,20]. For
instance, Moorthy et al. [17] investigated the potential utilization of TLS in monitoring
changes in forest structure after liana removal, demonstrating that TLS could detect local
structural changes after liana removal. Furthermore, Bao et al. [21] used TLS data and the
Random Forest (RF) to classify lianas and trees with an overall accuracy of 94%. Although
those studies present promising results, there are still uncertainties regarding the use of
TLS to separate lianas from trees and extract them for their hosts. For example, as lianas
grow towards a tree canopy, the stem diameter of most lianas is generally smaller than
10 cm, making it challenging to separate lianas and tree branches from a given point cloud.
Additionally, lianas have a more irregular shape than trees, and they could grow around
them in all directions randomizing the volumetric occupancy of the forest 3D space [9].
This attribute increases a TLS point cloud’s complexity, making lianas harder to separate
and then study.

There are three approaches often used in previous studies to separate materials from
the TLS point cloud: (1) those using radiometric features [22,23], (2) those using geometric
features [24–26], and (3) combined use of both features [27]. Methods based on radiometric
features depend on the type of TLS system used to generate a point cloud since the
optical properties of a tree (e.g., wood or leaves) may respond differently to the LiDAR
wavelength [26]. The x-, y-, and z-coordinates of each point are basic information of all
LiDAR systems. Additionally, the geometric feature approach proves to be better than the
radiometric method when comparing classification accuracies [28]. In the third method,
a mixture of the two features mentioned above is used. Zhu et al. [27] applied the mixed
approach to separate leaves from trees, achieving an average overall accuracy of 84%. This
value was higher than using either radiometric or geometric features alone. However, this
mixture method still has the disadvantage of relying on radiometric features [25].

Geometric feature methods are commonly derived from eigenvalues and eigenvectors
calculated for each (x,y,z) point. A local neighborhood point set is required to obtain those
features [29]. There are two approaches in terms of the definition of the local neighborhood
of a point: k-nearest neighbors and radially bounded nearest neighbors. The former
specifies a limited number of nearest neighbors for each point. In contrast, the latter
approach defines a spherical space, and local point sets are within a given radius [27].
The radially bounded nearest neighbors approach is more advanced, since the k-nearest
neighbors approach is often affected by the density of point clouds [26,28]. For instance,
the canopy has a lower point density than the understory because of occlusion effects and
the physical distance between the object and sensor [22]. As a result, using the same k-
nearest neighbors approach, the geometry of leaves in the understory will be different from
that in the canopy [25]. Moreover, Thomas et al. [30] indicated that the radially bounded
nearest neighbors approach could allow the computed features (e.g., eigentropy, linearity,
planarity, etc.) with a consistent geometric meaning, which is not possible for the k-nearest
neighbors approach.

Concerning the radially bounded nearest neighbor approach, the size of the radius
determines the local dimensional features of neighborhood points. For example, at a few
centimeter scales, stem points are more likely to have surface features, while they tend
to have linearly distributed ones at a large centimeter scale [28]. Using a single radius
randomly selected to search for neighborhood points may not be reliable because the feature
distribution of different objects varies in different situations [27]. This scale factor could be
an important element to consider given how close lianas grow attached to a tree’s branch
and trunk. A combination of the geometric features from all scales is also used in [31].
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This strategy is shown to have a significant advantage compared to the single scale on
leaf and wood classification. However, combing the features from all radii could produce
many more of them than a single scale approach. Then, this multiple radius method would
result in redundancy and low computational efficiency of the final model [32]. Selecting
an optimal radius could be the right choice for classification purposes. Zhu et al. [27]
applied an adaptive radius near-neighbor search method to select an optimal radius for
each point, and then extracted the geometric features of those points to classify foliar and
woody materials of a mixed forest. As their results suggested, the classification accuracy
for adaptive radius near-neighbor search method was higher than that for the fixed radius
near-neighbor search method.

There are many existing methods using machine learning to classify point clouds,
while the purpose of most of those methods is to classify leaf and wood points [24,26,28,33].
Only a few studies use TLS data to discriminate lianas and their host trees in tropical forests.
Moorthy et al. [16] presented a semi-automatic approach based on the Random Forest
algorithm to separate liana from its host tree in Panama and French Guiana. Model recall
of extracted liana stems increased after a manual intervention (54% to 90% and 65% to 70%,
respectively) in [16]. However, many lianas in their study are away from the main trunk,
and with a vertical distribution. When lianas are close to a tree’s main stem, and have more
irregular shapes, their method cannot identify lianas successfully.

This work contributes to building a novel machine learning model based on Random
Forests and Gradient Boosting algorithms, that can be used to separate lianas from trees.
This method uses geometric features derived from point clouds. Our method extends
and builds on the previous work of [16,24,31]. Furthermore, in this manuscript, we aim
to answer the following questions: (1) Does the optimal radius method have significant
advantages compared to the multiple radius method for liana/tree separation in [16]?
(2) Do different machine learning methods affect the classification accuracy of lianas and
trees? (3) Is our method more robust than other existing methods for 3D point cloud
classification? We answer those questions using a set of liana and trees in a Tropical Dry
Forest (TDF) with different infestation levels.

2. Materials and Methods
2.1. Study Area and Data

The original data come from the Santa Rosa National Park–Environmental Monitoring
Supersite (SRNP–EMSS) (Figure S1), Guanacaste, Costa Rica [34]. The SRNP–EMSS has
an average yearly temperature of 25 ◦C, and average yearly precipitation of 1720 mm.
The SRNP–EMSS also has five months of the dry season (December to April), and a high
biodiversity of plant and animal species, including 96 species of trees of different life
histories, and 18 species of lianas among them [35].

We randomly selected five trees with different levels of liana infestation, and then
used a Leica C10 TLS scanner (Leica Geosystem AG, Sankt Gallen, Switzerland) to scan
those trees in May 2015 (end of the dry season). The Leica C10 TLS scanner uses green laser
light with a wavelength of 532 nm, a maximum vertical field of view (FOV) of 270◦, and a
horizontal FOV of 360◦ [36]. The scanner collects 50,000 points per second at a range of up
to 300 m [37].

We selected four or five scan positions at a radius of 10 m to collect the TLS data. The
location of scan positions was determined by where it was possible to show the highest
visibility of the host tree and lianas. At least four reflective targets were used as control
points to merge the point cloud from the four positions into a single high-resolution 3D
datum, with fewer shadow effects [38]. This registration step was performed under the
projected coordinate system (Cartesian) in Leica’s Cyclone software using the Iterative
Closet Point (ICP) method (mean error of 0.02 m) [39]. The data collection process was
carried out on sunny days with low wind conditions. A detailed description of all five trees
is given in Table 1. Specifically, we used the Point Picking and Height Histogram functions
in Cloud Compare software to obtain DBH and Height from the point cloud, respectively.
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Figure 1 presents the five trees with different infestation levels. The infestation levels were
evaluated by professional dendrologists using standard forestry techniques.

Table 1. Description of the trees with liana infestation collected in Santa Rosa National-Park Environ-
mental Monitoring Supersite, Costa Rica.

Tree ID Tree Stem DBH (cm) Height (m) Liana Infestation Levels Liana Points
Proportion

Number of
Total Points

Tree 1 1 54.10 16.49 Low 1% 405,262
Tree 2 1 30.70 14.51 Low 4% 121,954
Tree 3 1 28.90/31.20/38.40 * 16.57 High 9% 382,599
Tree 4 1 55 17.10 High 15% 622,967
Tree 5 1 20.50 13.96 Intermediate 37% 87,346

* Three DBH values, for Tree 3 due to the three separated stems at breast height (1.3 m).
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We used an independent tree from Nouragues, French Guiana to test the performance
of our method on unseen data. Specifically, Nouragues is a lowland moist tropical forest,
which has a higher liana infestation [40]. Moorthy et al. [16] utilized a Riegl VZ-1000 scanner
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(RIEGL, Horn, Austria) to scan the target tree (August–October 2017). The Riegl VZ-1000
scanner uses a narrow infrared laser light with a wavelength of 1550 nm, a maximum
vertical field of view (FOV) of 100◦, and a horizontal FOV of 360◦ [41]. Specifically, five
scan positions at a radius of 15 m are selected to obtain better visibility of the tree with
liana infestation. Around 20 reflective targets were used to co-register the point cloud from
those five positions to obtain single high-resolution 3D data [16].

2.2. Data Processing
2.2.1. Predictor Variables

Geometric features estimate local geometry by characterizing the distribution of neigh-
boring points [16,27]. The proper estimation of geometric features requires using a co-
variance matrix, calculated from a local point set within a certain radius. Then, the three
positive and ordered eigenvalues computed from the covariance matrix (λ1 ≥ λ2 ≥ λ3) can
express how the local point set is distributed in the 3D space [28].

Here, we used Cloud Compare (version 2.11, Cloud Compare, GPL software) to
calculate the six geometric features (Table 2) to classify lianas and trees. These features are
often used to separate leaf and wood points from point clouds [42,43].

Table 2. Six geometric features extracted from the point cloud. z represents the height of the point
cloud, nv is the normal vector, and λi the eigenvalues.

No. Feature Description

1 Omnivariance 3
√
(λ1 × λ2 × λ3)

2 Anisotropy (λ1 − λ3)/λ1
3 Planarity (λ2 − λ3)/λ1
4 Linearity (λ1 − λ2)/λ1
5 Sphericity λ3/λ1
6 Verticality 1− nvz

2.2.2. Data Labelling

The most crucial part of building the liana/tree classification model regarding su-
pervised machine learning methods is labeling the training data. Here, we used Cloud
Compare to manually mark the five trees into two classes, where class 1 and class 2 rep-
resented liana points, and tree points, respectively. To label the liana points, we visually
follow lianas from the ground to the tree crown. This labelling process stops when we see
lianas branch out to leaves. The data labelling process costs around 100 h. The proportion
of liana points (an average of 8% of all the points) was much less than the proportion of tree
points. This imbalance between liana on tree points has the potential to cause an unbalance
weight in the model development [30]. Therefore, we randomly sampled 25% of all tree
points to improve our classifier’s performance. As a result, tree points were two times as
many as liana points in the final dataset for training and validation of the classifier.

2.2.3. Optimum Radius for Near-Neighbor Search

Some studies use a fixed radius to obtain the geometric features [28,44]. For example,
the diameter at breast height (DBH) of a tree was used as reference to select a suitable
searching radius to separate leaf and wood from a point cloud [44]. However, it is unlikely
that the DBH is consistent across trees and plots, given that the DBH at the study site
changes as a function of species and successional stage [45]. As such, we used a multiple
radius search solution to define the optimal radius of the six features. This approach
considers a heterogeneous DBH, while it could show a complete difference between the
geometric features of liana and tree.

In this study, the geometric features in Table 2 were computed from 0.05 to 1 m, at
a 0.01 m interval. A total of 96 values were created for each feature. We set up 0.05 m as
minimum radius because we used a voxel grid filter with a size of 0.04 m to downsample
our point cloud. There are two reasons why we select the size of 0.04 m to filter the voxel
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grid in this study. First, downsampling ensures that the distribution of points is uniform,
which means high computational efficiency, although this may cause some information
loss [46]. Second, the downsampling size in [16] is also equal to 0.04 m, allowing us to
compare our study with the aforementioned paper. The maximum points were six at
0.05 m in this study. A radius beyond 1 m was also not considered, as this would need high
computational memory. We used R studio [47] to randomly select five different numbers
of liana and tree points. Then, we used Tree 2 to express how the geometric features of
liana and tree changed from 0.05 to 1 m. As a result, five different curves for each class
were obtained. We selected 100, 200, 300, 400, 500 points in the study. The final number of
points was determined by observing whether there was stability among those five curves
for each class. Here, 500 points were used to plot the changing trend of liana and tree
for all features. The optimum radius was defined where the most considerable difference
was shown between liana and tree curves. Specifically, we calculated the mean difference
between liana and tree for each feature, and then find out the best radius that has the largest
difference (see Supplementary Materials). Finally, we used all features at the optimum
radius for the following classification.

2.2.4. Classification

Two ensemble learning classifiers, Random Forest (RF) and eXtreme Gradient Boosting
(XGBoosting), are used to develop the liana extraction model. Ensemble learning classifiers
combine many weak learners, such as decision trees, to form a strong one [48], and they
show more advantages than other individual classifiers based on one strong learner [25].
The RF has the ability to limit overfitting. Additionally, considerable performance is
obtained by RF when applied to leaf and wood classifications [27,43]. XGBoosting is a well-
known classifier among a number of Gradient Boosting algorithms, while this classifier
can show high performance on various tasks [49]. The implementation of the RF and
XGBoosting algorithms, to separate lianas and trees from the different cloud points, was
performed using the mlr R package [48].

In terms of the RF algorithm, there are four important hyperparameters: (1) the
number of decision trees in the forest, (2) the number of random features to be sampled
at each node, (3) the minimum number of cases allowed in a leaf, and (4) the maximum
number of leaves. The grid search method is often used as a tuning tool since it can
always find the best-performing hyperparameters [50]. However, since we have four
hyperparameters here, using the grid search over this four-dimensional space requires
much time and computational budget. Therefore, we used the random search method to
find the best-performing hyperparameters. It should be noted that random search cannot
always guarantee obtaining the best set of hyperparameters. In other words, it could find
a good combination of hyperparameter values that performs well if we provide enough
iterations. As such, 500 combinations of hyperparameters were run using the random
search. Concerning the XGBoosting algorithm, there are eight hyperparameters to be
tuned: (1) learning rate, (2) gamma, (3) max_depth, (4) min_child_weight, (5) subsample,
(6) colsample_bytree, (7) nrounds, (8) eval_metric. Therefore, we run 1000 combinations of
hyperparameters. We used 500 and 1000 combinations for RF and XGBoosting, respectively,
based on the work of [48]. More details about hyperparameters and their optimization
using RF and XGBoosting are given in supplementary materials.

The performance of the model, including hyperparameter tuning, is evaluated using
the k-fold spatial cross-validation method [48]. The model that has the optimal performance
is therefore selected. The metrics described in Section 2.2.5 are used to assess the model
performance. The complete pipeline of our methods is outlined in Figure 2.
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2.2.5. Performance Assessment

We assess the performance of the presented liana/tree separation model using a k-fold
spatial cross-validation method [16]. The k-fold spatial cross-validation strategy randomly
splits the data into k-folds, while one fold at one time is used for validation, and the
other unused k − 1 folds are used for training. In this study, we performed a five-fold
cross-validation strategy to assess the performance of model, as shown in Figure S2.

The following metrics: Precision, Recall, F1 score, and Precision–Recall (PR) curve,
were chosen to estimate our model’s performance [51]. The Precision is defined as the
percentage of correctly predicted liana points (TP) divided by all classified liana points (TP
and FP).

Precison =
TP

TP + FP
(1)

At the same time, Recall is the percentage of correctly predicted liana points (TP)
divided by all real liana points (TP and FN).

Recall =
TP

TP + FN
(2)

F1 score is the balanced value between Precision and Recall (0 to 1), while 0 means the
worst performance, and 1 is the best performance.

F1 score = 2× Precison× Recall
Precison + Recall

(3)

Accuracy is the proportion of all corrected classified lianas and tree points (TP and
TN) against all points.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)
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The Precision–Recall (PR) curve evaluates the trade-off between Precision and Recall
for different liana point classification thresholds. The thresholds vary between 0 and 100%
and are determined by the probability that the model estimates the positive class (liana
point). The area under the PR curve shows the model’s performance, while the high value
means both high Precision and Recall of the classifier.

2.3. Intercomparison with the Existing Method

We compared our method with [16], which used a multiple radius search method
to obtain eigenvalues of each point at 0.1, 0.25, 0.5, 0.75, and 1.0 m. Then, the Random
Forest method was selected to classify liana and tree based on those eigenvalues derived
from point clouds. The details about running Moorthy et al. [16] are on GitHub (https:
//github.com/sruthimoorthy/automated-liana-extraction.git, accessed on 27 May 2019).

Four postprocessing steps were conducted in the above study to correct the misclas-
sified liana points predicted by the RF model. First, a Statistical Outlier Removal (SOR)
filter was applied in Cloud Compare to filter noisy points from the predicted liana class.
Second, the components that did not belong to liana were manually removed by visual
inspection using the polygonal selection tool. Third, a density-based clustering algorithm
named DBSCAN was used to correct the liana points misclassified as wood in the model
prediction. Given the number of points in space, DBSCAN could group the points together
if the neighboring points are close enough. An additional description of this algorithm
can be found in [52]. Isolated clusters classified as wood were achieved by applying the
DBSCAN. Finally, DBSCAN was also applied to the corrected liana points in the second
step, and liana points clusters were obtained. Those liana clusters were tested for connec-
tivity with the wood clusters in the third step. If the wood cluster were very close to any
liana clusters, they would be merged into single cluster using DBSCAN. The processing
pipeline mentioned above was applied to the point clouds used in this study to understand
the generalization of [16].

We evaluated the performance of our model on the independent data from Nouragues,
French Guiana [16]. There are two reasons why we apply our method to these data. First,
we want to indicate the broader utilization of our method, and second, we want to know
whether our method shows more advantages than the former study.

3. Results

In this section, we first report the optimum radius for each geometric feature using
the multiple radius search method. Then, we analyze the performance of the RF and
XGBoosting models on liana and tree classification. Finally, we compare the generalization
of our model with Moorthy et al. [16], the only existing method available in the literature
applied to liana/tree classification.

3.1. Geometric Features Analysis

The optimum radius for determining the differences between lianas and trees for the
remaining six features is detailed in Table 3. We can see that liana and tree points in Tree 2
tend to have a larger separability at the larger radius for all six features, while the verticality
has the smallest radius of 0.68. The omnivariance is the only feature that shows the largest
difference at 1 m across all trees collected due to the same increasing trend of liana and tree
points. In addition, the optimal radii for Tree 2 are highlighted using red vertical lines in
Figure 3.

https://github.com/sruthimoorthy/automated-liana-extraction.git
https://github.com/sruthimoorthy/automated-liana-extraction.git
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Table 3. Optimum radius for different features on the evaluated point clouds for Tree 2.

Feature
Tree ID

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 Independent

Omnivariance 1.00 1.00 1.00 1.00 1.00 1.00
Anisotropy 1.00 0.86 0.98 0.50 0.45 0.37
Planarity 0.13 0.99 0.22 0.16 0.87 0.29
Linearity 0.18 0.91 1.00 0.40 0.21 0.33
Sphericity 1.00 0.73 1.00 0.51 0.21 0.37
Verticality 1.00 0.68 0.24 1.00 0.70 0.45
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Figure 3 presents the changing trends on the separation of lianas and trees for our
selected six features for Tree 2 (Figure 1). The verticality is the only feature for which
the mean value of liana is consistently higher than that of tree. Additionally, we can see
that at the larger radius, the difference between liana and tree is similar (e.g., Anisotropy,
Linearity, Sphericity and Verticality). A large number of points in the spherical space
within a large radius could result in low computation efficiency when calculating ge-
ometric features. As such, we always select the smaller radius as the optimal one for
classification (see also Figure S5). The changing trend of remaining trees can be found in
Supplementary Materials.

3.2. Model Performance

To assess the effects of using an optimum radius for each feature, a five-fold cross-
validation strategy that included hyperparameter tuning was applied. The details about
the optimal hyperparameters of RF and XGBoosting used for this study are provided in the
Supplementary Materials.
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Table 4 presents all the performance metrics for the five-fold cross-validation strategy
used for the classification of each infested tree. As shown in Table 4, both ensemble
classifiers did not perform well on average, while the XGBoosting model performed better
than RF. First, the overall accuracy of XGBoosting was 0.88 ± 0.07, which is higher than
that of RF (0.85 ± 0.07) (p-value = 0.55, t = −0.62). Second, the average recall of Random
Forest was 0.56 ± 0.17, 0.1 lower than the average recall of XGBoosting (0.66 ± 0.19)
(p-value = 0.61, t = −0.53). The XGBoosting model based on the optimum radius of the
features listed in Table 4 showed an average F1 score of 0.49± 0.24, with an individual score
ranging from 0.19 to 0.75. The F1 score of the Trees 1, 2 and 3 in Table 4 was lower than 0.42,
while Tree 2 had the highest recall, whether based on RF or XGBoosting model. The recall
for Tree 4 was 0.8, with an F1 score of 0.75 for XGBoosting, the highest value of all trees. The
final classification results of the XGBoosting model of five trees are presented in Figure 4.
Compared with Figure 1, most lianas in Tree 4 were successfully predicted. Figure 4 also
revealed that some parts of the stem were misclassified as liana, especially in Tree 2.

Table 4. Comparison of all performance metrics using RF and XGBoosting model; Aa, average area
under the Precision–Recall curve; Ave, average; Sd: standard derivation.

Tree ID
Random Forest XGBoosting

Precision Recall F1 Score Accuracy Aa Precision Recall F1 Score Accuracy Aa

Tree 1 0.05 0.44 0.09 0.9 0.09 0.12 0.47 0.19 0.95 0.51
Tree 2 0.2 0.72 0.31 0.88 0.35 0.29 0.77 0.42 0.9 0.86
Tree 3 0.32 0.37 0.34 0.82 0.21 0.3 0.44 0.36 0.85 0.5
Tree 4 0.68 0.74 0.71 0.91 0.73 0.7 0.8 0.75 0.91 0.86
Tree 5 0.67 0.52 0.59 0.73 0.69 0.65 0.82 0.73 0.77 0.89
Ave 0.38 0.56 0.41 0.85 0.41 0.41 0.66 0.49 0.88 0.72
Sd 0.28 0.17 0.24 0.07 0.29 0.25 0.19 0.24 0.07 0.2

The Precision–Recall (PR) curve of the above two machine learning algorithms is
shown in Figure 5, while the area under the PR curve for each tree is indicated in Table 4.
Here, we compute the standard derivation of the areas under the PR curve of two methods
for each tree to determine a stable pattern (see Table S1). Figure 5 indicates that the PR curve
of RF and XGBoosting were more stable in Trees 3, 4 and 5 than that in Trees 1 and 2. Visual
inspection from Figure 1 indicates lianas in Trees 3, 4 and 5 are vertically distributed, while
lianas in the remaining two trees have close contact with the main stem. In addition, Table 4
reveals that the average area under the PR curve of XGBoosting for all trees is 0.72 ± 0.2,
which is higher than that of the RF model (0.41 ± 0.29) (p-value = 0.08, t = −1.99).
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as liana.



Remote Sens. 2022, 14, 4039 12 of 19
Remote Sens. 2022, 14, 4039 12 of 19 

Figure 5. Precision–Recall areas of each evaluated tree based on Random Forest and XGBoosting 
algorithms. The red and blue colors indicate Random Forest and the XGBoosting model, respec-
tively. The area under the Precision–Recall curve means the performance of the classifier.

3.3. Intercomparison 
Our model’s performance was evaluated and compared with the only literature 

method for liana and tree classification [16]. Table 5 indicates the performance of their 
classifier on our datasets. Moorthy et al. [16] showed a poor performance for the five se-
lected trees, the overall accuracy was 0.83 ± 0.12. After postprocessing suggested by [16], 
the method’s recall improved, with an average recall changing from 0.19 to 0.56, while the 
overall accuracy increased to 0.88 ± 0.07. Furthermore, the recall of Tree 4 and Tree 5 in-
creased after the manual intervention, while Tree 4 had the highest value of 0.76. The 
method did not work for Tree 1 and Tree 2 since they had the lowest F1 score. Regarding 
postprocessing steps, DBSCAN generated a number of clusters ranging from 1, 600 to 
more than 17,000 for our trees (Table S2). Specifically, more than 17,000 clusters were ob-
tained for Tree 4, while the number of points in Tree 4 was the largest of all trees (Table 
1).

Table 5. The performance of liana and tree classification on our data using [16]. 

Tree ID 
Without Postprocessing Postprocessing 

Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy
Tree 1 0.05 0.24 0.08 0.92 0.27 0.40 0.32 0.98
Tree 2 0.10 0.06 0.08 0.94 0.12 0.46 0.19 0.85
Tree 3 0.11 0.22 0.14 0.76 0.38 0.66 0.48 0.87
Tree 4 0.64 0.37 0.47 0.87 0.76 0.76 0.76 0.92
Tree 5 0.73 0.08 0.16 0.65 0.85 0.52 0.64 0.79
Ave 0.33 0.19 0.19 0.83 0.48 0.56 0.48 0.88
Sd 0.33 0.13 0.16 0.12 0.32 0.15 0.23 0.07

a
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The area under the Precision–Recall curve means the performance of the classifier.

3.3. Intercomparison

Our model’s performance was evaluated and compared with the only literature
method for liana and tree classification [16]. Table 5 indicates the performance of their
classifier on our datasets. Moorthy et al. [16] showed a poor performance for the five
selected trees, the overall accuracy was 0.83 ± 0.12. After postprocessing suggested by [16],
the method’s recall improved, with an average recall changing from 0.19 to 0.56, while
the overall accuracy increased to 0.88 ± 0.07. Furthermore, the recall of Tree 4 and Tree 5
increased after the manual intervention, while Tree 4 had the highest value of 0.76. The
method did not work for Tree 1 and Tree 2 since they had the lowest F1 score. Regarding
postprocessing steps, DBSCAN generated a number of clusters ranging from 1, 600 to more
than 17,000 for our trees (Table S2). Specifically, more than 17,000 clusters were obtained
for Tree 4, while the number of points in Tree 4 was the largest of all trees (Table 1).

Table 5. The performance of liana and tree classification on our data using [16].

Tree ID
Without Postprocessing Postprocessing

Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy

Tree 1 0.05 0.24 0.08 0.92 0.27 0.40 0.32 0.98
Tree 2 0.10 0.06 0.08 0.94 0.12 0.46 0.19 0.85
Tree 3 0.11 0.22 0.14 0.76 0.38 0.66 0.48 0.87
Tree 4 0.64 0.37 0.47 0.87 0.76 0.76 0.76 0.92
Tree 5 0.73 0.08 0.16 0.65 0.85 0.52 0.64 0.79
Ave 0.33 0.19 0.19 0.83 0.48 0.56 0.48 0.88
Sd 0.33 0.13 0.16 0.12 0.32 0.15 0.23 0.07
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Compared with our method, the XGBoosting model performs similarly to [16], which
combined the features from multiple neighborhood sizes (F1 score: 0.49 vs. 0.48).

The independent dataset (Nouragues, French Guiana) was used to evaluate our model
on new unseen data. Table 6 compared the final recall for the dataset from the literature
based on different methods. It was clear that our models, whether based on RF or XG-
Boosting algorithm, showed higher recall than the existing model without postprocessing
(0.67). Though the recall of [16] improved to 0.87 after postprocessing, this showed a similar
performance to the presented RF model’s recall (0.88).

Table 6. Final recall of different methods on the dataset from [16].

Methods Model Recall

Random Forest 0.88
Postprocessing 0.87

XGBoosting 0.82
Without postprocessing 0.67

Figure 6 indicates the final predictions of different methods in Table 6 against inde-
pendent data. It can be observed that RF (Figure 6d) and XGBoosting (Figure 6e) methods
can also extract most lianas accurately, compared to the postprocessing method (Figure 6c).
Although RF and XGBoosting methods misclassified some parts of the main trunk as lianas,
this can be easily corrected by manual intervention, which can be seen from Figure 7.
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ing: Moorthy et al. [16] without manual intervention; (c) Postprocessing: Moorthy et al. [16] with
manual intervention; (d) Proposed method based on RF algorithm; (e) Proposed method based on
XGBoosting algorithm.
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4. Discussion

Here, we proposed a liana and tree classification method coupled with the geometric
features of a tree/liana point cloud at the optimal radius. Furthermore, we compared our
approach with the only literature method for liana and tree separation [16]. As shown in
Table 4, the model based on XGBoosting showed a higher performance for all five trees.
Table 6 further confirmed the advanced applicability of our method to independent data.
For example, RF performed with a recall of 0.88 when tested on the independent data from
the tropical forest in Nouragues, French Guiana (Figure 6) without postprocessing, and this
value was the same as that for the state-of-the-art method after postprocessing (0.87).

4.1. Geometric Feature Analysis

The optimal radius near-neighbor search method was used to obtain geometric fea-
tures. This method was superior to the multiple radius near-neighbor search for the
discrimination of lianas and trees. According to Table 4, the average F1 score using the
optimal radius based on the RF model was 0.41, which is higher than the multiple radius
method (F1 score of 0.19) before the manual intervention. Although the average F1 score
using the multiple radius method increased to 0.48 after using the postprocessing steps,
this value was the same as our XGBoosting model without any postprocessing steps (F1
score of 0.49).

Our method suggests that the multiple radius method only works for Tree 4 from
Table 5. The reason is that the liana structure of Tree 4 is vertically distributed, meaning
that it has a similar shape to the independent data. Several reasons could explain why
our method provides more advances when compared with [25,27]. First, although the
multiple radius method could produce much more features than using only one scale [25],
it may lead to redundancy. The former means that combining features from all radii could
cause high-dimensional data. The optimal radius search method chooses the scale with
the largest difference between liana and tree points at various radius, thus avoiding high-
dimensional data. Second, our method described more detailed geometric features. For
instance, Zhu et al. [27] computed the dimensional features for increasing radius values of
0.2, 0.3, and 0.4 m, and then determined the optimal radius based on Shannon entropy [29].
Searching only three radii may not be enough to define the optimum radius, which was
a possible reason why their model obtained an overall accuracy of 70.4%. In this study,
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we determined the optimal radius from 0.04 to 1 m, at a 0.01 m interval. Then, we used a
total of 96 radii to obtain the optimal radius, which had more quantities than the number
of radius used in [27]. As a result, an overall accuracy of 85% and 88% was achieved for
Random Forest and XGBoosting, respectively.

Using the multiple radius search method, Moorthy et al. [25] presented an improved
supervised learning model to classify leaf and wood, achieving an overall accuracy of 94.2%.
In addition, Ma et al. [28] used the single radius method, based on the improved salient
features, to classify leaf and wood for conifer and broadleaf trees. Those geometric features
gave the model an overall accuracy of 95.4%. Even though the performance of our method
is lower than those implemented by the previous studies, this is related to the fact that
these two studies look at simple structures while our liana/tree structure provides several
levels of complexity (Figure 1). Lianas are climber plants with irregular growth patterns,
which means that they could extend in all directions around their host trees [11,14]. This
characteristic confuses the 3D deterministic nature of more simple forests [9], an element
that is not considered on the trees analyzed by [25,28].

4.2. Liana-Tree Classification

Table 4 gives information about the performance of RF and XGBoosting on liana
and tree classification. The XGBoosting method outperformed the RF method for the
liana and tree classification on all five trees, and the overall accuracy and the average
F1 score of XGBoosting model were higher than that of the RF model (0.88 vs. 0.85 and
0.49 vs. 0.41, respectively). Table 4 also reported the F1 score of Trees 1, 2 and 3 using the
XGBoosting method was lower than 0.42. There are three reasons why those trees show
worse performance. First, as liana stems move up to the canopy, their stems are of similar
thickness as the tree components such as branches, and thus are misclassified; the former
seems to be one of the current and future limitations on the use of TLS to extract lianas
from their hosts, especially on the upper parts of the canopy. Second, lianas have close
contact with the tree; therefore, it is challenging to distinguish liana and tree point even
the optimum radius is applied. Third, lianas have a more complex structure than those in
Tree 4. Lianas grow around the tree and ascend to the canopy for Tree 2 (Figure 1), thus
showing much more curve structure than the liana structure in Tree 4. By contrast, the
liana structure in Tree 4 is relatively simple, since most lianas on it are vertically distributed.
This is the reason why Tree 4 shows the highest F1 score based on RF (0.71) or XGBoosting
(0.75), same for [16].

4.3. Intercomparison with the Literature Method

We also compared our method with the only liana extraction method available in the
literature [16]. The mentioned study used eigenvalues to separate liana and tree points,
which showed clear disadvantages compared to eigenvalue-based ratios used in this study.
The structure of lianas from their study is relatively simple, since their eigenvalues’ variance
is dominant in one direction. However, this is not always the case. Lianas can grow in
many different strategies, meaning that they tend to have more complex structures than
stems or branches [9]. For example, the lianas in Tree 2 (Figure 1) grow around their
host tree before moving up to the canopy. Therefore, the standard for liana and tree
classification in their study may not work for our data. Their method only obtained an
average recall of 0.19 before postprocessing steps, while this value increased to 0.56 after
manual intervention (see Table 5). Instead, the ratios computed by eigenvalues could
demonstrate how the lianas change in space. This is the one reason why our XGBoosting
model shows higher performance, with an average recall of 0.66. When it comes to manual
intervention, the density-based cluster algorithm (DBSCAN) spent much time recognizing
the label of clusters [52]. For example, DBSCAN produced over 17,000 clusters for Tree 4
(Table S2), while the tree had the largest number of points of all trees (Table 1).

According to Table 6, our model’s final recall, whether based on Random Forest or
XGBoosting, is higher than the state-of-the-art method without postprocessing. The manual
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intervention only improves the recall of their model to 0.87, showing similar performance
to our model without postprocessing (0.88 of RF). Although our method misclassified some
parts of the main stem as lianas (Figure 6d,e), this can be easily corrected using manual
intervention. Figure 7 shows that our method, whether based on RF and XGBoosting algo-
rithms, can extract most lianas from independent data after manual intervention. Therefore,
our model’s performance shows that the presented method coupled with the curvature is
more efficient for liana and tree classification than [16]. Our method’s major advantages
are avoiding many postprocessing steps, while the performance of our method is also as
accurate as that of previous studies. For instance, many isolated clusters (Table S2) need
to be visually identified when using DBSCAN in [16] to obtain a reasonable performance,
while our method can obtain the same performance without postprocessing. Moreover,
the presented method avoids combining the geometric features at multiple radii, thus
producing high-dimensional data. We calculate the geometric features of 96 radii to define
the optimal radius, and this does not need much labor force, which can be performed
using Cloud Compare and R programming. Additionally, we utilize geometric features to
classify liana and tree cloud points, which means that the presented method only needs
xyz coordinates, showing the broad applicability to the 3D point cloud collected from
other sensors.

The highest F1 score of the proposed method is 0.49; the main reason is that the
lianas’ structure is complex, while they are generally smaller than almost all the stems
and show a diameter similar to branches. Due to their very irregular growth pattern, we
suggest that it would be better if future researchers randomly select 500 points from liana
and tree points first, and then define the optimal radius for further classification. This
does not need much labor force and can also improve efficiency to extract lianas from
point clouds, as indicated by our study. In addition, future work could pay attention to
improving the performance of the algorithms for liana and tree classification. Recently,
the development of more sophisticated machine learning technologies, especially deep
learning, provides a solution to unstructured point clouds. Deep learning could extract
features automatically to build a classifier, although it requires a large amount of data and
high computational power [53]. Therefore, deep learning could be one of the solutions to
improving the algorithm’s performance for liana and tree classification.

5. Conclusions

We present an open-source semi-automated liana extraction procedure (https://github.
com/than2/liana-extraction, accessed on 1 September 2021) from point clouds derived
from TLS data. Our approach avoids high-dimensional data and much manual intervention,
making the entire procedure user-friendly and more efficient. Future research can pay
more attention to improving the performance of liana extraction. For example, since we
have the changing trend of liana and tree points from 0.05 to 1 m, time series classification
can be used to separate them directly, which means that more radius information can
be used during the classification. Although time series classification may produce many
more features, this problem can be handled well by Convolutional Neural Networks and
Recurrent Neural Networks. Our method can help in understanding the contribution of
lianas to forest structure by an accurate segmentation/classification from point clouds.

Furthermore, it may provide a flexible approach to continuously monitoring liana
dominance, enabling a better understanding of their role in the forest dynamics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14164039/s1. The supplementary materials mainly provide the
following information: (1) the location of the study area; (2) the changing trends of the six geometric
features for Trees 1, 3, 4, 5 and the independent data; (3) the numbers of cluster generated by DBSCAN
on Trees 1, 2, 3, 4 and 5; (4) Hyperparameter used for RF and XGBoosting algorithms.

https://github.com/than2/liana-extraction
https://github.com/than2/liana-extraction
https://www.mdpi.com/article/10.3390/rs14164039/s1
https://www.mdpi.com/article/10.3390/rs14164039/s1
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