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Abstract: Remote-sensing developments such as UAVs heighten the need for hyperspectral image
stitching techniques that can obtain information on a large area through various parts of the same
scene. State-of-the-art approaches often suffer from accumulation errors and high computational
costs for large-scale hyperspectral remote-sensing images. In this study, we aim to generate high-
precision hyperspectral panoramas with less spatial and spectral distortion. We introduce a new
stitching strategy and apply it to hyperspectral images. The stitching framework was built as follows:
First, a single band obtained by signal-to-noise ratio estimation was chosen as the reference band.
Then, a feature-matching method combining the SuperPoint and LAF algorithms was adopted to
strengthen the reliability of feature correspondences. Adaptive bundle adjustment was also designed
to eliminate misaligned artifact areas and occasional accumulation errors. Lastly, a spectral correction
method using covariance correspondences is proposed to ensure spectral consistency. Extensive
feature-matching and image-stitching experiments on several hyperspectral datasets demonstrate the
superiority of our approach over the state of the art.

Keywords: feature matching; hyperspectral images; image stitching

1. Introduction

In recent years, UAV-borne hyperspectral remote sensing (HRS) systems have demon-
strated great application potential, such as cover classification, side-scan sonar analy-
sis [1], and vegetation mapping [2]. However, to obtain a higher resolution, the field of
view must become limited, so it is not suitable for large-scale scenarios [3]. Therefore,
the image-stitching technique for HRS urgently needs to align a series of images into a
panoramic image.

Image stitching is the process of combining multiple images with overlapping areas
into a large panorama [4]. Most common image-stitching methods require precise over-
lapping fields between images and the same exposure condition to produce a seamless
stitching result [5]. The research on image stitching has experienced a long period of
development, and many algorithms have been proposed [6]. Recently, researchers have
attempted to stitch RGB images, but there are still few pieces of research on UAV-borne
hyperspectral image (HSI) stitching technology. Due to the characteristics of UAV-borne
HSIs, their performance and efficiency are still not satisfactory [7]. There are some problems
in the application of traditional image-stitching algorithms to hyperspectral images, mainly
due to the following reasons.

First, in reality, hyperspectral remote-sensing images have complexity, unlike ordinary
RGB images. As remote-sensing images usually contain a whole field, forest, lake, and other
scenes, repeated structures, weak texture, and even no-texture areas often appear in images.
The feature points detected by traditional methods such as SURF [8] are usually densely
distributed with the strong texture of the image. In contrast, only a few or even no feature
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points can be detected in the region with weak textures, as shown in Figure 1. Since feature-
point pairs completely provide the information calculated by the image transformation
model, the uneven distribution of feature points may lead to geometric inconsistency
between the panorama and the actual scene. Extracting thousands of feature points for
correspondence is often necessary for large-scale or high-resolution hyperspectral images,
which significantly burdens existing feature-point extraction and matching methods. In
order to simultaneously ensure the quantity and quality of the detected feature points, a
new feature-point detection and matching algorithm should be proposed to detect rich and
accurate feature points in regions with weak textures.

Figure 1. In the traditional sample diagram of feature-point detection and matching, feature points
can hardly be detected in a region with weak texture, resulting in incorrect matching.

Second, the shooting conditions of UAVs are usually unstable because aircraft roll,
yaw, and front and rear jitter are generally inevitable [9]. At the same time, remote-sensing
images typically contain some unavoidable local distortion caused by surface fluctuation
and changes in imaging viewpoints [10]. So, hyperspectral remote-sensing images often
unavoidably contain some parallax that poses higher requirements for feature matching
and image alignment accuracy, as shown in Figure 2. If only simple transformations (such
as rigid or affine transformations) are used, their matching ability is severely limited.

Figure 2. Pairs of pictures with parallax and matching sample graphs.

Lastly, hyperspectral image stitching not only considers the alignment of spatial
information of each band, but also the spectral consistency of the panorama. The spectrum
can reflect the characteristics of the imaging target. This feature can be used to classify
and recognize information in images. Therefore, the stitching algorithm for hyperspectral
images should also reduce the distortion of spectral data to ensure the integrity of the
panorama. Most existing algorithms do not simultaneously consider the spatial and spectral
consistency of the stitching results. Existing hyperspectral image-stitching methods have
certain limitations. For example, in [11], UAV-based HSIs were stitched using an optimal
seamline detection approach. However, this work limited its application to large-scale and
multi-image stitching tasks, which presented a severe challenge in solving accumulation
errors, and spectral distortion was noticeable.

This article proposes an effective and robust method to obtain a high-precision
panorama for large-scale UAV-borne hyperspectral images. We concentrate on both im-
proving alignment accuracy and reducing spectral distortion. The main contributions in
this work are as follows:
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1. First, a feature extraction method based on SuperPoint is introduced to simultaneously
improve the quantity and quality of feature points. Then, a robust and fast mismatch
removal approach, linear adaptive filtering (LAF), is used to establish accurate cor-
respondences that can handle rigid and nonrigid image deformations, and avoid
much calculation.

2. Second, an adaptive bundle adjustment by continually reselecting the reference image
was designed to eliminate the accumulation of errors.

3. Lastly, a covariance-correspondence-based spectral correction algorithm is proposed
to ensure the spectral consistency of the panorama.

This article is organized as follows. Section 2 presents the related works. Section 3
proposes an effective and robust method to obtain a high-precision panorama for large-
scale UAV-borne hyperspectral images. Then, Section 4 outlines conducted comparative
experiments on the algorithms of each part, and our final panorama result of 54 images is
presented. Lastly, we summarize the full text in Section 5.

2. Related Works

The most used solutions for image stitching are feature-based methods, including
feature detection, feature matching, and image alignment [12]. Feature detection is the
first step upon which the stitching performance relies heavily. Specifically, some feature
extractors are based on spectral and spatial information, such as SS-SIFT [13]. However,
large data can require huge computation times for hyperspectral images with hundreds of
bands. Since each band of hyperspectral images contains the same spatial information, it
is reliable to obtain a single band and extract features from that specific band. The most
used feature detection methods, such as SIFT [14] and SURF [8], are invariant to rotation,
scale transformation, and brightness changes. However, feature points are clustered and
distributed unevenly in overlapping areas by handcrafted approaches, thus impacting
the performance of applications. Recently, with the rapid development of deep-learning
techniques, some deep descriptors [15,16] have shown superiority over handcrafted ones
in different tasks [17].

For UAV-borne hyperspectral images with great spatial resolution, mismatch prob-
lems are inevitable, so it is not easy to obtain reliable matching points [18]. Most of the
existing mismatch removal approaches use RANSAC [19], but it is unsuitable for nonrigid
situations and has limited success. Methods based on local geometry constraints, such
as LLT [20], LPM [21], and GLPM [22], are very successful in many situations. However,
UAV-borne hyperspectral remote-sensing images usually contain some parallax caused by
a change in imaging viewpoint, which greatly affect these feature-matching methods. In
order to solve this problem, nonparametric fitting methods such as mTopKRP [23] were
proposed. However, when the proportion of outliers is assumed to be too large, it seriously
degenerates. Those approaches are usually time-consuming, especially for large-scale or
high-resolution images, so the computation time becomes a serious problem.

In feature-based image-stitching methods, establishing a parametric image alignment
model is crucial among those steps. The representative work is AutoStitch [24], which uses
a single homography to realize the stitching of multiple parallax-free images. However,
when the camera translation cannot be ignored or the scene is not located near the plane,
the global transformation model does not work well. This is because a global homography
cannot consider all the alignments at different depth levels. Some methods using the
local transformation model have been proposed to solve the parallax problem. ANAP [25]
computes the local transformation models of each image, but the perspective distortions
in the nonoverlapping regions still exist. The NISwGSP [26] stitching approach guides
the warping transformation models with a grid mesh. ELA [27] uses a regional warp to
eliminate parallax errors. However, to better solve the parallax problem, we want to divide
the image into smaller subregions to move it close to the plane, so the correspondences on
these subregions are very rare. So, while optimizing the alignment model, the quantity and
quality of feature points also need to be ensured.
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To improve the stitching accuracy, bundle adjustment is often used to optimize a
model. In many methods, to avoid accumulated errors, additional sensors are required
to directly obtain the camera pose. However, in practice, satellite and drone imagery
parameters are not always available [28]. Xing et al. [29] proposed a method based on
minimal registration error that extends the Kalman filter to local regions and then globally
refines the parameters. However, due to the parallax of the ground scene, this method is not
suitable for the image stitching of large areas. Xia et al. [30] first aligned the images via an
affine model and then performed model refinement under inverse perspective constraints.
However, always fixing the first image as the reference image is unreasonable in large-scale
stitching tasks, as it leads to a rapid accumulation of errors.

3. Methodology

This section details our proposed algorithm, including feature extraction and matching,
adaptive bundle adjustment, spectral correction, and multiband blending. The flowchart of
our method is shown in Figure 3.

Hyperspectral image1 Hyperspectral image2

Select one band as the reference band using the PSNR estimation

Input
SuperPoint
Backbone

NMS RankSoftmax

Bi-Cubic Interpolate L2 Normalize

Feature points

Descriptors

Feature Point Dectector

Descriptor Generator

Match feature points and remove false matches using LAF

match space gridding
kernel convolution

motion consistency checking 

All bands fusion to get the final panoramic hyperspectral image

Exact feature points in the reference band using SuperPoint

Spectral correction and multi-band blending

Image alignment using robust elastic warp 
and adaptive bundle adjustment

Figure 3. Proposed flow of hyperspectral image stitching.
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3.1. Feature Extraction and Matching

Hyperspectral images contain hundreds of bands, so extracting critical points for all
bands takes a lot of time. The spatial information in each band is the same, so selecting
a band as the reference can significantly reduce the calculation time. Feature extraction
algorithms are sensitive to image noise. To accurately extract image features, feature points
are extracted in the band with the slightest noise. This article uses the method based on
peak signal-to-noise ratio (PSNR) estimation for band selection.

3.1.1. Self-Supervised Interest-Point Detection and Description

Feature extraction is the first and most crucial step in image stitching because feature
points provide the information used in image transformation model calculation. Ideally,
feature points are evenly distributed in overlapping areas, and stable features can be
extracted in the case of visual angle changes and illumination changes. Feature descriptors
are usually the final form of image feature extraction. Good feature descriptors can capture
stable and discriminating information of images. In this paper, the SuperPoint network is
used to extract robust feature points and feature descriptors, and the feature could achieve
good accuracy.

A fully convolutional model, the SuperPoint network [31], was adopted to extract
feature points. The main advantages of the SuperPoint network are as follows: First,
SuperPoint can detect feature points evenly distributed in the overlapping region, rendering
it more suitable for textureless areas in hyperspectral remote-sensing images. Second,
instead of patch-based networks, the input to the network is full-sized images.

First, the network maps input image I ∈ RH×W to an intermediate tensor B ∈ RHc×Wc×F.
The calculation is simultaneously divided into two headers: a 2D interest point detector head
and a descriptor head. The 2D detector head computes X ∈ RHc×Wc×65. After channelwise
softmax and nonmaximal suppression (NMS), [32], the detector sorts the detected feature
points according to the given confidence. It selects k feature points with the highest confidence
as the output. To reduce computation and memory, instead of using dense methods, the
descriptor learns semidense descriptors D ∈ RHc×Wc×D. Then, the bicubic interpolation
algorithm is performed to obtain complete descriptors of size RHc×Wc×D, and lastly, L2
normalization is used to obtain unit length descriptions.

Let Il and Ir be a pair of images to be stitched, xk
l,r and xk

r,l represent feature points.
Pl(xk

l,r) denotes the feature descriptor for xk
l,r, and Pr(xk

r,l) is the feature descriptor of xk
r,l .

3.1.2. Robust Feature Matching via Linear Adaptive Filtering

For large-scale or high-resolution hyperspectral images, extracting thousands of fea-
ture points for correspondence is often necessary, which significantly burdens existing
feature-point extraction and matching methods. Since remote-sensing images inevitably
produce some surface fluctuation and local deformation due to the change of imaging
viewpoint, if only rigid transformation is used, the matching of remote-sensing images is
severely limited. We adopted the LAF [33] strategy to effectively eliminate mismatches,
which is effective for hyperspectral remote-sensing images. This approach can deal with
rigid and nonrigid image deformation. At the same time, the grid strategy render the
method linear in time and space complexity. Even assuming the set contains thousands
of matches, the matching problem can be completed in tens of millimeters. This time is
conducive to solving large-scale, real hyperspectral remote-sensing image-stitching tasks.

Inspired by the theory of filtering and denoising, this method uses an a priori geometric
consistency to detect outliers after establishing putative feature correspondences by local
descriptor features and eliminating them. First, the algorithm divides the putative feature
corresponding space into grids. Then, the average motion vector of each cell is calculated.
Next, we can obtain the typical motion vector using Gaussian kernel convolution. Lastly,
we can calculate the consistency with a threshold detection method to obtain the final
inlier set.
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According to the principle of image denoising, the distribution and size of noise in
the image are irregular and random. Similarly, in feature-point removal, potential true
matches tend to be regular and smooth. First, assume that the putative set of matches S is
transformed into S′:

S′ = {(xk
l,r, mk)}n

k=1, (1)

where mk = xk
r,l − xk

l,r is the motion vector of (xk
l,r, xk

r,l), n is the number of putative matches.
Then, we equally divide feature points χ = {xk}n

k=1 into multiple dimensions nc × nc.
Accordingly, S′ can be divided into nc × nc parts with χ = {Cj,k}nc

j,k=1. Then, a Gaussian
kernel distance matrix K of size nk × nk is defined. Then, we initialize the parameters using
the following equation: {

nc = min({max{[√ns], 15}, 30})
nk = odd(nc/3),

(2)

Ki,j =
exp{−Di,j}

∑nk
i=1 ∑nk

j=1 exp{−Di,j}
, Di,j =‖ si,j − s∗ ‖2, (3)

where ns is the number of the putative match set, si,j = (i, j)T denotes the corresponding
position in the convolutional kernel K, and s∗ = (dnk/2e, dnk/2e)T denotes the central
position. After we transform the putative matching set S into S′, we grid the putative
corresponding space and calculate the average motion vector of each cell. To remove
outliers progressively, the next step is an iteration strategy. Generated matrix M̃ after
Gaussian kernel convolution is calculated with:

M̃ =
(V · M̄)⊗K− M̄ ·K∗
V⊗K− B(V) ·K∗ + ε

(4)

where B(V) is the binary form of V, M̄ is the average motion matrix, K∗ is the central
element, and ε is a tiny positive number n in the case that the denominator is 0. K is
a Gaussian kernel distance matrix, and V is a count matrix with Vj,k =| Cj,k |. The
convolution gives us a typical motion vector for each cell; then, we define the deviation
between mi and M̃j,k. We constrain them with a point value between 0 and 1, and obtain
the following formula:

di = 1− exp{−
‖ mi − M̃j,k ‖2

β2 }, ∀i ∈ Cj,k, (5)

where β is used for determining the width of the interaction range between the two motion
vectors, and we empirically set β2 = 0.08. Thus, inlier set R∗ is roughly obtained.

R∗ = {(xk
l,r, xk

r,l) : di ≤ λ}. (6)

According to the posterior probability estimation, we can obtain

pi =

{
0, di > λ
1, di ≤ λ.

(7)

Then, ẽi = mi − M̃j,k, ∀i ∈ Cj,k. We can obtain

σ2 =
tr(ETPE)
2 · tr(P) (8)

γ =
tr(P)

n
(9)

where P = diag(p1, · · · , pn) is a diagonal matrix, and E = (ẽ1, · · · , ẽn)T , tr(·) is the trace
of a matrix. Next, we calculate probability pi on the basis of the Bayesian rule:
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pi =
γe
−{
‖mi−M̃j,k‖

2

β2 }

γe
−{
‖mi−M̃j,k‖2

β2 }
+ 2πσ2(1−γ)

a

(10)

Lastly, inner set R∗ can be calculated with the following formula using predefined
threshold τ, and we empirically set τ = 0.8:

R∗ = {(xk
l,r, xk

r,l) : pi > τ}, (11)

LAF filters outliers step by step using an iterative strategy. In the hyperspectral
stitching task, we set the number of iterations to 5 in each iteration. We also set λ = 0.8,
0.2, 0.1, 0.05, and 0.05 in each iteration. Experiments show that our method is robust to
hyperspectral remote-sensing data.

3.2. Adaptive Bundle Adjustment

Given a group of matched feature points {xk
l,r, xk

r,l} in two adjacent images to be
stitched, image alignment is based on a transformation model to estimate the mapping
relationship. The deformation of image Ir is represented as G(x, y) = (g(x, y), h(x, y))T ,
where g(x, y) and h(x, y) are deformations in the x and y directions. We use pi

l
′
= (x′i , y′i)

T

to denote projection pi
l in Ir by Brown and Lowe [24]. For ideal cases without parallax,

projection pi
l
′
= pi

r, which means that global transformation H can estimate a sufficiently
accurate alignment. However, projection errors arise for general cases of parallax. The
parallax error on pi

l
′ is represented by projection bias Gi = pi

l
′ − pi

r = (gi, hi)
T . Assuming

that there are I1, I2, ..., In, the transformation matrices between adjacent images are H12, H23,
H(n−1)n. Hij is the transformation matrix of Ij to Ii, and the transformation matrix of the

new target image and the reference image can be calculated accordingly: Hm =
n−1
∏
i=r

Hi(i+1).

Although this process is simple, computation-intensive, and time-consuming, due to the
multiplicative property of multiplication, errors accumulate very quickly, leading to severe
distortions in the final panorama. Regarding parallax and accumulation errors, an adaptive
bundle adjustment was designed to provide more accurate and reliable alignment.

First, we used the robust elastic warp [34] to avoid the parallax. The transformation is
the combination of the homography and similarity:

Hq = µhH + µsHs, (12)

where H is the homographic transformation, and Hs is the similarity transformation. µs
linearly decrements from 1 to 0 of the source image, with µh from 0 to 1.Target image I2 is
transformed as follows:

W = HqH−1. (13)

However, for multi-image and large-scale scenes, errors can accumulate very quickly.
Considering parallax and accumulation errors, it is not reasonable to use the first image as
the reference throughout the process [35]. So, a weighted graph is constructed to update
the reference image, which is defined as:

Aij =
1

log(keyNums + o)
, (14)

where keyNums is the number of matching points between Ii and Ij, and o is set as a
constant, which was set to be 50 in our experiments. We could construct the shortest path
cost matrix A where each element represents the cost of the shortest path between two
adjacent images. Therefore, the element with the lowest cumulative cost in A is treated as
the reference image.
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After each update of the reference image, the alignment model between the images
to be stitched is recalculated in the optimization framework. The transformation setW of
images to be stitched can be solved as follows:

E(W) = ∑
Ii∈G

keyNumsi,re f

∑
k=1

‖Wixk
i,re f −Wre f xk

re f ,i‖
2 (15)

where G = {Ii}m
i=1 is the set of currently aligned images, keyNumsi,re f is the total number

of matches {xk
i,re f , xk

re f ,i} between Ii and Ire f .
In order to speed up computation, the optimal solution of nonlinear least-squares

Equation (13) can be solved with the sparse Levenberg–Marquardt algorithm [36]. Since
the continuous updating of the reference image reduces error accumulation, and the bun-
dle adjustment enables accurate alignment, our algorithm dramatically improved global
alignment accuracy.

3.3. Spectral Correction and Multiband Blending

After the spatial stitching of single-band images, their spectral information also needs
to be matched. We then fused the spectral information of all bands to realize the spectral
correction. Each point in the overlapping area was a pair of the correspondence of two
adjacent images. In hyperspectral images, each point of a single-band image has a spectral
value that is different from its correspondence point. In order to realize the spectral
matching of images, this difference must be corrected. In two adjacent images of one band,
the wavelength is the same, and the spectral values of correspondence points are different.
According to this difference, the new spectral value of each point in the overlapping region
can be obtained, which is the spectral correction:

Y′ =
Y +

{
∑xs∈S[CN(xt)− CN(xs)]

}
keyNumInS

, (16)

where Y′ represents the spectrum after correction, and Y represents the original one. xs is
the feature point in the reference image, and xt is the corresponding matching feature point
in the target image. keyNumInS is the total number of feature points in the overlapping
area, and CN(xt) and CN(xs) are the average gray values in the 3× 3 region around feature
points xs and xt. The spectrum of the nonoverlapping area maintains the original one.
When the new spectral values are obtained at each point of the overlapping area, the final
spectrum after spectral matching is obtained.

Next, we fused multiple images using the multiband fusion method, and calculated
weight map Wi

max(θ, φ) in a spherical coordinate system:

Wi
max(θ, φ) ==

{
1, i f Wi

max(θ, φ) = arg max Wi
max(θ, φ)

0, otherwise,
(17)

Wi
max(θ, φ) is 1 if the image to be stitched has maximal weight, and 0 where some other

image has a higher weight.
Given N input hyperspectral images Ip, p = 1, · · · , N with L bands, and the matching

points between images {xk
l,r, xk

r,l}, the workflow is presented in Algorithm 1.
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Algorithm 1 Hyperspectral panoramic image stitching using robust matching and adaptive
bundle adjustment

Require: Hyperspectral images Ip, p = 1, ..., N each having L bands
Ensure: Hyperspectral panorama with high alignment accuracy and low spectral distortion

1: The PSNR of each band is calculated to select the reference band.
2: Extract the feature points by SuperPoint and obtain a putative match set S between two

adjacent images set in the reference band.
3: Use kernel convolution to generate a typical motion field using Equations (4) and (5)
4: Obtain inlier set R∗ and matching points {xk

l,r, xk
r,l} by adaptive filtering using Equa-

tion (11)
5: for p = 1 to N − 1 do
6: q = p + 1
7: Set I1 as reference image Ire f .
8: Update reference image Ire f using Equation (14).
9: Formulate Equation (15) on the basis of matches {xk

q,re f , xk
re f ,q}.

10: Correct the hyperspectral spectral information of all bands using Equation (16).
11: Align Ip and composite it to the panorama.
12: Map Ip to Ire f using Equation (17).
13: end for
14: Stitch the panorama using the same transformation model for the remaining (L− 1)

bands.

4. Experiments and Analysis

In this section, we compare our proposed method with the state of the art using
hyperspectral and remote-sensing image datasets. First, the dataset used in the experiment
is introduced. Then, our algorithm is compared with existing algorithms, and feature-
matching and image-stitching results are analyzed. Lastly, we obtain our panoramic
hyperspectral image and analyze the spectrum of the overlapping region.

4.1. Datasets

We used five image datasets to evaluate our algorithm in which the HSI dataset was
from [34]. This dataset contains 54 UAV-borne hyperspectral images (HSI) with a size
of 960 × 1057 and spectral range from 400 to 1000 nm, with a total of 176 bands. We
tested feature-matching performance on images with different transformations. There are
few hyperspectral remote-sensing image datasets labeled with ground truth. In addition,
feature points are extracted on a single band. So, we used four remote-sensing datasets
from [23] to test the feature extraction and matching performance, comprising 40 pairs
of 700× 700 color infrared aerial photographs (CIAP), 25 pairs of 600× 337 unmanned
aerial vehicle (UAV) images, 34 pairs of 256× 256 or 800× 800 synthetic aperture radar
(SAR) images, and 30 pairs of 1280× 1024 or 1088× 1088 fisheye (FE) images that undergo
projective, similarity, projective, rigid, and nonrigid transformations.

4.2. Results on Feature Matching

First, we evaluated the performance of some of the most popular handcrafted and
deep-learning-based local features on hyperspectral image (HSI) datasets. The results of
feature detection and matching are shown in Figure 4. SIFT [14] detected many feature
points, but the feature points were concentrated in areas with complex textures. That is
to say, there were few feature points and even fewer correspondences in textureless areas.
SURF [8] and KAZE [37] provided too few matches to meet the subsequent calculation
needs. SuperPoint [31] improved both the quantity and quality of feature points, evenly
distributing them in the overlapping region.
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(a)

(b)

(c)

(d)

Figure 4. Feature point detection and matching of SIFT [14], SURF [8], KAZE [37] and SuperPoint [31]:
1275 future points and 754 tentative matches by SIFT [14], 275 future points and 132 tentative matches
by SURF [8], 281 future points and 154 tentative matches by KAZE [8], 2246 future points and 1756
tentative matches by SuperPoint [31]. (a) SIFT; (b) SURF; (c) KAZE; (d) SuperPoint.

Then, we tested the performance of our proposed LAF and compared it with that
of other representatives, namely, RANSAC [19], VFC [38], LPM [21], and mTopKRP [23],
on four datasets with both rigid and nonrigid transformation. The performance values
are summarized in Figure 5. F-score was determined as the harmonic mean of precision
and recall, equal to 2× Precision× Recall/(Precision + Recall). Each column in Figure 5
represents the results of a rigid, projected, and nonrigid dataset from left to right. For
rigid datasets, all methods achieved high accuracy because there was only a simple rigid
transformation between these images. However, for nonrigid datasets, although RANSAC
achieved high accuracy, the method in this paper could retain more correct matches,
resulting in better Recall. mTopKRP also achieved good results, but its running time was
too long, and its efficiency was low. The LPM had the shortest running time, but when the
putative set involves many outliers, and inliers are distributed dispersedly, the performance
(especially Precision) begins to sharply worsen. Through the Fscore, results show that our



Remote Sens. 2022, 14, 4038 11 of 20

LAF was the best and had obvious advantages. In terms of accuracy and recall rate, our LAF
could achieve good results, while the robustness of other methods was poor. Compared
with other algorithms, LAF also had high effectiveness.

We conducted a comparative experiment on the HSI dataset to prove the effectiveness
of SuperPoint features and the LAF algorithm in our approach. The results are given in
Figure 6. The images selected in this paper are challenging for a feature-matching task. The
first and third lines had projection distortion, the second line had severe noise, the fourth
line had a small overlap area, and the last line had nonrigid distortion. Figure 6 shows that
our method successfully identified most of the real matching pairs with only a few errors.
These visual results show that our LAF could handle different situations even with large
parallax, and is suitable for remote-sensing image-stitching tasks.
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Figure 5. Quantitative comparisons of RANSAC [19], VFC [38], mTopKRP [23], LPM [21] and our LAF
on on five image sets: (from (left) to (right)) rigid (SAR, CIAP), projection (UAV) and nonrigid (FE).
((top) to (bottom)) Precision, Recall, F-score, and Runtime with respect to the cumulative distribution.
The average Precision (AP), average Recall (AR), average F-score (AF), and average Runtime (AT) are
reported in the legend.
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Figure 6. Feature-matching results of our LAF on 10 representative remote-sensing image pairs.
((top) to (bottom) and (left) to (right)) UAV1, UAV2, SAR1, SAR2, PAN1, PAN2, CIAP1, CIAP2, FE1,
and FE2 (blue = true positive, black = true negative, green = false negative, and red = false positive).
For each example, the graph on the left represents the intuitive result for the image pair, and the
graph on the right represents the corresponding motion field.

4.3. Results on Image Stitching

Next, we compare our gray-level panorama with our previous work [34] in Figure 7.
Zooming in on several local areas showed that our method eliminated ghostly and mis-
aligned areas in the panorama.

Figure 7. Comparison of the stitching results of the first set of hyperspectral images with the authors’
previous work [34] (single band).

Then, we compared our proposed method with ANAP [25], NISwGSP [26] and
ELA [27] in 3 groups of hyperspectral images, and each group containing 18 HSI im-
ages. We applied these algorithms to UAV-borne hyperspectral images and compared
them with our method. These images contained large translation movements, resulting
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in a large parallax. In Figure 8, ANAP [25], NISwGSP [26], and ELA [27] all showed low
alignment accuracy with some representative areas represented by red boxes. In Figure 9,
in the area shown in the red box, ANAP and NISwGSP had severe deformation, irregular
amplification, or distortion at the edge. Although the ELA removed the ghost to some
extent, one road was out of place. Figure 10 shows that the other algorithms also had
varying degrees of ghosting and blurring in the house structure. ANAP relieved ghosts
on some houses but reduced alignment accuracy. A large parallax in the overlapping
region renders these algorithms unable to accurately align images, resulting in ghosts and
fuzziness. Our method aligned the image more accurately, and eliminated the problems
of deformation and distortion in the nonoverlapping region after stitching. Experiments
show that our method could better solve these problems.

Figure 8. Comparison of the stitching results among ANAP [25], NISwGSP [26], ELA [27], and the
proposed method (from (top) to (bottom)). At the top are the 18 original images to be stitched.
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Figure 9. Comparison of the stitching results among ANAP [25], NISwGSP [26], ELA [27], and the
proposed method (from (top) to (bottom)). At the top are the 18 original images to be stitched.

We used our method to stitch a total of 54 images in the HSI dataset and synthesize a
pseudocolor image in Figure 11. Our method achieved a large-scale hyperspectral image
stitching, while the other methods failed to produce the final results. This shows that our
method generated a highly accurate panorama with satisfactory alignment quality.
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Figure 10. Comparison of the stitching results among ANAP [25], NISwGSP [26], ELA [27] and the
proposed method (from (top) to (bottom)). At the top are the 18 original images to be stitched.
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Figure 11. The final result of stitching 54 hyperspectral images in the HSI dataset using our method.
We synthesized the pseudocolor image by selecting the 92nd (700.2 nm), 47th (547.6 nm), and 13th
(436.5 nm) bands.

This section objectively evaluates image stitching quality. Since there was no reference
image in the final panorama, we used some image-quality evaluation indices without a
reference image, such as variance, EOG, and DFT. variance refers to the discrete degree
of image pixel gray value relative to the mean value. If the variance is large, it indicates
that the gray level in the image is scattered, and the image quality is high. EOG reflects
the variation between gray scales. A large value represents multiple image layers and
demonstrates the clarity of the image. DFT reflects the overall activity of the image space.
The obtained experimental results are shown in Table 1:

Table 1. comparison of the evaluation indicators among four algorithms.

Algorithm Variance EOG DFT

ANAP 3.172× 106 2.577× 108 3.194× 108

NISwGSP 3.204× 106 2.597× 108 3.193× 108

ELA 3.152× 106 2.573× 108 2.877× 108

Our method 3.742× 106 2.996× 108 4.754× 108

The above experimental results show that all evaluation indices of the images obtained
through the image transformation model in this paper were improved, and that the image
quality obtained in this paper is better.
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4.4. Spectral Analysis

The spectral analysis of images can realize the classification and recognition of ground
objects, so a stitching task should not only focus on spatial information, but also analyze
the spectrum. Ideally, the spectrum of the panorama should be consistent with that of the
reference image in the overlapping region. The similarity of two spectral curves can be
judged by calculating the spectral angle distance (SAD) [39]. In this section, hyperspectral
image data HSI was used for the experiments. First, first image I1 and the second image
I2 are taken as examples to find two pairs of specific ground objects (land and vegetation)
and are recorded as A, A′ and B, B′, respectively.

Since image I1 is a reference, the spectrum of the panorama should be close to that
of image I1. Compared with the previous algorithm, the spectrum obtained by the new
algorithm was closer to image I1 (Figure 12). According to the calculation, SAD of I1 and
I2 at this point were 0.0894 for point pair A′ and A′. The SAD of the image after stitching
with the previous algorithm of the author and the image of 1 at this point was 0.0308, and
the SAD obtained by the algorithm proposed in this paper was 0.0084. The SAD of B′ and
B′ was 0.0471. The SAD of the image after stitching with the previous algorithm was 0.0212
at this point, and the SAD obtained by the algorithm of this paper was 0.0104. Therefore,
the spectral values of the image obtained by the algorithm in this paper were closer to the
reference image when the spectral values of the same point pair of the original image were
significantly different, ensuring the consistency of the spectral information.

The above experimental results show that all evaluation indices of the images obtained
through the image transformation model in this paper were improved, and that the image
quality obtained in this paper was better.
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Figure 12. Cont.
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Figure 12. Spectral analysis. Blue and green curves are the spectrum of the two original images before
stitching. Blue, spectrum of the reference image; yellow, the spectrum without spectral correction;
red, the spectrum after spectral correction. (a) sift; (b) surf.

5. Conclusions

A novel image stitching algorithm for UAV-borne hyperspectral remote-sensing im-
ages is proposed in this article that focuses on improving accuracy and efficiency to render
it suitable for multiple large-scale image-stitching tasks. Specifically, a deep local feature,
SuperPoint, was integrated into the proposed feature detection. The LAF algorithm was
proposed to establish accurate feature-point correspondences. The adaptive bundle adjust-
ment was designed to solve accumulation errors and distortions. Lastly, we corrected the
spectral information on the basis of covariance correspondences to avoid spectral distor-
tion. The proposed approach achieved high accuracy and satisfactory quality on several
challenging cases.
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