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Abstract: Local climate zones (LCZs) provide a comprehensive framework to examine surface urban 

heat islands (SUHIs), but information is lacking on their thermal contributions and spatial effects in 

different macroclimate cities. A standard framework for distinguishing between the cooling effect 

and heating effect and spatial effect analysis based on the LCZ scheme was conducted in five distinct 

macroclimate cities, i.e., Yuanjiang (arid climate), Jinghong (tropical climate), Kunming (subtropical 

climate), Zhaotong (temperate climate), and Shangri-La (alpine climate). The results indicated that 

(1) built-up zones presented heating effects in Jinghong and Shangri-La, but opposite results were 

observed in Yuanjiang and Zhaotong. (2) The thermal contributions of natural zones with dense 

trees (LCZAs) and waterbodies (LCZGs) showed cooling effects in the five cities regardless of sea-

son. (3) The spatial effect of heating LCZs on land surface temperature (LST) was more significant 

than that of cooling LCZs in Jinghong and Shangri-La, but the opposite results occurred in Yu-

anjiang and Kunming. Moreover, the spatial effect was lower in Zhaotong than in other cities. (4) 

Lower LST differences between natural zones and built-up zones in winter than in summer de-

creased the spatial effects. In summary, the thermal contributions of LCZs and their spatial heat-

ing/cooling effects were different among five distinct climate backgrounds, which implies that tar-

geted measures must be used in different macroclimates. 
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1. Introduction 

The global population increased from one billion people in 1800 to more than seven 

billion people in 2015 [1]. Rapid urbanization and global population increases have been 

accompanied by an increase in the intensity of landscape changes. This in turn has driven 

the development of urban heat islands (UHIs), which are defined as metropolitan areas 

with a higher temperature than that of surrounding areas [2]. UHIs notably affect the re-

gional climate, vegetation growth, and water and air pollution, all of which are closely 

related to human health and the livability of cities [3–5]. Moreover, these negative impacts 

can be amplified by global warming [6]. Many studies have long remained interested in 

SUHI investigations because LST data can comprehensively cover entire cities [5]. 

The SUHI refers to the LST differences between different land uses and land covers 

(LULC) [7]. Different conditions across large areas can lead to different thermal charac-

teristics, especially the macroclimate background. On the one hand, weather conditions 

alter the cooling effect of natural land cover by influencing evapotranspiration and vege-

tation conditions [8,9]. On the other hand, previous studies suggest that the relationship 

between LULC and LSTs exhibits spatial–temporal differences owing to climatic condi-

tion differentiation, which implies that the LSTs of built-up areas with various forms have 
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different responses to macroclimate change [10–12]. Therefore, both artificial surfaces and 

natural land cover could present an opposite thermal contribution due to macroclimate 

differentiation and further contribute to different spatial effects [13]. 

In addition to the thermal contributions of different LULC types, previous studies 

have quantified the relationship between LSTs and landscape patterns. Studies on the spa-

tial effects of heating/cooling LULC are crucial for urban planning and influencing mech-

anism analysis. Many landscape metrics concerning composition and configuration have 

shown large impacts on LSTs [14,15]. However, the correlation between LSTs and land-

scape patterns showed different results in some studies. For example, the density of the 

built-up areas had a positive correlation with LSTs [15,16], but a different result was 

shown in another study [16]. Furthermore, natural land cover had different spatial effects 

on LSTs in different cities [13]. Some studies suggest that seasonal and climate factors 

notably affect the relationship between urban landscapes and heat island effects [17,18]. 

For this reason, it is very important to determine the spatial effects of both heating and 

cooling LULC on LST variations in different macroclimate cities for better urban planning. 

Many studies focus on the cooling effects of water bodies/green spaces and the heat-

ing effect of built-up areas [7,19,20], but the coupling of highly heterogeneous land with 

special physical properties and macroclimate backgrounds could lead to different thermal 

contributions and spatial effects, and it remains to be studied due to the lack of a uniform 

and comprehensive LULC classification scheme to quantify the thermal contributions and 

spatial effects. Inconsistencies in SUHI results among different studies pose a challenge in 

this field owing to the lack of a general LULC classification scheme reflecting the surface 

climate properties [21]. Thus, the concept of the local climate zone (LCZ) has been widely 

applied in urban climatology [22]. An LCZ is defined as a region with a uniform surface 

cover, structure, material, and human activities ranging in area from hundreds of meters 

to several kilometers on a horizontal scale [23,24]. Geometric and surface properties com-

prise the basis of LCZ classification. Therefore, this concept is more suitable for SUHI re-

search than other frameworks, such as the national land cover database in the USA, the 

Urban Atlas, and the European CORINE land cover database [25]. Relevant studies have 

further revealed the relationship between LSTs and LCZs with different urban forms and 

surface properties [10,11,25–29]. However, few studies have systematically analyzed the 

thermal contributions of LCZs, and their spatial effects in different macroclimate cities are 

lacking [30,31]. 

The objectives of this study are thus to distinguish the cooling and heating effects of 

LCZs and investigate the relationship between the spatial distribution of heating/cooling 

LCZs and LST in five cities in Yunnan Province, China, with different background cli-

mates, namely, tropical, subtropical, temperate, alpine, and arid climates. Subsequently, 

the thermal distribution index (TDI) was used to quantify the magnitude of the heat-

ing/cooling contribution per LCZ. In addition, a thermal-weighted gravity index (TWGI) 

was proposed to reliably explain the LST variations. Particularly, the questions in this 

study are as follows: (1) Does the heating/cooling effect of LCZs differ among different 

macroclimate cities? (2) Should urban planners pay more attention to optimizing the spa-

tial distribution of cooling LCZs or heating LCZs in different macroclimate cities? 

2. Materials and Methods 

2.1. Study Area 

Yunnan Province (21°09′–29°15′N and 97°32′–106°12′E), located in Southwest China, 

is a highland at a low latitude characterized by a highly heterogeneous terrain and fragile 

mountainous environment with a large difference in altitude, sharp changes in vertical 

topography, and a wide diversity of climate zones ranging from tropical to alpine zones 

[32]. A significant UHI phenomenon has been observed in Yunnan because of the rapid 

urbanization prompted by policies issued by the central government. Yunnan is divided 

into four climatic zones based on the number of days of the year with a temperature above 
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10 °C and an annual cumulative temperature above 10 °C (ATC10 °C), as obtained from 

China Green House Data (http://data.sheshiyuanyi.com/WeatherData/ (accessed on 19 

May 2019)) [33]. Five cities were selected in this study. Jinghong is situated in a tropical 

area, Kunming and Zhaotong are cities in subtropical and temperate zones, respectively, 

and Shangri-La is located in an alpine climate zone (Figure 1). Yuanjiang was selected due 

to its arid climate. Table 1 lists data on the selected cities. 

 

Figure 1. Geographic distribution of the cities considered in this study along with their background 

climate (SRL: Shangri-La; ZT: Zhaotong; KM: Kunming; YJ: Yuanjiang; JH: Jinghong; MATP: Mean 

annual precipitation; Data source: http://www.resdc.cn/ (accessed on 12 October 2021), DOI: 

10.12078/2017121301). 

Table 1. Information on the selected cities. 

City Days of ATC10 °C  ATC10 °C (°C) Altitude (m) MATP 1 (mm) Climate Zone 

Yuanjiang >218 8844.2 <500 864.4 Tropic (Arid) 

Jinghong >218 8373.6 500–3000 1198.0 Tropic 

Kunming >218 5558.6 500–3000 1002.2 Mid-subtropic 

Zhaotong >218 3914.8 ≥3000 742.8 Temperate zone 

Shangri-La >140 1916.0 ≥3000 617.0 Alpine zone 
1 MATP: Mean annual precipitation. 

2.2. Methods 

The overall research framework was divided into four steps in this study. First, reli-

able LCZ and LST maps were generated by using the modified World Urban Database 

and Access Portal Tool (WUDAPT) method and modified split-window algorithm, re-

spectively. Second, the heating and cooling effects of each LCZ were differentiated by the 

threshold of the TDI value. Third, the spatial distribution of the heating/cooling LCZ was 

quantified by TWGI. Finally, ordinary least squares (OLS) and spatial regression were 

used to determine whether the spatial distribution of the heating/cooling LCZ has an im-

pact on LST. 

2.2.1. Map LCZ and LST 

To study the LST difference among the five cities with different climatic back-

grounds, Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) C1 

Level-1 images were downloaded from the United States Geological Survey website 

(https://earthexplorer.usgs.gov/ (accessed on 12 October 2021)). Images featuring a cloud 

cover lower than 10% were selected for radiometric calibration and fast line-of-sight at-

mospheric analysis of spectral hypercubes (FLAASH) atmospheric correction in ENVI 

software. Images in summer and winter were selected in May and December, respectively, 
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for LST retrieval in most cities except Shangri-La, where August and January are the hot-

test and coldest months, respectively (Table A1). 

The workflow of LCZ mapping is shown in Figure 2. Seventeen standard LCZs were 

divided into 10 built-up type zones and seven land cover type zones. An extra natural 

LCZ, Greenhouse (LCZH), was defined due to its thermal response uncertainty. Owing 

to internal differentiation and horizontal heterogeneity in urban environments, especially 

in many rapidly developing cities of Yunnan, different LCZs mingle together on small 

surface areas, which degrades the quality of LCZ maps. The moving window method, 

which complies with the workflow of the WUDAPT, was used to capture information on 

neighborhoods for more accurate LCZ mapping [34]. Step 1 of the workflow involved the 

definition of the urban domain to be examined and the selection of training polygons for 

the different LCZs on Google Earth. To ensure the authenticity of the training data, the 

initial samples were selected based on field investigations and street-view Baidu Map im-

ages (https://map.baidu.com/ (accessed on 15 October 2021)). At least 10 representative 

samples were selected for the different LCZs in each city. Finally, 1768 training polygons 

and 732 evaluation polygons were collected. In Step 2, a contextual classifier was applied 

through the moving window method to obtain information. Six features (maximum, min-

imum, median, mean, and 25th and 75th quantile values) were calculated from all pixels 

within the moving windows of the predefined kernel size in Python 3.8. In Step 3, random 

forest classification was conducted in ENVI software. In Step 4, an accuracy assessment 

was conducted, and appropriate kernel sizes were used to map the LCZ for each city. 

 

Figure 2. (a) LCZ scheme adapted with permission from Ref. [35]. 2022, Stewart; (b) Workflow of 

the moving window method based on the WUDAPT adapted with permission from Ref. [34]. 2022, 

Verdonck. 

LST estimation was conducted based on a split-window algorithm, which can be ex-

pressed as Equation (1): 

��� = �� + ��� + ��

1 − �

�
+ ��

∆�

��
�

�� + ��

2
+ ��� + ��

1 − �

�
+ ��

∆�

��
�

�� + ��

2
+ ��(�� − ��)� (1)

where ��(n = 0–7) is the algorithm coefficient; ��  and �� are the brightness temperatures 

from the top of the atmosphere in bands 10 and 11, respectively; and � and ∆� are the 

emissivity mean and difference of the two channels, respectively. 
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The �� coefficient in Equation (1) was calculated in different atmospheric column 

water vapor (CWV) subranges [36]. The CWV was calculated with a modified split-win-

dow covariance–variance ratio method [37]. The land surface emissivity (�) was calculated 

based on the normalized difference vegetation index (NDVI) as follows: 

���� =
��� − �

��� + �
 (2)

��� =
���� − �����

����� − �����
 (3)

� = �� ∙ ��� + ��(1 − ���) + 4 < �� >∙ ��� ∙ (1 − ���) (4)

where NIR and R are the reflectance values of the near-infrared band and the red band, 

respectively; FVC is the fraction of vegetation cover; < �� > is an effective value of the 

cavity effect of emissivity; and �� and �� are the vegetation and soil emissivity, respec-
tively. 

2.2.2. Distinguishing the Cooling and Heating Effects of the LCZ 

TDI was adopted to compare intercity and intracity SUHI intensity values in this 

study [30]. The LST data were divided into four classes from low to high values with the 

Jenks natural break method [31], and the proportion of high-LST pixels was used to quan-

tify the thermal contribution in Python 3.9. The TDI value of ���� (LCZ1–LCZH) can be 

estimated with Equation (5): 

�������
=  

���������
/�����

�����/�
 (5)

where �����/�  is the proportion of the area with a high LST in the entire area, and 

���������
/�����

 denotes the proportion of the area with a high LST in the area of ����. The 

contribution of ���� to the SUHI intensity was indicated by the �������
 value range. A 

value of 1 indicates a moderate contribution. If the value is higher than 1, ���� exhibits a 

heating effect. Conversely, if the value is lower than 1, ���� exhibits a cooling effect. 

2.2.3. Quantifying the Spatial Distribution of the Heating/Cooling Effect 

The gravity index (GI) referenced by Reilly’s law of retail gravitation was proposed 

to quantify the cooling effect of urban green spaces and waterbodies [20]. It reflects the 

distance and size effect of a certain land cover type on LST but ignores the influence of 

surface properties and surrounding environments. For example, two forest patches with 

the same size and distance from a specific place might have different cooling effect mag-

nitudes due to variations in vegetation type, patch shape, tree densities, and even sur-

rounding LCZ landscape patterns. For this reason, we used the TDI value to modify the 

GI. The TWGI of cell i was calculated as Equation (6) by using Python 3.9: 

����� =  �
����

�

���
�

�∈��

∙ ����  (6)

where j is the surrounding cells with a buffer area of 1500 m radius, ����
�  refers to the 

area of cell i with a heating/cooling effect, ���  is the distance between cell i and j, � is the 

adjusted distance coefficient, and ����  is the TDI value of cell j, which is calculated in 

Formula (5) (Figure A2). 

2.2.4. Statistical Analysis 

The LST value at one specific pixel is spatially correlated with the LST values at its 

neighboring locations. It is necessary to verify whether the spatial regression models are 

more suitable than OLS linear regression models for analyzing the relationship between 
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the TWGI and LST. Therefore, the OLS linear regression model and two types of spatial 

regression models, the spatial lag model (SLM) and spatial error model (SEM), were used 

to explain the spatial effects of heating/cooling LCZs by using GeoDa software 

(https://spatial.uchicago.edu/software (accessed on 22 November 2021)). The Lagrange 

multiple (LM) test was conducted to decide which model was appropriate [38]. Several 

criteria were used to choose which model is most suitable. The LM and error lag λ in Table 

A3 were significant, which indicated the spatial model was necessary. Moreover, the 

SEM’s log-likelihood was higher and the Akaike information criterion (AIC) was lower 

compared with the SLM (Table A4), which implied that the SEM was more suitable than 

other models. 

3. Results 

3.1. LCZ Classification and LST Investigation 

LCZ maps were generated with the modified method, as shown in Figure 3. LCZ 

types with fewer than 10 training data items were excluded from the LCZ scheme, and a 

new LCZ type featuring plastic foils on farmland (LCZH) was added to the scheme due 

to the uncertainty in properties. The highest overall accuracies of the maps of Kunming, 

Shangri-La, Yuanjiang, Jinghong, and Zhaotong, with kernel sizes of 7 × 7, 7 × 7, 5 × 5, 

5 × 5, and 7 × 7, respectively, reached 92.5%, 92.5%, 89.1%, 88.2%, and 85.1%, respec-

tively (Table A2). 

 

Figure 3. LCZ classification of the five cities in Yunnan Province (a) Jinghong, (b) Kunming, (c) 

Zhaotong, (d) Shangri-La, (e) Yuanjiang). 
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The spatial patterns of the LCZs and LST values are shown in Figure 4. The analysis 

of variance showed that different types of LCZs exhibited distinct LST characteristics (Fig-

ure A3). The mean LST value of each LCZ was calculated for statistical analysis (Figure 

A1 and Table 2). The results showed that the background climate played a key role in LST 

variation in each LCZ. In summer, natural zones with less vegetation attained the highest 

LST in Yuanjiang (LCZC and LCZF) and Zhaotong (LCZC–LCZF). In the other cities, large 

low-rise (LCZ8) and heavy industry zones (LCZ10) obtained the highest LST, followed by 

compact mid-rise (LCZ2), compact low-rise (LCZ3), and bare soil (LCZF) zones. From 

summer to winter, built-up zones, especially open rises (LCZ4–LCZ6), tended to obtain 

lower LST than natural zones with less vegetation (LCZC–LCZF) in Jinghong and Kun-

ming. However, the warmest zones were unchanged in Yuanjiang and Zhaotong. A rather 

interesting outcome was observed in that waterbodies (LCZG) tended to obtain the high-

est LST in Shangri-La in winter. 

 

Figure 4. LST values in summer and winter in the cities with different background climates (units: 

°C). 

Table 2. Mean LST per LCZ in winter and summer (NA represents no-data value, unit: °C). 

LCZ 
Jinghong Kunming Zhaotong Shangri-La Yuanjiang 

Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter 

LCZ1 (compact high-rise) NA NA 40.2 5.7 NA NA NA NA NA NA 

LCZ2 (compact mid-rise) 40.8 1 26.6 40.7 6.3 40.4 0.01 27.9 1 −1.4 1 44.5 27.1 

LCZ3 (compact low-rise) 40.6 1 27.6 1 41.3 7.1 41.2 1.9 29.0 1 −1.8 43.7 27.4 

LCZ4 (open high-rise) 37.3 24.9 38.9 4.9 38.2 −1.1 2 NA NA NA NA 

LCZ5 (open mid-rise) 39.0 25.1 39.5 5.9 39.1 −0.7 NA NA 44.3 27.1 

LCZ6 (open low-rise) 38.6 26.3 40.0 7.9 41.8 3.3 NA NA 44.1 27.0 

LCZ8 (large low-rise) 41.0 1 28.0 1 42.6 1 8.9 1 41.3 2.3 NA NA 45.6 1 28.4 1 

LCZ9 (sparsely built) NA NA NA NA NA NA 26.5 −3.7 NA NA 

LCZ10 (heavy industry) NA NA 42.4 1 8.9 1 NA NA NA NA NA NA 

LCZA (dense trees) 33.3 2 23.2 2 33.2 2 2.0 2 32.8 2 −5.0 2 21.2 2 −3.8 2 40.9 2 25.0 2 

LCZB (scattered trees) 35.0 24.1 2 37.6 5.5 38.4 1.9 23.8 2 −2.6 43.9 26.8 

LCZC (bush, scrub) 37.0 26.9 40.1 8.1 1 43.3 1 4.1 1 26.2 −1.4 1 45.2 1 29.2 1 

LCZD (low plants) 36.8 25.8 40.0 8.1 1 42.0 1 4.2 1 26.5 −3.3 41.6 26.8 2 

LCZF (Bare soil or sand) 39.0 27.4 1 41.7 1 8.1 1 42.5 1 3.4 1 27.0 1 −4.3 2 46.3 1 29.1 1 

LCZG (water) 32.3 2 24.3 24.4 2 0.3 2 34.3 2 −0.3 23.8 2 1.8 1 41.6 26.8 2 

LCZH (greenhouse) NA NA 36.5 7.2 NA NA NA NA 41.4 2 26.8 2 

1 The warmest LCZs ranked as the top three. 2 The coldest LCZs ranked as the top two. 
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3.2. Thermal Contributions of the LCZs 

The heating/cooling effect of the individual LCZs on the urban thermal environment 

was quantified by the TDI value (Figures 5 and A2). In summer, the thermal contributions 

of built-up zones imposed the greatest heating effects on the SUHI phenomenon in Shan-

gri-La and Jinghong. In contrast, most built-up zones exhibited cooling effects in Yu-

anjiang and Zhaotong. In Kunming, both cooling effects (LCZ4 and LCZ5) and heating 

effects (LCZ1–LCZ3 and LCZ6–LCZ10) were shown in built-up LCZs. For natural LCZs, 

waterbodies (LCZG), dense trees (LCZA), and greenhouses (LCZH) yielded cooling con-

tributions to the SUHI phenomenon in all cities, but the opposite results occurred in LCZF. 

The sparse trees (LCZB) had a cooling effect in most cities except Yuanjiang. LCZC pre-

sented heating contributions in Kunming, Yuanjiang, and Zhaotong, and LCZD showed 

heating contributions in Kunming, Shangri-La, and Zhaotong (Figure 5a). 

According to the difference in the TDI value between winter and summer (Figure 5c), 

the thermal contributions of built-up zones decreased from summer to winter except in 

large low-rise zones (LCZ8) and compact low-rise zones (LCZ3) in Jinghong and open 

low-rise zones (LCZ6) in Kunming. In natural zones, the thermal contributions of dense 

trees (LCZA) and waterbodies (LCZG) were unchanged in most cities except Shangri-La, 

where the DTI value of waterbodies (LCZG) increased. In contrast, the TDI values of 

shrubs (LCZC) increased in most cities except Zhaotong. Moreover, the thermal contribu-

tions of other natural LCZs (LCZB, LCZD, and LCZF) represented different seasonal var-

iations among the five cities. Overall, more built-up LCZs imposed cooling effects, and 

the seasonal variations in the thermal contribution pattern were more striking in Jinghong, 

Kunming, and Shangri-La than in Zhaotong and Yuanjiang (Figure 5a,b). 

In summary, built-up LCZs mainly exhibited heating effects in Jinghong and Shan-

gri-La but cooling effects in Yuanjiang and Zhaotong in summer. Built-up LCZs imposed 

both heating and cooling effects in Kunming. From summer to winter, the thermal contri-

butions of built-up LCZs tended to decrease. Therefore, most built-up LCZs imposed cool-

ing effects in winter rather than in summer. For natural LCZs, LCZA, LCZB, and LCZG 

mainly yielded cooling effects regardless of season. The thermal contributions of LCZC–

LCZF represented various patterns among the five cities, although they generally im-

posed heating effects. 
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Figure 5. TDI values of each LCZ in summer (a) and winter (b) in the five cities with different back-

ground climates (black indicates no-data value, red indicates heating contribution, blue indicates 

cooling contribution, TDI values are shown in each box); (c) difference in the value of the thermal 

distribution index (TDI) between winter and summer (black indicates no-data value, red and blue 

indicate the increase and decrease of TDI values from summer to winter). 

3.3. The Effect of Spatial Distribution 

The spatial patterns of the TWGI values are shown in Figure 6. High TWGI values 

indicated that specific pixels were surrounded by clustered and large heating/cooling LCZ 

patches within 1500 m. The spatial patterns of the heating TWGI imposed more significant 

seasonal variations in Jinghong, Shangri-La, and Yuanjiang than in Kunming and 

Zhaotong. Moreover, the TWGI maps in blue showed that the seasonal variations in spa-

tial patterns were more significant in Kunming and Shangri-La than in the other cities in 

terms of the cooling TWGI. 

An appropriate regression model was used to explore the relationship between the 

spatial distribution of the LCZ and LST. The regression result of the SEM is shown in 

Tables 3 and A4. R-square values were up to 0.99 due to the spatial autocorrelation of the 

error term. The TWGIs of heating/cooling LCZs had significant positive/negative impacts 
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on the LSTs in each city (p < 0.001). The positive and negative values of the coefficient 

represented positive and negative correlations between the TWGI and LST. The greater 

the absolute values of the coefficient were, the higher the magnitude of the spatial effect 

(Table 3). The results of the regression analysis showed that the magnitudes of effects be-

tween heating LCZs and cooling LCZs had intercity differences and seasonal variations. 

The coefficient of TWGI and its seasonal change gradient among the five cities are 

shown in Table 3. In summer, the spatial impacts of heating LCZs on LSTs were higher 

than those of cooling LCZs in Jinghong and Shangri-La, but the opposite results were ob-

served in Yuanjiang and Kunming. In particular, the spatial effects of heating and cooling 

LCZs were close and low in Zhaotong but close and high in Kunming. According to the 

gradient of coefficient change from summer to winter, the spatial effects of heating/cool-

ing LCZs became weaker in Yuanjiang, Kunming, and Shangri-La but stronger in 

Zhaotong. In Jinghong, the spatial effects of heating LCZs decreased slightly, but the op-

posite results were shown in cooling LCZs. 

 

Figure 6. The TWGI distributions in five cities (the red color represents the heating effect, and the 

blue color represents the cooling effect). 
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Table 3. The results of the SEM in five cities. 

City Thermal Contribution 
Coefficient 

(Summer) 
Coefficient (Winter) 

Seasonal Change 

Gradient 

Jinghong 
Heating 13.27 9.12 −0.31 

Cooling −1.81 −1.99 0.10 

Yuanjiang 
Heating 1.51 0.52 −0.66 

Cooling −12.73 −4.30 −0.66 

Kunming 
Heating 7.89 5.46 −0.31 

Cooling −12.73 −4.72 −0.63 

Zhaotong 
Heating 0.28 0.38 0.36 

Cooling −0.19 −0.42 1.21 

Shangri-La 
Heating 8.58 2.39 −0.72 

Cooling −0.92 −0.57 −0.38 

4. Discussion 

4.1. Thermal Environments of the LCZs 

Many studies have shown that waterbodies and green spaces play a leading role in 

mitigating urban heat islands by shading and evapotranspiration [8], and urban areas 

capture and store more heat due to the special physical properties of artificial surfaces 

[39,40]. However, the background climate has a large impact on the heating/cooling effects 

of built/nonbuilt land cover types in urban areas. For natural land cover, the background 

climate, such as temperature, precipitation and solar radiation, can influence photosyn-

thesis, soil moisture and water evapotranspiration [41]. Moreover, built-up areas with dif-

ferent urban morphologies and surface materials have different responses to climate con-

ditions [42]. However, it is unclear what role a certain land cover plays under different 

climate backgrounds, especially in urban areas with high heterogeneity. The LCZ classi-

fication scheme was used to differentiate heating/cooling effects for a certain land cover 

in this study. There are two reasons: (1) previous studies have shown that it is suitable for 

LST studies under different macroclimate regions [41], which was also improved by the 

ANOVA test in this study (Figure A3), and (2) it consists of various types of urban land-

scapes and urban forms for urban planning [21]. 

In summer, some studies have shown that most built-up LCZs exhibited heating ef-

fects, but natural LCZs covered with trees and waterbodies imposed cooling effects 

[10,11,42,43]. The same results were shown in Jinghong, Kunming, and Shangri-La. This 

is because built-up LCZs capture and store more solar energy, but natural LCZs increase 

latent heat by evapotranspiration. However, natural LCZs covered with less vegetation 

(LCZC–LCZF) mainly presented heating effects, and built-up LCZs imposed cooling ef-

fects in Yuanjiang and Zhaotong. This is because dry soil has a low heat capacity and low 

vegetation activity in arid cities [41]. Moreover, a previous study suggested that a rough 

built-up area could enhance the convection efficiency and lower the aerodynamic re-

sistance in dry climate zones, resulting in a cooling effect on impervious surfaces [17]. In 

addition, urban green space management could lead to higher evapotranspiration com-

pared with natural LCZs in Yuanjiang and Zhaotong. Furthermore, the heating effects of 

LCZC and LCZF were higher in Yuanjiang than in Zhaotong because the higher temper-

ature in Yuanjiang could enhance the degree of dryness and lead to lower vegetation ac-

tivity compared with Zhaotong. For this reason, even the scattered trees (LCZB) imposed 

heat effects regardless of season in Yuanjiang. 

From summer to winter, there was a trend of decreasing heating effects of built-up 

LCZs in Jinghong, Kunming, and Shangri-La. This result was also suggested by a study 

conducted in Nanjing [43]. One possible reason is that built-up LCZs capture and store 

less solar radiation in winter than in summer. The thermal contributions of low plants 

(LCZD) and bare soil (LCZF) decreased in Shangri-La, possibly due to snow. The surface 

albedo of areas covered with snow was high. Moreover, waterbodies (LCZG) obtained the 

highest LST in Shangri-La in winter. This is because vertical convection and mixing of the 
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lake water occur during the overturning period to ensure that the surface temperature of 

the lake is not too low [44]. However, other LCZs covered with snow corresponded to 

lower LSTs due to their high albedo. 

Spatial distribution, background climate and human activities jointly impacted LST 

variations. For example, low plants (LCZD) without interference showed a heating effect 

in Yuanjiang, but LCZD with good irrigation (farmland) belonged to cooling LCZ. Nota-

bly, there was a large area of farmland with less irrigation in Zhaotong, which caused 

higher LSTs in the suburbs than in urban areas. Moreover, previous studies have demon-

strated that the mean LST decreases with increasing openness and height of built-up zones 

[42,43]. However, open low-rise zones (LCZ6) surrounded by low plants (LCZD) consti-

tuted the warmest zone in Zhaotong. The climatic background resulted in a significant 

heating effect of low plants (LCZD), and the landscape distribution increased the LST of 

open low-rise plants (LCZ6). Moreover, compact low-rise zones (LCZ3) surrounded by 

low plants (LCZD) with good irrigation obtained the lowest mean LST in Yuanjiang. Low 

plants (LCZD) yielded a cooling effect due to agricultural activities, and the LST in com-

pact low-rise zones (LCZ3) decreased due to the spatial effects of LCZD. For this reason, 

it is important to quantify the relationship between the spatial distribution of heat-

ing/cooling LCZs and LSTs. 

4.2. Spatial Effects of Heating/Cooling LCZs on LSTs 

The spatial distribution of heating/cooling LCZs can change the aerodynamics in ur-

ban areas, which further impacts LSTs [45]. However, their spatial effect is seldom stud-

ied. Should urban planners pay more attention to the urban land arrangement and should 

heating land or cooling land be focused under different background climates? To answer 

this question, a more reliable index (TWGI) was proposed, and SEM was used to analyze 

the relationship between TWGI and LST in this study. 

The high TWGI value indicated that the specific pixel was surrounded by clustered 

and large heating/cooling LCZ patches within 1500 m. Some studies have indicated that 

clustered vegetation decreases the overall evapotranspiration rate and weakens the cool-

ing benefits from vegetation, but clustered built-up areas elevate LST in humid and hot 

cities [46,47]. Therefore, the spatial heating effects of the built-up LCZs were higher than 

the spatial cooling effects of the natural LCZs in Jinghong. Similar results were also shown 

in Shangri-La, but these results could have been caused by the low vegetation activities in 

alpine regions. Clustered impervious areas, vegetation and waterbodies cannot effectively 

lower LST in arid cities of the USA [46]. For this reason, the spatial effects of heating/cool-

ing LCZs were low in Zhaotong. However, the spatial effects of cooling LCZs were high 

in Yuanjiang. One possible reason is that a large area of farmland with good irrigation 

may enhance evapotranspiration in Yuanjiang. 

4.3. Contributions and Limitations 

A standard framework for distinguishing between the cooling effect and heating ef-

fect and spatial effect analysis based on the LCZ scheme was conducted in this study. The 

results of the spatial effect and thermal contributions can better help make target mitiga-

tion strategies for distinct macroclimate cities. In particular, an index (TWGI) was pro-

posed to quantify the spatial effects of heating/cooling LCZs. The higher value of log-

likelihood and lower value of the Akaike information criterion indicated that TWGI could 

better explain the spatial effect of heating/cooling LCZs than traditional GI (Table A4) 

[20,38]. The results based on the GI value cannot reflect the exact heating/cooling effect 

owing to ignoring the magnitude of thermal contributions. 

Long time series of LST data are recommended for LCZ surface temperature studies 

to reduce uncertainty [25]. In this study, multiyear Landsat8 images were searched for 

LST retrievals from 2018 to 2020. Fewer images were available due to cloud cover, espe-

cially in summer. For this reason, the LSTs were retrieved using single-time images, which 

might cause uncertainties [41]. However, the uncertainty caused by Landsat 8 images with 
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a restricted temporal scale can be considered negligible in this study due to the following 

reasons: (1) The results of the ANOVA test showed a typical LST regime for each LCZ in 

all cities, which implied that the results of mean LST per LCZ were acceptable; and (2) the 

dramatic land cover and land use changes might increase uncertainty over the results of 

LCZ LSTs in developing cities [5]. Furthermore, climatic conditions are a dominant factor 

causing different thermal contributions of the LCZs and spatial effects among the five 

cities, but other factors, such as geographical locations and human activities, can also in-

fluence the thermal environments of specific LCZs. However, the actual causes need to be 

investigated. 

5. Conclusions 

First, the heating/cooling contributions of typical LCZs in five Chinese cities were 

distinguished. Second, a TWGI was proposed to quantify the spatial effects of heat-

ing/cooling LCZs on LSTs. In summary, both the thermal contributions of LCZs and their 

spatial heating/cooling effects were different in the five cities. The conclusions are as fol-

lows: 

(1) In summer, built-up zones are characterized as heating LCZs in Jinghong and 

Shangri-La, but opposite results were shown in Zhaotong and Yuanjiang. Moreover, most 

of the built-up LCZs experienced heating effects in Kunming, except for open mid-rise 

(LCZ4) and low-rise (LCZ5). For natural LCZs, areas covered with dense trees (LCZA), 

scattered trees (LCZB), and waterbodies (LCZG) presented cooling effects. However, the 

thermal contributions of shrubs (LCZC), low plants (LCZD), and bare soil (LCZF) varied 

among the five cities because they are sensitive to background climate change and human 

activities. 

(2) The results of the SEMs showed that urban planners should pay more attention 

to the spatial distribution of heating LCZs in Jinghong and Shangri-La, but the spatial 

distribution of cooling LCZs was more important in Yuanjiang and Kunming. Moreover, 

both cooling LCZs and heating LCZs had slight spatial impacts on LSTs in Zhaotong, 

which implies that enhancing the evaporation capability could be a more efficient way to 

mitigate SUHIs in Zhaotong. 

(3) From summer to winter, built-up zones tended to have lower thermal contribu-

tions. However, the cooling effects of trees (LCZA, LCZB) and waterbodies (LCZG) were 

almost unchanged. The LST differences between natural LCZs and built-up LCZs de-

creased to induce low aerodynamics. For this reason, the spatial effects of heating/cooling 

LCZs weakened. 
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Appendix A. LCZ and LST Mapping 

Table A1. Information on Landsat images for LCZ mapping and LST retrieval. 

City Scene ID Acquisition Data Scene Time (UTC) Images for LST Retrieval 

Jinghong LC81300452019358LGN00 2019-12-24 03:42 Winter 

 LC81300452020137LGN00 2020-05-16 03:41 Summer 

 LC81300452019038LGN00 2019-02-07 03:41  

Kunming LC81290432019351LGN00 2019-12-17 03:35 Winter 

 LC81290432019127LGN00 2019-05-07 03:34 Summer 

 LC81290432019047LGN00 2019-02-16 03:34  

Zhaotong LC81290412019079LGN00 2019-03-20 03:33  

 LC81290412020130LGN00 2020-05-09 03:33 Summer 

 LC81290412019223LGN00 2019-08-11 03:34  

 LC81290412019351LGN00 2019-12-17 03:34 Winter 

Shangri-La LC81320412019228LGN00 2019-08-16 03:52 Summer 

 LC81320412020087LGN00 2020-03-27 03:52  

 LC81320412020007LGN00 2020-01-07 03:52 Winter 

Yuanjiang LC81300442019358LGN00 2019-12-24 03:41 Winter 

 LC81300442020073LGN00 2020-03-13 03:41  

 LC81300442020137LGN00 2020-05-16 04:40 Summer 

Table A2. The accuracy of LCZ classifications (NA represents no-data value). 

LCZs 
WUDAPT Modified Method 

Jinghong Yuanjiang Kunming Zhaotong Shangri-La Jinghong Yuanjiang Kunming Zhaotong Shangri-La 

LCZ1 NA NA 40.48 NA NA NA NA 57.96 NA NA 

LCZ2 73.96 62.69 57.28 60.98 75.54 82.98 91.07 61.02 74.63 90.00 

LCZ3 73.53 69.84 64.60 64.00 73.02 79.07 73.21 74.04 83.04 74.59 

LCZ4 73.75 NA 49.79 80.87 NA 78.67 NA 64.42 90.33 NA 

LCZ5 71.34 82.89 45.13 89.34 NA 78.92 97.62 56.56 99.17 NA 

LCZ6 71.48 66.90 65.15 64.89 NA 78.49 77.93 58.66 64.21 NA 

LCZ8 89.00 59.68 79.07 92.04 NA 95.43 61.76 78.71 95.35 NA 

LCZ9 NA NA NA NA 89.67 NA NA NA NA 98.71 

LCZ10 NA NA 85.66 NA NA NA NA 89.1 NA NA 

LCZA 97.61 92.46 98.68 98.42 99.42 95.86 93.33 98.38 99.08 100.00 

LCZB 93.18 50.96 37.48 76.92 65.93 85.71 76.58 52.36 78.95 80.49 

LCZC 72.73 98.60 73.01 58.93 91.45 91.30 96.32 70.81 53.47 94.62 

LCZD 45.95 77.65 77.83 96.10 100 48.94 80.68 74.83 94.66 100.00 

LCZF 97.27 90.00 59.01 64.38 89.13 98.28 89.58 62.45 73.61 97.56 

LCZG 99.13 91.13 99.94 95.83 98.64 98.55 100.00 99.99 100.00 98.65 

LCZH NA 78.13 98.49 NA NA NA 92.00 99.51 NA NA 

Overall accu-

racy (%) 
85.00 81.32 90.9 81.04 86.5 0.88 89.14 92.5 85.18 91.75 

Kappa Coeffi-

cient 
0.83 0.79 0.80 0.79 0.84 0.87 0.88 0.84 0.83 0.90 

Appendix B. Land Surface Temperature and Local Climate Zones 

To study the thermal characteristics of all LCZs, the mean values of the LST for each 

LCZ were calculated (Table 2), and the statistical significance of differences among them 

was determined by an ANOVA test [43]. The Kolmogorov–Smirnov test was used as a 

normality test, and Levene’s test was used to assess the homogeneity of the variance. The 

Kolmogorov–Smirnow test was rejected in this study, but the data were considered to 

approximately obey a normal distribution because the absolute values of skewness and 

kurtosis were less than one. Welch ANOVA was then applied to determine whether there 

was a significant difference among the mean LSTs, and Tamhane’s T2 test was used for 

pairwise comparisons of mean LSTs due to the rejection of Levene’s test (Figure A3). The 

results of the Welch ANOVA test showed a typical LST regime for each LCZ in all the 

cities. The results of Tamhane’s T2 test showed that most LCZs were better distinguished 
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in Pu’er regardless of season, followed by Jinghong, Kunming, and Shangri-La. However, 

some LCZs were not indistinguishable in Yuanjiang. 

 

Figure A1. Boxplots of the LST values of the typical LCZs in the different seasons. 

 

Figure A2. The TDI distributions in five cities (the red color represents LCZs with heating effects, 

and the blue color represents LCZs with cooling effects). 

 

Figure A3. Multiple-comparison results of the differences in the mean LST among the various LCZ 

types (white numbers and letters). The solid-colored circles represent no significant difference in 
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mean LST, and the hollow cells show that the mean LSTs of the given LCZ pairs were significantly 

different. 

Appendix C. Spatial Regression Validation 

Table A3 The results of SEM (*** p < 0.001, ** p < 0.01, R-squared values of OLS are presented in 

parentheses). 

Season City Thermal Contribution Coefficient Constant λ LM R-Squared Log-Likelihood AIC 

Sum-

mer 

JH 
Heating LCZs 13.27 

33.16 *** 1.00 *** 375.64 *** 
0.99 

(0.50) 
59,092.98 −118,178.00 

Cooling LCZs −1.81 

YJ 
Heating LCZs 1.51 

49.27 *** 1.00 *** 56.75 *** 
0.99 

(0.12) 
7909.14 −15,812.30 

Cooling LCZs −12.73 

KM 
Heating LCZs 7.89 

48.34 *** 1.00 *** 39,717.31 *** 
0.99 

(0.38) 
−159,410.66 318,827.00 

Cooling LCZs −12.73 

ZT 
Heating LCZs 0.28 

40.63 *** 1.00 *** 6.31 ** 
0.99 

(0.20) 
5380.81 −10,755.60 

Cooling LCZs −0.19 

SG 
Heating LCZs 8.58 

19.93 *** 1.00 *** 1240.17 *** 
0.99 

(0.58) 
126,248.96 −252,492.00 

Cooling LCZs −0.92 

Winter 

JH 
Heating LCZs 9.12 

33.16 *** 1.00 *** 482.91 *** 
0.99 

(0.42) 
59,092.98 −118,178.00 

Cooling LCZs −1.99 

YJ 
Heating LCZs 0.52 

49.27 *** 1.00 *** 13.43 *** 
0.99 

(0.16) 
7909.14 −15,812.30 

Cooling LCZs −4.30 

KM 
Heating LCZs 5.46 

48.34 *** 1.00 *** 30,623.04 *** 
0.99 

(0.25) 
−159,410.66 318,827.00 

Cooling LCZs −4.72 

ZT 
Heating LCZs 0.38 

40.63 *** 1.00 *** 6.31 ** 
0.99 

(0.37) 
5380.81 −10,755.60 

Cooling LCZs −0.42 

SG 
Heating LCZs 2.39 

19.93 *** 1.00 *** 1240.17 *** 
0.99 

(0.33) 
126,248.96 −252,492.00 

Cooling LCZs −0.57 

Table A4. Comparison of the results of SEMs based on GI and TWGI in Jinghong (*** p < 0.001, R-

squared values of OLS are presented in parentheses). 

Index  Thermal Contribution Coefficient Constant λ R-Squared Log-Likelihood AIC 

TWGI 

Summer 
Heating LCZs 13.27 *** 

33.16 *** 1.00 *** 
0.99 

(0.50) 
59,092.98 −118,178.00 

Cooling LCZs −1.81 *** 

Winter 
Heating LCZs 9.12 *** 

24.51 *** 1.00 *** 
0.99 

(0.42) 
63,098.09 −126,188.00 

Cooling LCZs −1.99 *** 

GI 

Summer 
Heating LCZs 1.36 *** 

33.87 *** 1.00 *** 
0.99 

(0.45) 
58,009.12 −116,010.00 

Cooling LCZs −0.41 *** 

Winter 
Heating LCZs 0.89 *** 

25.70 *** 1.00 *** 
0.99 

(0.41) 
60,165.67 −120,325.00 

Cooling LCZs −0.48 *** 
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