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Abstract: The image fusion of multi-band and multi-polarization synthetic aperture radar (SAR)
images can improve the efficiency of band and polarization information processing. In this paper, we
introduce a fusion method that simultaneously fuses multi-band and polarization SAR images. In the
method, we first use non-subsampled shearlet transform (NSST) to fuse multi-band and polarization
SAR images. The sub-band images decomposed from the NSST are fused by the coefficient of
variation (CV) and phase consistency (PC) weighted fusion rules. Subsequently, we extract the band
and polarization difference information from the multi-band and polarization SAR images. The fusion
image is finally colorized according to the band and polarization differences. In the experiments, we
used Ka and S-band multi-polarization SAR images to test the fusion performance. The experiment
results prove that the proposed fused images not only preserve much valuable information but also
can be interpreted easily.

Keywords: image fusion; SAR image; band fusion; polarization fusion

1. Introduction

Synthetic aperture radar (SAR) is a high-resolution imaging technique that uses elec-
tromagnetic waves in the microwave spectrum to acquire electromagnetic scattering charac-
teristics of the detection area [1–3]. Different with optical sensor, SAR is an active imaging
technique, and its long-wavelength radiation can penetrate through most climatic condi-
tions. Therefore, SAR imaging has the advantages of long imaging distance and all-day,
all-weather operation [4]. However, SAR images are poor in object recognition and band
information. This has motivated researchers to fuse SAR images with other remote sensing
images to obtain better visual performance and additional valuable information.

SAR image fusion for enhancing visual performance has been widely studied by re-
searchers in recent years. There are various ways to achieve the fusion [5–14]. Among them,
the multi-scale decomposition methods, such as wavelet transform [5–7], non-subsampled
contourlet transform (NSCT) [8], and non-subsampled shearlet transform (NSST) [9] have
been frequently used in the fusion of SAR images because of their good fusion performance
and fast implementation. There are various fields where the fused SAR image can be
applied, such as searching ice cracks [5], improving the quality of urban remote sensing
images [8,9], or revealing cloud-obscured areas in optical images [10]. After the fusion, the
object recognition of the fused SAR image is significantly improved, thus, many researchers
utilize the fused SAR image for target detection, which includes obtaining the distribution
of buildings in cities [11], monitoring the damage of urban buildings after earthquakes [12],
monitoring glaciers in the ocean [13], and the detection of ships in ports [14].

The fusion between SAR images has received attention from researchers in an effort to
obtain more band and polarization information [15–22]. Due to the different penetration
and electromagnetic characteristics of the different bands, the fusion of multi-band SAR
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images can be used to achieve the detection of special targets. Wu et al. used the fusion
of X, C, and L-band SAR images to achieve bridge detection [17]. Guida et al. used the
fusion of X and S-band SAR images to identify oil and gas [18]. Chanika et al. applied X
and C-band SAR image fusion to enhance the classification accuracy of maize lands [19].
Moreover, the fusion of multi-polarization SAR images can be utilized to distinguish the
regions with different surface structures. Ruan et al. fused horizontal–horizontal (HH),
horizontal–vertical (HV) and vertical–vertical (VV) polarized SAR images to improve the
classification accuracy of different areas [20]. Song et al. fused HH and HV polarized SAR
images to reduce the false alarm rate of moving target detection [21]. Zhu et al. enhanced
the performance of vessel detection by using the fusion of HH and VV polarized SAR
images [22].

However, although the fused multi-band SAR image can be used to detect objects that
vary in scattering characteristics with respect to the band, it is difficult to determine the
kind of objects they are. In addition, although the fused multi-polarization SAR image can
be used to distinguish the regions with different surface structures, it is difficult to find
masked objects based on the information of a single band. Therefore, if we can fuse the
information of multi-band and multi-polarization SAR images at the same time, we can
detect the masked object and determine the kind of object it is simultaneously, which will
greatly facilitate the application of the SAR images.

Unfortunately, there are few effective fusion methods for the multi-band and polariza-
tion SAR images. Traditional fusion methods compress input images into a grayscale image.
This compression will result in the loss of critical band and polarization information. Fur-
thermore, the grayscale image is hard to interpret. The objects with only a one-dimensional
grayscale difference are difficult to detect and discriminate.

In this paper, we propose a colorization fusion method for multi-band and polarization
SAR images. First, we use non-subsampled shearlet transform (NSST) to decompose and
fuse multi-band and polarization SAR images. Among them, the low and high-frequency
sub-band images acquired from NSST are fused using the fusion rules based on coefficient
of variation (CV) and phase consistency (PC), respectively. Then, the band difference map
and the polarization difference map are obtained from the multi-band and polarization SAR
images through the calculation of intensity differences and color saturation, respectively.
Finally, the fused image is colorized according to the difference maps. This proposed fusion
method not only preserves the detail information between different bands of SAR images
but also increases the fused image by the band and polarization differences information,
which achieves a high visual performance.

The rest of this paper is divided into three parts. Section 2 introduces the detailed
fusion rules of multi-band and polarization SAR images. Section 3 presents the results of
the proposed fusion method as well as the comparison with other fusion methods. We
conclude in Section 4.

2. Methodology

In this section, we first introduce the concepts of NSST. Then, we present the NSST-
based image fusion rules, in which the low and high-frequency sub-band images are
respectively fused according to the CV and PC. Subsequently, the coloring rules for the
fused SAR image are proposed. At the end of this section, we introduce the dataset and
evaluation indexes that will be used in the experiments.

2.1. Concepts of NSST

Non-subsampled shearlet transform (NSST) is a non-orthogonal transform derived
from wavelet transform [23]. For a continuous wavelet, a two-dimensional affine system
with composite dilations is defined as:

MAS(ψ) =
{
(ψ)j,l,k(x) = |detA|j/2ψ

(
Sl Ajx− k

)
: l, j ∈ Z, k ∈ Z2

}
(1)
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where Ψ ∈ L2(R2) , L2(R2) = { f (x, y) :
∫ +∞
−∞

∫ +∞
−∞ | f (x, y)|2 < +∞}. j, l, and k denote scale,

direction, and shift parameter, respectively. A is the dilation matrix, and Aj is related to the
scale decomposition. S is the shear matrix, and Sl is related to the direction decomposition.

When A =

(
4 0
0 2

)
and S =

(
1 1
0 1

)
, they are called the shearlet filter (SF), and this

system is called the shearlet transform.
Compared with the shearlet transform, NSST utilizes the not sampling pyramid (NSP)

to achieve the scale decomposition [23]. The process of NSST is described as follows: First,
NSP scale decomposition is performed to obtain a low-frequency sub-band image and j-1
high-frequency sub-band images. Then, the high-frequency sub-band images are processed
with SF to obtain the sub-band images in different directions. Figure 1 shows the three-level
NSST image decomposition. As a multi-scale decomposition method, NSST can achieve
image multi-scale and multi-directional decomposition with high speed.
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Figure 1. Three-level NSST decomposition of source image.

2.2. Fusion Rules

After decomposing the multi-band and multi-polarization SAR images by NSST, we
can acquire their low and high-frequency sub-band images. Then, we fuse the low and
high-frequency sub-band images respectively, according to the individual fusion rule,
as follows.

2.2.1. Low-Frequency Fusion Rule

The low-frequency sub-band image contains the approximate information as well as
the majority of the energy of the original SAR image. We use the coefficient of variation
(CV) [24] as the weight of the low-frequency sub-band images. The CV is calculated
as follows:

CV(x, y) =

√
1
n ∑n

i=1(I(xi, yi)− µ)2

µ
(2)

where n represents the number of pixels in a window, I(xi, yi) is the neighbor pixel of the
center pixel I(x, y), and µ represents the mean of the pixels in the window. The calculation
window of the CV is 3× 3 in this paper.

CV can describe the degree of local variation of a pixel. If a pixel has larger CV, it will
provide more useful information and should have larger weight than the corresponding
pixel in the other low-frequency sub-band image. After calculating the CV for each pixel
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in the low-frequency sub-band image and making the CV as their weights, the fused
low-frequency sub-band image is acquired as follows:

LF(x, y) =
∑m

k CVk(x, y)Lk(x, y)
∑m

k CVk(x, y)
(3)

where m represents the number of the original images, and L is the low-frequency sub-band
image decomposed from NSST.

2.2.2. High-Frequency Fusion Rule

The high-frequency sub-band image contains the detailed texture, contour features,
as well as interfering noise. In order to preserve the detailed texture and contour features
as much as possible and to minimize the effect of noise, we use the PC weighted fusion
method to achieve the fusion of the high-frequency sub-band images.

Phase Congruency (PC) is an image contour extraction method. Because PC analyzes
the phase information of image in the frequency domain, it is invariant to the illumination
change [25] and thus, has been widely used in the SAR image registration [26–28].

For the phase analysis, we should first extract the multi-frequency and orientation
phase information from the original SAR image. In practice, the image is convolved with
multi-frequency and orientation band-pass filters to achieve the extraction as follows:

Aω,θ(x, y) = Re(I(x, y) ∗ fω,θ(x, y)) (4)

ϕω,θ(x, y) = Im(I(x, y) ∗ fω,θ(x, y)) (5)

where I represents the original SAR image. Aω,θ and ϕω,θ represent the amplitude and
phase at the frequency ω and orientation θ, respectively. fω,θ represents the band-pass filter
in the time domain. The function ∗ denotes the convolution of two metrics. The oriented
log-Gabor filter is suitable as the band-pass filter f. In the frequency domain, the oriented
log-Gabor filter is defined as

flog−Gabor(ω) = fθ · exp

(
− log(ω/ω0)

2

2(log(κ/ω0))

)
(6)

where fθ is direction filter. ω0 is the central frequency of the log-Gabor filter, and κ is a
parameter that controls the band width. Fourier transform can achieve the transformation
of the oriented log-Gabor filter between the frequency domain and the time domain.

Considering the effect of image noise, the phase deviation ∆ϕs,θ as well as the PC in
the orientation θ are defined as:

∆ϕs,θ(x, y) = cos(ϕs,θ(x, y)− ϕθ(x, y))− |sin(ϕs,θ(x, y)− ϕθ(x, y))| (7)

PCθ(x, y) =
∑
s

Ws,θ(x, y)bAs,θ(x, y)∆ϕs,θ(x, y)− Tc

∑
s

As,θ(x, y) + ε
(8)

where ϕθ is mean phase angle, Ws,θ is the weighting function related to the band-pass
filter, T is the estimated noise threshold, and ε is a small constant that avoids division by
zero. The function b·c denotes that the enclosed quantity is equal to itself when its value is
positive, and zero otherwise. If the PCθ value of the pixel is close to 1, this pixel has good
phase congruency in the orientation θ and is likely an edge pixel of the SAR image.

Furthermore, taking the orientation into account, we can distinguish the kind of
edge. The maximum moment PCM and the minimum moment PCm can be obtained as
follows [29,30]:

PCM =
1
2

(
c + a +

√
b2 + (a− c)2

)
(9)
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PCm =
1
2

(
c + a−

√
b2 + (a− c)2

)
(10)

in which the three intermediate quantities are calculated by:

a = ∑
o
(PCθo cos(θo))

2

b = 2∑
o
(PCθo cos(θo)) · (PCθo sin(θo))

c = ∑
o
(PCθo sin(θo))

2
(11)

where PCθo denotes the PC at the orientation of θo. PCM and PCm represent the edge
and corner maps of the original SAR image, respectively. In this paper, we select PCM as
the output of the PC method. To make the contours more visible, the PCM is optimized
as follows:

PCM(x, y) = max
(

PCM
(
x + x′, y + y′

))
, x′ ∈ [−1, 1], y′ ∈ [−1, 1] (12)

Finally, the PCM is made as the weights of each high-frequency sub-band image, then,
the fused high-frequency sub-band images can be obtained as follows:

HFj,l(x, y) =
∑m

k PCMk(x, y)Hj,l,k(x, y)

∑m
k PCMk(x, y)

(13)

where m denotes the number of the original images, and H is the high-frequency sub-
band image decomposed from NSST. j and l represent the scale and direction in the
NSST, respectively.

So far, we have obtained the fused low-frequency sub-band image and the fused
high-frequency sub-band images. Then, the NSST inversion is applied to the sub-band
images to realize the fusion of the multi-band and polarization SAR images. Subsequently,
we extract the band and polarization difference information from the original multi-band
and polarization SAR images to colorize the fused SAR image.

2.3. Coloring Rules
2.3.1. Band Difference Extraction

Since the penetration of the detection microwaves vary from different frequencies, the
masked object will show different intensity in the multi-band SAR images. We can locate
these objects by extracting the band difference map between the images. The extraction of
band difference is conducted as follows:

DB1−2(x, y) = |max(IB1,P1(x, y))−max(IB2,P2(x, y))|, P1, P2 ∈ [HH, HV, VV] (14)

in which the IB1,P1 and IB2,P2 represent the different band SAR images at P1 and P2 polar-
ization, respectively. If there are more than two bands, the band differences between each
band should be calculated. Then the maximum DB of pixels between each band is retained
to obtain the final band difference map, as follows:

DB(x, y) = max(DB1−2(x, y), DB2−3(x, y), DB1−3(x, y) . . .) (15)

However, large amounts of noise in the SAR image is retained in the DB, which will
reduce the quality of the band difference map. To reduce the impact of noise, we calculate
the mean of DB in the band difference map. The values less than mean of DB in the band
difference map is set to zero, then the map is convolved with 3× 3 mean filter.
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2.3.2. Polarization Difference Extraction

The regions with different surface structures will present different polarization infor-
mation. Therefore, we can use the color saturation [31] to extract the polarization difference
map to distinguish different regions easily.

The color saturation of each pixel in the polarization difference map is calculated as:

SB(x, y) =
1− 3min(IB,P(x, y))

∑P IB,P(x, y)
, P ∈ [HH, HV, VV] (16)

in which IB,P denotes a certain band SAR image at polarization P. If a pixel has high satura-
tion, the intensity of the pixel varies sharply among the multi-polarization SAR images,
indicating that the pixel belongs to a special region. According to the color saturation
values of the pixels, we can obtain the mean of them in the polarization difference map.
In order to reduce the effect of noise, the values less than mean of SB in the polarization
difference map is set to zero, then the map is convolved with 3× 3 mean filter.

Finally, the maximum SB of pixels in each band is retained to obtain the final polariza-
tion difference map, as follows:

S(x, y) = max(SB1(x, y), SB2(x, y), . . .) (17)

2.3.3. Coloring Rules of Difference Information

So far, we have obtained the fused SAR image, the band difference map as well as
the polarization difference map from the multi-band and polarization SAR images. Next,
the band and polarization difference maps are expressed on the fused SAR image by
different colors.

Since the blue objects cannot be distinguished well in the human eyes because of the
low brightness, we use red and green to express the band and polarization difference map,
respectively. The regions with both band and polarization differences will appear yellow.

As the polarization difference map is presented as saturation, it is first transformed
into the intensity difference as follows:

DP(x, y) = F(x, y) ∗ 2S(x, y)
1 + S(x, y)

(18)

in which the F is the fused SAR image. The intensity of each color in the fused SAR image
is assigned according to the following rules:

R(x, y) =
{

F(x, y) + DB(x, y)− DP(x, y) , DB(x, y) < DP(x, y)
F(x, y) , DB(x, y) ≥ DP(x, y)

G(x, y) =
{

F(x, y) , DB(x, y) < DP(x, y)
F(x, y)− DB(x, y) + DP(x, y) , DB(x, y) ≥ DP(x, y)

B(x, y) =
{

F(x, y)− DB(x, y) , DB(x, y) ≥ DP(x, y)
F(x, y)− DP(x, y) , DB(x, y) < DP(x, y)

(19)

After that, we obtain the colorized fused SAR image that contains band and polariza-
tion differences information.

The specific flow chart of multi-band and polarization SAR images fusion in this paper
is shown in Figure 2.



Remote Sens. 2022, 14, 4022 7 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 18 
 

 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, , , , , ,
,

, , , ,

, , , ,
,

, , , , , ,

, , , , ,
,

, , , , ,

B P B P

B P

B P

B P B P

B B P

P B P

F x y D x y D x y D x y D x y
R x y

F x y D x y D x y

F x y D x y D x y
G x y

F x y D x y D x y D x y D x y

F x y D x y D x y D x y
B x y

F x y D x y D x y D x y

+ − 
= 




= 

− + 

− 
= 

− 

 
(19) 

After that, we obtain the colorized fused SAR image that contains band and polari-

zation differences information. 

The specific flow chart of multi-band and polarization SAR images fusion in this pa-

per is shown in Figure 2. 

 

Figure 2. Flow chart of the proposed fusion method for multi-band and polarization SAR images. 

2.4. Datasets 

Two pairs of air-borne SAR images were selected for the fusion quality analysis. Each 

image pair contains two band (Ka and S-band) and three polarization (HH, HV and VV) 

SAR images. The polarization information is painted in different colors, in which HH is 

red, HV is green, and VV is blue. The resizing and registration between the multi-band 

SAR images was accomplished. Each SAR image had the size of 800 × 800 and the reso-

lution of 1 m. We also provide the optical images of the same scenes as references. All 

images were taken during an airplane flight on 14 March 2021. 

The two pairs of Ka and S-band multi-polarization SAR images are shown in the Fig-

ure 3a,b and Figure 4a,b, respectively. Since the frequency of Ka-band microwave is higher 

than S-band microwave, the Ka-band SAR image has a higher resolution [1–3]. After the 

resizing, the Ka-band multi-polarization SAR images appear sharper than the S-band. 

Moreover, because the electromagnetic scattering characteristics of objects varies with the 

frequencies of the detection microwaves, the detailed texture of the objects in the Ka and 

S-band multi-polarization SAR images is significantly different. Furthermore, the polari-

zation information of the Ka and S-band SAR images is also inconsistent. Since different 

kinds of objects present different polarization information, we can easily distinguish these 

regions such as farmlands or buildings from the images according to their own colors. 
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2.4. Datasets

Two pairs of air-borne SAR images were selected for the fusion quality analysis. Each
image pair contains two band (Ka and S-band) and three polarization (HH, HV and VV)
SAR images. The polarization information is painted in different colors, in which HH is red,
HV is green, and VV is blue. The resizing and registration between the multi-band SAR
images was accomplished. Each SAR image had the size of 800× 800 and the resolution of
1 m. We also provide the optical images of the same scenes as references. All images were
taken during an airplane flight on 14 March 2021.

The two pairs of Ka and S-band multi-polarization SAR images are shown in the
Figure 3a,b and Figure 4a,b, respectively. Since the frequency of Ka-band microwave is
higher than S-band microwave, the Ka-band SAR image has a higher resolution [1–3]. After
the resizing, the Ka-band multi-polarization SAR images appear sharper than the S-band.
Moreover, because the electromagnetic scattering characteristics of objects varies with the
frequencies of the detection microwaves, the detailed texture of the objects in the Ka and
S-band multi-polarization SAR images is significantly different. Furthermore, the polar-
ization information of the Ka and S-band SAR images is also inconsistent. Since different
kinds of objects present different polarization information, we can easily distinguish these
regions such as farmlands or buildings from the images according to their own colors.
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Figure 4. Scene 2. (a) Ka-band multi-polarization SAR image. (b) S-band multi-polarization SAR
image. (c) Optical image.

2.5. Evaluation indexes

Several statistical indexes will be used to evaluate the fused images, which include
average gradient (AG), information entropy (IE), standard deviation (STD), correlation
coefficient (CC), and structural similarity index measure (SSIM) [4,9]. Their introduction
and specific equations are shown as follows:

• Average Gradient

AG represents the detail-describing ability of the fused image. It can be obtained by
calculating the mean of image gradients:

AG =
1

xy∑
x

∑
y

G(x, y) (20)

G(x, y) =
1
2
(
|Gx(x, y)|+

∣∣Gy(x, y)
∣∣) (21)

where Gx and Gy are the gradients of pixels in the vertical and horizontal directions,

respectively. Gx and Gy can be acquired by convolving the image with
[
−1/2 1/2

]T and[
−1/2 1/2

]
, respectively.
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• Information Entropy

IE is the most intuitive standard for reflecting the amount of image information. The
following equation is used to calculate information entropy.

IE = −
L−1

∑
k=1

p(k) log2 p(k) (22)

where L is the dynamic range of the image being analyzed, and p(k) is the probability of
occurrence of kth gray level. In the 8-bit image, L is 255.

• Standard Deviation

STD is a measure of contrast in the fused image. High contrast in the fused image
indicates information richness. Standard deviation can be calculated as follows:

SD =

√√√√ 1
N − 1

N

∑
i=1
|Fi − µ|2 (23)

where µ is the mean value of the fused image, F, N is the number of the pixels in the
fused image.

• Correlation Coefficient

CC is a measure of the correlation between the reference image and the fused image.
It can be calculated as follows:

CC =

∑
x

∑
y

(
F(x, y)− F

)(
R(x, y)− R

)
√√√√(∑

x
∑
y

(
F(x, y)− F

)2
)(

∑
x

∑
y

(
R(x, y)− R

)2
) (24)

where F and R are fused and reference images, respectively. F and R are mean values of
fused and reference images, respectively.

• Structural Similarity Index Measure

SSIM measures structural similarity between the reference image and the fused image.
It is calculated using following equation:

SSIM =

(
2µ f ur + C1

)(
2σf r + C2

)
(

µ2
f + µ2

r + C1

)(
σ2

f + σ2
r + C2

) (25)

where f and r represent the fused and reference images, respectively; µ f and µr are their
mean values; σ2

f and σ2
f are their variances; σf r is the covariance between them; and C1 and

C2 are small constants for stabilizing denominator with weak division.
It should be noted that if the input image is in color, the image needs to be converted

to a grayscale image first.

3. Experiments
3.1. Comparison of Fusion Results

We first selected a special region in each scene to analyze the performance of the
proposed fusion method. As mentioned in Section 2, these SAR images are firstly decom-
posed by three-level NSST, in which the number of decomposition directions is [1, 4, 8].
Subsequently, the low-frequency and high-frequency sub-band images obtained from the
decomposition are respectively fused according to the CV and PC. Next, the inverse NSST
transform of the fused sub-band images is conducted to obtain the fused SAR image.
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We also present the results of various image fusion methods as the comparison, which
include principal component analysis (PCA) [17], wavelet transform [16], non-subsampled
contourlet transform (NSCT) [32], and primary NSST [9].

Figure 5a–c show the special region in scene 1. In this region, the Ka-band SAR
image possesses high sharpness and rich detail information, but it does not present com-
plete building information. On the contrary, the S-band SAR image shows the masked
building due to the high penetration of the S-band microwave, but it is filled with noise.
Figure 5d–h present the results of various fusion methods of the representative region
in scene 1. Among them, the wavelet-based fused image (Figure 5e) does not preserve
detailed texture. The fused images of PCA and NSCT (Figure 5d,f) retain a part of detailed
texture, but the masked building is not apparent enough. Both the NSST and proposed
fusion images (Figure 5g,h) present clear buildings. However, as we enlarge the marked
regions (Figure 6a,b), the contour of the building in the NSST fusion image is blurred by
noise. In contrast, the building in the proposed fusion image is sharper.
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Figure 7a–c show the special region in scene 2. The Ka-band SAR image has higher
visual performance, but lacks underwater information. The S-band SAR image has under-
water information, but its visual performance is poor. Figure 7d–h present the results of the
fusion methods. Similar to the results of scene 1, the fused images of PCA, wavelet, and
NSCT do not preserve much detailed texture. Additionally, both the NSST and the pro-
posed method present clear underwater information. After enlarging the marked regions
in the NSST and proposed fusion images (Figure 8a,b), we can observe that the texture in
the NSST is covered by noise, but the texture in the proposed fusion image is presented in
detail. These fusion results demonstrate that the proposed fusion method can remove much
noise while retaining the detailed information of the original images, which outperforms
other methods.
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and (h) proposed method fusion.
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3.2. Comparison of Colorization Results

Although the fusion methods compress the information of the SAR images, it is
difficult to distinguish different regions from the grayscale map. To facilitate the use of
the fusion image, we extract the band and polarization difference information from the
SAR images and then inserted the information into the fusion results according to the
coloring rules.

Figure 9a,b show the band and polarization difference maps extracted from special
region 1, respectively. From the difference maps we can see that all buildings in this region
have unique polarization information, whereas the masked building have additional band
difference. After the colorization, the visual performance of all fusion images is dramatically
improved, as shown in Figure 9c–g. With the color distribution, we can easily locate the
buildings. In particular, the exposed building is painted in green because of its special
polarization information. In contrast, we marked the masked building in red due to its
band difference. Benefiting from the fusion method, the colorized proposed fusion image
reveals more completed building information and sharper contour than other colorized
fusion images.
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Figure 9. Band difference map, polarization difference map, and colorized fusion results of special
region in scene 1: (a) Band difference map; (b) polarization difference map; (c) colorized PCA fusion;
(d) colorized wavelet fusion; (e) colorized NSCT fusion; (f) colorized NSST fusion; and (g) colorized
proposed method fusion.

Difference extraction and colorization were also conducted on special region 2. Accord-
ing to the band and polarization difference maps (Figure 10a,b), the buildings are painted
in green due to their special polarization information. The underwater information consists
of both band and polarization differences and thus. is painted in yellow. In the colorized
results (Figure 10c–g), the PCA, wavelet, and NSCT display little underwater information.
Both the NSST and proposed fusion images highlight the underwater information, but the
colorized proposed fusion image retains more detailed texture and less noise. These results
demonstrate that the proposed fusion method is more suitable for colorization.
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Figure 10. Band difference map, polarization difference map, and colorized fusion results of special
region in scene 2: (a) Band difference map; (b) polarization difference map; (c) colorized PCA fusion;
(d) colorized wavelet fusion; (e) colorized NSCT fusion; (f) colorized NSST fusion; and (g) colorized
proposed method fusion.

The complete difference maps and colorization fusion results of scenes 1 and 2 are
shown in Figures 11 and 12, respectively. We can see that the band and polarization
difference maps mark the location of the special regions. Even at larger scales, we can still
spot the buildings or farmland from the colorized fusion results at a glance. Furthermore,
the special objects can be easily located according to their outstanding colors. These
results prove that the colorization fusion method can not only preserve the valuable
information from the multi-band and polarization SAR images, but also reduce the difficulty
of interpreting the SAR images.
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Figure 12. Complete colorization fusion results of scene 2: (a) Band difference map; (b) polarization
difference map; (c) PCA fusion; (d) wavelet fusion; (e) NSCT fusion; (f) NSST fusion; and (g) proposed
method fusion.

However, it is difficult for human eyes to compare these large-scale images. Therefore,
we used various statistical evaluation indexes to complete the comparison.

3.3. Comparison of Evaluation Indexes

This section contains the analysis of various evaluation indexes for the colorized
fusion images in Figures 11 and 12. The evaluation indexes include average gradient
(AG), information entropy (IE), standard deviation (STD), correlation coefficient (CC), and
structural similarity index measure (SSIM). The Ka-band SAR image is used as the reference
image in the CC and SSIM indexes.

AG, IE, and STD can reflect the abundance of the texture in the image. The more
texture information in the image, the higher the value of these three indexes. As shown in
Tables 1 and 2, both the proposed methods present the highest values of the three indexes,
which is consistent with the results of the visual-based analysis. The index results of the
two scenes have a similar distribution. The three indexes of the PCA, wavelet, and NSCT
fusion images are lower than the proposed fusion images, because these methods do not
preserve much detail texture. The NSST-based fusion images retained both detail texture
and noise, and thus their AG, IE and STD indexes is close to the proposed fusion images.
Since the proposed fusion method preserves the detail texture while avoiding most of the
noise, the AG, IE, and STD of the proposed fusion images are higher than the NSST.
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Table 1. Evaluation indexes of the fused images in scene 1.

AG IE STD CC SSIM Time(s)

PCA 10.373 7.270 38.721 0.929 0.753 8.031
wavelet 8.952 7.243 37.777 0.934 0.762 3.828
NSCT 10.333 7.233 37.668 0.920 0.752 103.903
NSST 10.820 7.282 39.062 0.917 0.735 16.625

proposed 12.137 7.314 40.075 0.903 0.716 25.233

Table 2. Evaluation indexes of the fused images in scene 2.

AG IE STD CC SSIM Time

PCA 10.748 7.271 40.922 0.926 0.723 8.013
wavelet 9.437 7.252 39.927 0.938 0.759 3.611
NSCT 10.601 7.235 39.716 0.932 0.757 103.419
NSST 11.161 7.257 40.807 0.925 0.734 16.599

proposed 11.956 7.287 41.702 0.920 0.723 25.165

CC and SSIM measure the similarity between the colorized fusion images and the
Ka-band SAR images. The lower the CC and SSIM indexes are, the less information is
retained from the Ka-band SAR images, i.e., the more information from the S-band SAR
image. Although the S-band SAR images have less detail information than the Ka-band SAR
images, they have some additional information, such as masked building and underwater
information, that is worth preserving. Therefore, the indexes of CC and SSIM imply the
ability of these fusion method to retain the additional information. In Tables 1 and 2, the
CC and SSIM of the wavelet fusion images are the highest, which indicates that wavelet
fusion images preserve less information from the S-band SAR images. On the contrary,
since the proposed fusion method makes full use of the information from the S-band SAR
images, the CC and SSIM of the proposed fusion images are lowest.

We also recorded the running time of each fusion method. We can see that the com-
putational speed of NSST is significantly faster than the NSCT. Compared with NSST, the
proposed fusion method needs more time because of the additional sub-band fusion rules.

As mentioned above, compared with other fused images, the proposed fusion images
have better performance. The AG, IE, and STD prove that the proposed fusion images
retain more detail information, and the CC and SSIM prove that the proposed fusion images
preserve more additional information from the S-band SAR images. Therefore, we can
conclude that the proposed image fusion method for multi-band and polarization SAR
images can achieve the SAR image information fusion with high quality.

4. Conclusions

In this paper, we proposed a multi-band and polarization SAR images colorization
fusion method, in which the fusion image is improved by the band and polarization
difference extracted from the SAR images. In the proposed method, the fused image is
acquired from the NSST transform and the CV and PC weighted sub-band image fusion
rules. Then, the fused image is colorized based on the intensity difference of the bands
and the color saturation of the polarizations. We chose two representative multi-band
and polarization SAR image pairs for the analysis of the fusion methods. Both the visual
and quantitative evaluations prove that the proposed fusion images own more detail
information and less noise. Moreover, the colorization process dramatically enhanced the
visual performance of the fusion images. In the proposed fusion images, image user can
easily locate the regions that are masked or have special surface structure.
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