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Abstract: Vegetation phenology not only describes the life cycle events of periodic plants during
the growing season but also acts as an indicator of biological responses to climate change. Satellite
monitoring of vegetation phenology can capture the spatial patterns of vegetation dynamics at
global scales. However, the existing satellite products of global vegetation phenology still show
uncertainties in estimating phenological metrices, especially for dormancy onset. The Second-
Generation Global Imager (SGLI) onboard the satellite Global Change Observation Mission—Climate
(GCOM-C) that launched in 2017 provides a new opportunity to improve the estimation of global
vegetation phenology with a spatial resolution of 250 m. In this study, SGLI land surface reflectance
data were employed to estimate the green-up and dormancy dates for different vegetation types
based on a relative threshold method, in which a snow-free vegetation index (i.e., the normalized
difference greenness index, NDGI) was adopted. The validation results show that there are significant
agreements between the trajectories of the SGLI-based NDGI and the near-surface green color
coordinate index (GCC) at the PhenoCam sites with different vegetation types. The SGLI-based
estimation of the green-up dates slightly outperformed that of the existing MODIS and VIIRS
phenology products, with an RMSE and R2 of 11.0 days and 0.71, respectively. In contrast, the
estimation of the dormancy dates based on the SGLI data yielded much higher accuracies than the
MODIS and VIIRS products, with an RMSE decreased from >23.8 days to 15.6 days, and R2 increased
from <0.51 to 0.72. These results suggest that GCOM-C/SGLI data have the potential to generate
improved monitoring of global vegetation phenology in the future.

Keywords: Second-Generation Global Imager; land surface phenology; near-surface phenology
observation

1. Introduction

Vegetation phenology records certain seasonal events, such as germination, flowering,
and falling leaves, and it is a highly sensitive indicator of terrestrial ecosystems’ response
to long-term changes in climate [1–3]. The traditional method of collecting vegetation phe-
nology is through in situ direct visual assessment, which has provided long-term records
of specific phenological events for several decades [4,5]. To overcome the limitations of in
situ observations (e.g., lack of consistency, continuity, and objectivity), remote sensing ap-
proaches have been proposed for phenology detection at local to global scales [6–10]. Over
the past three decades, satellite-based studies of phenology have used coarse to moderate
spatial resolution imagery from the Advanced Very High Resolution Radiometer (AVHRR),
the MODerate resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imag-
ing Radiometer Suite (VIIRS), and the Advanced Himawari Imager (AHI) [6–12]. The
MODIS Global Land Cover Dynamics product (MCD12Q2) was operationally produced
by NASA from time series of MODIS observations from 2000 to 2018 [13,14]. However,
because the MODIS is nearing the end of its duty cycles, the VIIRS is intended to pro-
vide the operational standard to continue the MODIS records. The collection 1 VIIRS
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Global Land Surface Phenology (LSP) product (VNP22Q2) was released by NASA in late
2018 [10,15]. The MCD12Q2 and VNP22Q2 are the only global land surface phenology
products currently available to the public. These products have been used to explore local
and global phenological dynamics [16]. In addition to the MODIS and VIIRS phenology
products, surface phenology estimated by medium- and high-resolution satellites, such
as Landsat [17] and Sentinel-2 [18], and geosynchronous satellites, such as GOES [19] and
Himawari-8 [12], has been discussed in many satellite-based surface phenology studies.

The current studies of satellite-based phenology, using optical remote sensing data,
have developed a variety of different methods to extract phenological transition dates from
the time series of vegetation indices [20,21], such as the normalized difference vegetation
index (NDVI), the enhanced vegetation index (EVI) [7], the two-band enhanced vegetation
index (EVI2), the plant phenology index (PPI) [22], and the normalized difference phenol-
ogy index (NDPI) [23]. The NDVI and EVI2 are most used for characterizing vegetation
dynamics from satellite data at local and global scales. However, both indices rise not only
in response to vegetation greenness increasing in the spring phase but also in response
to snowmelt, which may introduce uncertainty in phenology detection [24,25]. The novel
developed vegetation index, the normalized difference greenness index (NDGI), was found
to have improved performance in addressing the snowmelt effect on phenological detec-
tion [26]. Yang et al. [26] found that the potential of the NDGI for monitoring vegetation
phenology was verified in tundra and grassland sites. In addition, the underlying idea
of detecting the phenological transition dates from time series data is to use a function
to fit the vegetation growth curve (i.e., asymmetric Gaussian, logistic, spline) and dates
extracted by either a parameter inversion of the vegetation growth curve or a predefined
threshold of the vegetation growth amplitude [7,13,14,27–29]. The parameter inversion
method solves the inflection point of the vegetation growth curve from an approximately
linear stage to another stage [7,10]. Usually, the maximum change rate in curvature is
defined as the beginning or the end of vegetation growth. Unlike the parameter inversion
method, the definition of the threshold method is more flexible [29]. The threshold can be
set as needed to extract phenological indicators, for example, at 10% [21,30], 15% [14,21],
20% [8], 25% [31], or 50% [32].

It is challenging to evaluate satellite-retrieved phenology by in situ observation due to
the limitations of the geographic scope of any given ground-based observation model [5,10].
Recently, the rapid development of near-surface phenological observation networks has
provided monitoring of vegetation changes at the canopy to landscape scales. For example,
the PhenoCam Network and the Phenological Eyes Network use a network camera installed
at the top of the tower to automatically capture repeated images at high frequencies (several
photos per day) [33,34]. Combining visual interpretation and image processing from these
quantities of digital photos enables the phenology of the observed vegetation canopy to
be characterized. The long-term records of these digital images have been proven to be a
powerful tool for testing phenological indicators retrieved from satellites [12,21,35,36].

The Global Change Observation Mission—Climate (GCOM-C), carrying the optical
sensor, the Second-Generation Global Imager (SGLI) with a 250 m spatial resolution and a
2–3 day revisit period, could provide the newest opportunity to monitor global vegetated
surface since 2018 [37]. This paper presents a study aimed at generating and evaluating
vegetation phenology estimated from 250 m SGLI NDGI data. To this end, the following
questions are explored:

(1) Are the observed seasonal trajectories of vegetation between the SGLI and near-surface
consistent?

(2) What is the agreement between the phenological transition dates derived from the
SGLI and near-surface?

(3) What is the difference in the spatial pattern of the phenological transition dates
between the SGLI and the VIIRS?
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2. Materials and Methods
2.1. SGLI Land Surface Reflectance and Vegetation Indices

The SGLI land surface reflectance product (RSRF) was retrieved from the top-of-
atmosphere radiance (LTOA) with an algorithm developed mainly by the JAXA/Earth
Observation Research Center (EORC) and obtained by integrating knowledge of atmo-
spheric properties (aerosol scattering and absorption and radiative transfer models), land
surface characteristics (spectral reflectance), and cloud and snow area detection [38]. We
obtained the 250 m surface reflectance of SGLI band 3 (443 µm), band 5 (530 µm), band
8 (673.5 µm), and band 11 (868.5 µm) in 2018 in the northern hemisphere from the Globe
Portal System by the Japanese Aerospace Exploration Agency (https://gportal.jaxa.jp/ (ac-
cessed on 16 June 2022)), and as the primary input to calculate vegetation indices. The SGLI
RSRF product also provided quality assurance (QA) flags, including data lack, land/ocean,
cloud, cloud shadow, snow/ice, etc. To maintain the simplicity of satellite data processing,
we only processed cloud pixel masking without further processing snow contamination.

The NDGI was calculated using the SGLI cloud-free reflectance data to track seasonal
variation in the land surface. The NDGI was developed by Yang et al. [26] and was shown
to overcome the influence of phenology detection on snowmelt. The NDGI is calculated
as follows:

NDGISGLI =
α × ρGreen + (1 − α)× ρNIR − ρRed
α × ρGreen + (1 − α)× ρNIR + ρRed

(1)

where ρGreen, ρRed, and ρNIR represent the reflectance from the green, red, and NIR bands
of the SGLI, respectively. α was determined to be 0.64 for the SGLI, which depends on the
spectral configuration of a sensor (see Table S1 in Yang et al. [26]). Since the raw time series
still needed to be smoothed to reduce noise, we used a moving three-window median to
smooth abruptly changing outliers in the time series [39,40].

To define the land covers of the SGLI pixels, we used the MODIS 500 m land cover
product (MCD12Q1) from 2018 to implement the phenology detection at the pixels with
natural vegetation [41]. Note that we did not estimate the phenological transition dates
at pixels with an artificial vegetation domain or indistinctive seasonal changes, including
cropland, urban, permafrost, barren, and water bodies. The 500 m MODIS land cover data
were resampled to a 250 m grid using the nearest neighbor method to match the spatial
resolution of the SGLI RSRF data.

2.2. Detection of Phenological Transition Dates from Time Series

The logistic model was originally used to monitor crop growth in the scenario of field
observation [42,43], and has been adopted to characterize vegetation growth patterns from
remote sensing data [7,9,20]. Here, we used the double logistic model to fit the SGLI time
series of each pixel. The double logistic model is expressed as follows:

y(i, t) = yb(i) + (yMAX(i)− yb(i))× (
1

1 + e−mS×(t−S)
+

1
1 + emA×(t−A)

) (2)

where y(i, t) denotes the pixel value i at the day of the year (DOY) t, yMAX(i) and yb(i) are
the maximum and background values during the year, respectively, S and A are the DOYs
of the maximum slopes of the curve in the increasing and decreasing stages, and mS and
mA are the slopes of the curve at DOYs S and A, respectively.

The six parameters used to describe the shape of the curve were determined by the
least square method, which minimized the residual between Equation (2) and the time se-
ries of the vegetation index. We extracted 9 phenological transition dates (i.e., 10% to 50% of
the threshold by 5% of the step) corresponding to the green-up and dormancy dates for each
pixel in the rising and falling phases of vegetation greenness, respectively. Finally, we com-
pared the near-surface phenological observations to determine the appropriate threshold.

https://gportal.jaxa.jp/
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2.3. Near-Surface Phenology Observation Data

The PhenoCam Network (PCN) was established in 2008 and mainly covers the United
States and parts of Europe. The PCN has been established with over 600 sites to date in
different ecosystems around the world, providing a record of vegetation change. In this
study, we selected green-up and dormancy dates from 115 near-surface observation sites
(Table S1). Sites that did not provide a record for 2018 and sites for which the corresponding
satellite-scale phenology could not be estimated were removed. In all the selected sites,
the dominant vegetation types included deciduous forest (DF: 64 sites, including 63 sites
of broadleaf and 1 site of needleleaf), followed by grassland (GR: 24 sites), shrubs (SH:
14 sites), wetland (WL: 7 sites), and tundra (TN: 6 sites). The spatial distribution of the
selected sites is shown in Figure 1.
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Figure 1. Spatial distribution of near-surface phenology observation sites from PhenoCam Network.

The PhenoCam Network monitors the terrestrial ecosystem using digital repeat pho-
tography technology, which provides digital images every 30 min between 04:00–21:30 local
time [44]. The data are stored on the PhenoCam server (https://phenocam.sr.unh.edu/
(accessed on 16 June 2022)) at the University of New Hampshire. Seyednasrollah et al. [44]
generated the latest version of vegetation phenology datasets (version 2) from digital
images during 2000–2018. The major two improvements of the version 2 dataset were
that (1) the coverage was increased to 393 sites, and (2) the effect was corrected on the
quality of the derived greenness time series due to the automatic white balancing. The PCN
vegetation phenology dataset version 2 provided 6 phenological transition dates with 10%,
25%, and 50% of seasonal amplitude in the rising and falling phases at each site [33]. In this
study, we used the green-up date (10% of amplitude in the rising phase) and dormancy
date (10% of amplitude in the falling phase) from 115 sites in 2018.

2.4. MODIS and VIIRS Land Surface Phenology Products

In this study, we used satellite-based phenology data from the MCD12Q2 and VNP22Q2
products. The datasets were downloaded from the online Data Pool, courtesy of the
NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) (https:
//lpdaa.usgs.gov/tools/data-pool/ (accessed on 16 June 2022)). Both products provide
global land surface phenology with a 500 m spatial resolution and an annual step [14,45].
Phenological transition dates in the VNP22Q2 and MCD12Q2 are detected from the time
series of the 2-band enhanced vegetation index (EVI2) using nadir bidirectional reflectance
distribution function (BRDF)-adjusted reflectance (NBAR) data from the VIIRS and MODIS.
However, the algorithms for detecting the transition dates in the MCD12Q2 and VNP22Q2
are different. Specifically, the MCD12Q2 uses penalized cubic splines to smooth the EVI2
time series and uses the thresholds of seasonal amplitude to determine (1) the green-up
onset and dormancy onset (15% of amplitude), (2) mid-green-up and mid-senescence
(50% of amplitude), and (3) maturity onset and senescence onset (90% of amplitude) [14].

https://phenocam.sr.unh.edu/
https://lpdaa.usgs.gov/tools/data-pool/
https://lpdaa.usgs.gov/tools/data-pool/
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The VNP22Q2 uses piecewise logistic functions to fit the EVI2 time series and uses the
maxima of the rate of change in the curvature to determine the phenological transition
dates, including (1) the onset of greenness increase, (2) the onset of the mid-green-up phase,
(3) the onset of the greenness maximum, (4) the onset of greenness decrease, (5) the onset
of the mid-senescence phase, and (6) the onset of the greenness minimum [10,45].

2.5. Evaluation of SGLI Phenology Using Near-Surface Phenology Observation

We tested a range of thresholds from 5% to 50% in steps of 5% to find the best
thresholds for green-up and dormancy dates. We therefore initially assessed the agreement
between 2 phenological transition dates from the SGLI and the near-surface observations.
For each comparison, we computed the root mean square error (RMSE), standard deviation
(SD), bias, coefficient of determination (R2), and statistical significance (p value). The bias
was calculated relative to near-surface observations, so a positive bias indicates that the
near-surface transition dates were earlier than the satellite-based transition dates. We
randomly selected 70% of the sites (81 sites) from each vegetation type and, based on the
results of the above comparison, chose a threshold value that minimized the uncertainty
between the SGLI and the near-surface phenology observations. The remaining 30% of
sites (34 sites) were used to verify whether the selected threshold was reasonable.

In addition, to illustrate the differences among satellite-based phenology, we also com-
pared the phenological transition dates from the SGLI (our results), MODIS (MCD12Q2),
and VIIRS (VNP22Q2) with those from the PCN at all 115 sites.

2.6. Comparison of SGLI Phenology with VIIRS Phenology

SGLI phenology was compared with VIIRS phenology to study the differences in the
phenological transition dates between the two sensors. The VIIRS phenological detection
method is briefly described in Section 2.4. As the MODIS duty cycle is coming to an end,
the SGLI and VIIRS can replace the MODIS to continue to provide global surface vegetation
observations. Therefore, it is also important to understand the agreement between the
phenological transition dates retrieved from the SGLI and VIIRS. Here, we mainly compare
the spatial distribution characteristics of the green-up and dormancy dates in the northern
hemisphere of the SGLI and VIIRS and the differences between them.

3. Results
3.1. Time Series of SGLI and Near-Surface Observations and Determined Phenological
Transition Dates

Figure 2 shows sample time series from raw satellite data and near-surface observa-
tions at five sites with different vegetation types (i.e., deciduous forest, grassland, shrub,
tundra, and wetland). The raw time series of the NDGI and EIV2 derived from SGLI pixels
show relatively large gaps and noises. The GCC time series derived from near-surface
imagery exhibit more stable curves because of minimal atmospheric effects. At all sites,
the coherence between the SGLI NDGI and the near-surface GCC is generally excellent,
particularly in the greenness rising phase. It can be seen, however, that the GCC declined in
autumn in advance of the NDGI. For the EVI2 time series, it started to increase earlier than
the NDGI in spring, and the gradual decrease was slower than the NDGI in the green-up
falling phase. In general, this shows that the SGLI NDGI can well characterize the seasonal
changes in surface vegetation and is in good agreement with the near-surface observations.
On the other hand, the NDGI did effectively suppress the effect of snow contamination.
As can be seen in Figure 2a, the value of the EVI2 suddenly decreased from 0.4 to below
0.2 near day 50, while the NDGI was stable between 0.2 and 0.3. Using the photographs
taken by the near-surface camera, we can see that snowfall caused a decrease in the EVI2
values (Figure S1).
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Figure 2. The time series of the NDGI (red), EVI2 (gray), and GCC (green) at five locations with
different vegetation types. Dots are raw observations from the SGLI. Green dots indicate the GCC
obtained from near-surface observation data.

Table 1 shows a statistical summary that compares the green-up and dormancy dates
from PCN observations at 81 sites against the SGLI based on different thresholds of the
seasonal amplitude using a double logistic function. As the threshold continued to increase,
the three statistical relationships gradually became smaller and then increased. By eval-
uating the consistency between the SGLI and the near-surface phenology observations,
the 25% and 45% thresholds correspond to the green-up and dormancy dates for the PCN
observations (Table 1 and Figure 3a,c) because they minimized the overall bias between the
SGLI and the near-surface phenological transition dates. Using the determined thresholds,
we also compared the SGLI and PCN phenology transition dates at the 34 sites used for
validation (Figure 3b,d).

Table 1. Statistical summaries for comparison between near-surface phenology and SGLI phenology
using different thresholds for green-up date and dormancy date. The selected thresholds are shown
in bold.

Phase Threshold
(%)

RMSE
(Days)

Bias
(Days) R2 Phase Threshold

(%)
RMSE
(Days)

Bias
(Days) R2

Green-up
date

10 13.9 −5.51 0.63

Dormancy
date

10 38.8 32.77 0.55
15 11.9 −2.05 0.67 15 31.3 25.13 0.61
20 11.2 0.47 0.69 20 26.1 19.43 0.66
25 11.0 2.50 0.71 25 22.2 14.71 0.68
30 11.4 4.40 0.72 30 19.2 10.61 0.70
35 11.9 6.03 0.73 35 17.1 6.78 0.71
40 12.7 7.57 0.73 40 16.0 3.37 0.72
45 13.6 9.16 0.74 45 15.6 0.00 0.72
50 14.6 10.61 0.74 50 16.1 −3.26 0.72
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3.2. Comparison of Satellite Phenology with Near-Surface Phenology Observation

Figure 4 compares the satellite-based and near-surface-observed green-up and dor-
mancy dates across the 115 PCN observation sites. Considering all the vegetation types,
the green-up and dormancy dates estimated from the SGLI exhibited the best agreement
with the near-surface observations, with RMSEs of 11–16 days, biases of less than 2.5 days,
and R2 values higher than 0.71 (Figure 4a,b). By comparison, for the VIIRS and MODIS, the
RMSEs ranged from 14 to 27 days, the average biases exceeded 9.9 days, and the R2 values
ranged from 0.46 to 0.67 (Figure 4c–f). Overall, the correlations between the satellite and
near-surface observations were consistently higher (the RMSE and bias were consistently
lower) with the SGLI compared to the VIIRS and MODIS. The most notable improvement
in agreement between the phenological transition dates from the SGLI and the near-surface
observations relative to the VIIRS and MODIS was in the estimation of the dormancy dates.

In the above analysis, we conflated all vegetation types and did not consider the
differences between them. However, in the scatter plot in Figure 4, it is not difficult to see
that the agreement between the satellite and near-surface observations is excellent for some
vegetation. Table 2 summarizes the RMSE, bias, and R2 values by vegetation types between
the green-up and dormancy dates estimated using satellite and near-surface observations.
The agreement between the SGLI and near-surface for deciduous forest sites is less than five
days. The RMSE of the SGLI is significantly smaller than those of the VIIRS and MODIS for
both transition dates. However, the VIIRS and MODIS have a slightly better correlation
with the near-surface for the dormancy date. For the grassland sites, the agreement between
the SGLI and the near-surface is excellent. Unlike the deciduous forest sites, the differences
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in the RMSE and bias between the SGLI and near-surface are larger than those of the VIIRS
and MODIS in the green-up dates for the grassland sites. However, the statistical results
of the SGLI are superior to those of VIIRS and MODIS for the dormancy dates. For the
shrub sites, poor coefficients of determination in both the green-up and dormancy dates
indicate the relatively weak agreement between the satellite and near-surface observations.
Note that all biases are negative, meaning that the green-up and dormancy dates obtained
from the satellites in shrubs tend to be biased earlier than the near-surface observations.
For the tundra sites, significant correlations (p < 0.1) were only found in the green-up dates
from the MODIS and the dormancy dates from the SGLI and VIIRS. For the wetland sites,
significant correlations (p < 0.1) were only found in the green-up dates from the VIIRS
and the dormancy dates from the SGLI. Compared to the results of the other vegetation
types, the RMSE of the wetlands is much higher. Indeed, it is apparent (Figure 4) that
the agreement between the satellite and near-surface observations is much worse in the
wetlands than in the other vegetation types. Note that there were not enough data for the
tundra and wetland sites (n < 10 paired satellite-near-surface observations) to examine
these patterns, which may be also a key factor contributing to these results.
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shrub; TN: tundra; WL: wetland).

3.3. Spatial Distribution of SGLI Phenological Transition Dates

Compared to the observations at specific locations, the spatial distribution of the
phenological transition dates can better explain the relationship between climate, land
cover, and human activities. Figure 5 presents the spatial distribution of the green-up dates
retrieved from the SGLI (Figure 5a) and the VIIRS (Figure 5b) and the relative differences
(Figure 5c) in the northern hemisphere in 2018. However, in many arid and permafrost
areas or areas with some vegetation and minimal seasonal changes, the phenology cannot
be retrieved. Visual inspection shows that the spatial patterns are similar between the
SGLI and the VIIRS for the green-up dates. The green-up dates for both satellites show a
gradual delay across latitude, although these gradients could be interrupted. The relative
differences in the retrieved green-up dates between the SGLI and VIIRS were relatively
small in the high latitudes of the entire northern hemisphere. However, in the southeastern
United States and temperate regions of Asia, the green-up dates of the SGLI were earlier
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than those of the VIIRS. These differences are concentrated to about 0 days with normal
distribution between −50 and 50 days (Figure 5c), and the pixels with differences within
ten days account for 58%.

Table 2. Statistical comparison of green-up and dormancy dates from SGLI, VIIRS, and MODIS with
those from near-surface phenology observations (PhenoCan network) in 115 sites by vegetation types
(DF: deciduous forest; GR: grassland, SH: shrub; TN: tundra; WL: wetland). Green-up and dormancy
dates from VIIRS and MODIS extracted from those phenology products (MCD12Q2 and VNP22Q2).

Green-Up Statistic DF (n = 67) GR (n = 24) SH (n = 14) TN (n = 6) WL (n = 7)

PhenoCan
network

GCC

SGLI
NDGI

RMSE ± SD 9.1 ± 8.8 10.5 ± 9.0 9.3 ± 9.1 8.0 ± 7.2 25.2 ± 25.2
R2 0.73 ** 0.59 ** 0.00 0.50 0.39

Bias 2.52 3.17 −2.86 0.67 −2.43

VIIRS
EVI2

RMSE ± SD 14.8 ± 13.2 12.9 ± 12.2 14.1 ± 11.7 12.1 ± 10.8 30.9 ± 30.4
R2 0.57 ** 0.43 ** 0.23 * 0.15 0.45 *

Bias −6.58 −4.38 −7.93 5.33 −5.57

MODIS
EVI2

RMSE ± SD 12.3 ± 9.4 8.8 ± 8.5 15.7 ± 9.0 7.7 ± 7.7 35.5 ± 33.5
R2 0.70 ** 0.62 ** 0.04 0.62 * 0.43

Bias −8.05 −2.38 −12.86 0.67 −11.71

Dormancy Statistic DF (n = 67) GR (n = 24) SH (n = 14) TN (n = 6) WL (n = 7)

PhenoCan
network

GCC

SGLI
NDGI

RMSE ± SD 11.1 ± 10.2 16.6 ± 16.3 23.3 ± 10.6 14.7 ± 4.1 25.9 ± 25.9
R2 0.52 ** 0.81 ** 0.32 ** 0.6 * 0.78 **

Bias 4.31 −2.83 −20.71 14.17 −0.43

VIIRS
EVI2

RMSE ± SD 22.0 ± 14.8 28.8 ± 19.1 24.9 ± 9.9 8.7 ± 7.4 54.4 ± 41.0
R2 0.46 ** 0.69 ** 0.32 ** 0.61 * 0.30

Bias 16.36 21.46 −22.86 4.5 35.71

MODIS
EVI2

RMSE ± SD 16.4 ± 11.0 29.4 ± 18.9 21.2 ± 18.5 29.3 ± 13.7 47.8 ± 33.6
R2 0.42 ** 0.73 ** 0.26 * 0.19 0.31

Bias 12.16 22.46 −10.36 25.83 34

**: p < 0.05; *: p < 0.1.
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Figure 6 shows the spatial distribution of the dormancy dates retrieved from the SGLI
(Figure 6a) and the VIIRS (Figure 6b) and the relative differences (Figure 6c) in the northern
hemisphere in 2018. Compared to the green-up dates, a gradual delay across latitudes
for the SGLI dormancy dates is unclear. The earlier dormancy dates of the SGLI mainly
occurred in Kazakhstan, Turkey, and the western United States, similar to the VIIRS. There
are significant differences between the results of the SGLI and VIIRS on the dormant date
in low latitudes. These differences also show a normal distribution between −50 days and
50 days, where differences of less than ten days account for approximately 34% of the total
pixels, but the distribution slopes to the right (negative). Therefore, the dormancy dates of
the SGLI were generally earlier than those of the VIIRS.
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4. Discussion

Our analysis is the first to comprehensively evaluate the phenology estimation from
the SGLI using a novel vegetation index, the NDGI, at the local to the hemispherical scale.
At the pixel scale, the NDGI time series extracted from the SGLI can characterize the
greenness trajectory of vegetation (Figure 2). Due to the NDGI being designed to address
the snowmelt effect, we did not remove the snow-contaminated values using QA flags
during pre-processing. However, while using NDVI or EVI2 phenology estimation, it is
indispensable to use the QA flag or the normalized difference snow index to filter the
snow data and use the background values to replace them [10,13,16,46]. Unreasonable
background values will bring great uncertainty to detecting the phenological transition
dates. The NDGI time series indeed presents the most similar pattern to the GCC compared
to the NDVI and EIV2 between the SGLI and near-surface observations, especially during
the rising period of greenness (Figure 7). In addition, the NDGI effectively restrained the
snow noise in the ground background values. In a recent study by Cao et al. [25], the NDGI
achieved much lower uncertainty in the detection of the green-up date than that of the
NDVI. In addition, the NDGI changed more rapidly than the NDVI and EVI2 during the
rapid growth or declining phase of vegetation (Figure 7). This is likely because the NDGI,
similar to the GCC, is strongly sensitive to the greenness of the canopy, and it could be
decreased with the color of green foliage fading in autumn. In contrast, the EVI2 is more
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sensitive to vegetation’s gross primary production and the fraction of photosynthetically
active radiation. At the same time, the NDVI can better represent the change in the total
leaf number of the vegetation canopy [22,26,47]. Consequently, it is not surprising that
there are similar patterns in the greenness trajectories between the NDGI and the GCC.
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NDGI (a), NDVI (b), and EVI2 (c) with near-surface GCC.

In the analysis of the above threshold selection (Table 1), taking the green-up date as
an example, the above results used the 25% threshold date as the SGLI data phenological
indicator. However, for each vegetation type, different vegetation types may be suitable
for different thresholds (Figure 8 and Figure S2). For example, for the deciduous forest
sites (DF), although the correlation becomes slightly better as the threshold increases, the
bias is less than one day at the 20% threshold. For the grass sites (GR), the bias is most
minor for the 15% threshold, and the correlation is not particularly sensitive to this choice
(R2 ≈ 0.57). For the shrub sites (SH), the agreement between the SGLI and near-surface is
not significantly improved using any threshold. This can explain that in previous studies,
the choice of different thresholds is crucial, especially when the dominant vegetation types
are prevalent in the study region [29,30].
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surface observation. Results are separated according to vegetation type (DF: deciduous forest; GR:
grassland, SH: shrub). Progressively darker shades of blue designate green-up dates corresponding
to different thresholds (10% to 50% of a threshold by 5% step).

The differences between the phenological transition dates from the SGLI NDGI and
the near-surface GCC indicate that SGLI phenology is well detected in forests, followed
by grasslands (Table 2). However, the phenological monitoring of shrubs, tundra, and
wetlands is very complicated, possibly due to the spatial heterogeneity of the field of view
between the SGLI and the near-surface camera [35,48,49]. Therefore, the phenological
transition data from the SGLI and the near-surface observations are more comparable at
homogeneous sites. To make more accurate evaluations using sensors with medium spatial
resolution, high spatial–temporal resolution sensors can be used to match near-surface
observations to footprints of medium spatial resolution.
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Comparing the phenological transition dates from the SGLI, MODIS, and VIIRS with
the near-surface phenological observations allowed us to understand the differences and
similarities between the three sensors. Our results show that the agreement between the
SGLI and near-surface phenology is the best (Figure 4), and the phenological transition dates
estimated from the SGLI and VIIRS phenology products have similar spatial distributions
(Figures 5 and 6). The differences in the three satellite-based phenological estimations
are due to several issues. First, the vegetation index used to generate the time series is
inconsistent. Second, there are differences in the method of extracting the phenological
transition dates from the raw time series. Xin et al. [30] indicated that the methods had
significant differences in retrieving the phenological transition dates even using the same
time series data. Third, the SGLI, with a spatial resolution of 250 m, is better than the
MODIS and VIIRS. In recent years, phenology studies have begun using high-resolution
imagery from Landsat-class and Sentinel-2 [31,48].

5. Conclusions

In this study, the GCOM-C/SGLI land surface reflectance product was applied to
estimate the green-up and dormancy dates for different vegetation types based on a relative
threshold method, in which a snow-free vegetation index (i.e., the normalized difference
greenness index, NDGI) was adopted. Estimation accuracies were evaluated using the
field measurements of the PhenoCam phenology network. The results show that there
are significant agreements between the trajectories of the SGLI-based NDGI and the near-
surface green color coordinate index (GCC) at the PhenoCam sites with different vegetation
types. Regarding the estimation of the green-up dates, the SGLI data slightly outperformed
the existing MODIS and VIIRS phenology products, with an RSME and R2 of 11.0 days
and 0.71, respectively. In contrast, the SGLI-based estimation of the dormancy dates based
on SGLI data yielded much higher accuracies than the MODIS and VIIRS products with
an RSME decreased from >23.8 days to 15.6 days, and R2 increased from <0.51 to 0.72.
These results suggest that the GCOM-C/SGLI data have the potential to generate improved
monitoring of global vegetation phenology in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14164027/s1, Figure S1: Comparison of NDGI and EVI2 time
series retrieved from SGLI (A). (B–D) are digital images from the PhenoCam Network site weather
cameras corresponding to surface conditions at 27 days, 56 days, and 57 days, respectively; Figure S2:
Bias and coefficient of determination between dormancy dates derived from SGLI and near-surface
observation. Results are separated according to vegetation type (DF: deciduous forest; GR: grassland,
SH: shrub). Progressively darker shades of red are used to designate dormancy dates corresponding
to different thresholds (10% to 50% of threshold by 5% step); Table S1: Site characteristics of the
PhenoCam Network and Phenology Eye Network sites used in this study. Vegetation types are
as follows: DB = deciduous broadleaf; DN = deciduous needleleaf; GR = grassland; MX = mixed
vegetation; SH = shrubs; TN = tundra; WL = wetland.
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