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Abstract

:

Upland cotton encounters biotic and abiotic stresses during the growing season, which significantly affects the genetic potential of stress tolerance and productivity. The root-knot nematode (RKN) (Meloidogyne incognita) is a soilborne roundworm affecting cotton production. The occurrence of abiotic stress (drought stress, DS) can alter the plant–disease (RKN) interactions by enhancing host plant sensitivity. Experiments were conducted for two years under greenhouse conditions to investigate the effect of RKN and DS and their combination using nematode-resistant (Rk-Rn-1) and nematode susceptible (M8) cotton genotypes. These genotypes were subjected to four treatments: control (100% irrigation with no nematodes), RKN (100% irrigation with nematodes), DS (50% irrigation with no nematodes), and DS + RKN (50% irrigation with nematodes). We measured treatments-induced changes in cotton (i) leaf reflectance between 350 and 2500 nm; and (ii) physiology and biomass-related traits for diagnosing plant health under combined biotic and abiotic stresses. We used a maximum likelihood classification model of hyperspectral data with different dimensionality reduction techniques to learn RKN and DS stressors on two cotton genotypes. The results indicate (i) the RKN stress can be detected at an early stage of 10 days after infestation; (ii) RKN, DS, and DS + RKN can be detected with an accuracy of over 98% using bands from 350–1000 nm and 350–2500 nm. The genotypes ‘Rk-Rn-1’and ‘M8’ showed differential responses to DS, RKN, and DS + RKN. With a few exceptions, all three stressors reduced the pigments, physiology, and biomass traits and the magnitude of reduction was higher in ‘M8’ than ‘Rk-Rn-1’. Observed impact of stressors on plant growth followed DS + RKN > DS > RKN. Similarly, leaf reflectance properties exhibited a significant difference between individual stress treatments indicating that the hyperspectral sensor data can be used to discriminate RKN-infected plants from drought-stressed plants. Thus, our study reveals that hyperspectral and physiological changes in response to RKN and DS could help diagnose plant health before visual symptoms.
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1. Introduction


Meloidogyne incognita (southern root-knot nematode, RKN) is one of the most important plant-parasitic nematodes affecting cotton production in the United States [1]. The estimated cotton yield in the United States during 2015 was about 7.9 million bales, but losses due to RKN were estimated at approximately 215,500 bales with an estimated value of $73.94 million [2,3]. RKN has many hosts including weeds and field crops [4,5], where it feeds on and lives in plant roots or inhabits the rhizosphere. RKN second-stage juveniles (J2) preferentially infect the root tips and migrate intercellularly through the root vasculature. The J2 then becomes sedentary near the endodermis where it elicits the formation of multiple ‘giant cells’ that provide the developing nematode with nutrients throughout the life cycle. Vascular tissue surrounding the giant cells undergo extreme hypertrophy and forms the characteristic ‘galls’ seen on RKN-infected roots [6]. Giant cell formation of galls is solely to benefit the nematode, not the host, and provide the necessary nutrition for the growth and subsequent production of large numbers of eggs. RKN-induced feeding sites are nutritional sinks that impede the total supply of water and nutrients to the shoot, reducing crop growth and yield in cotton [7,8], and other crops [9]. Various management practices like nematicide application, fumigation and soil solarization are implemented to control RKN infection [10]. However, considering the cost, soil health, and safety, these management practices are not adapted to large-scale farming. Methods like crop rotation, biological control, and resistant varieties are considered economical, sustainable, and eco-friendly options to control the RKN effect on crops [10,11]. Though substantial progress has been made in developing host–plant resistance, significant gaps exist due to the complexity of plant–nematode interaction mechanisms [12,13].



Field-grown crops have the possibility of experiencing multiple stresses simultaneously, such as a combination of abiotic and biotic stresses [14]. This combination is common to agricultural areas worldwide that impact crop productivity. More than 65% of cotton in the United States was grown under rainfed conditions [15]. With the increasing threat of climate change, access to irrigation is decreasing, further turning the irrigated cultivated land into rainfed [16]. Many of the rainfed cotton-growing fields are abundant with the increased RKN populations. Plants produce reactive oxygen species as signaling molecules to control pathogen infection [17]; however, inadequate soil moisture weakens this defense mechanism [18,19]. A stressor (like drought) enhances RKN spread, making the plant more susceptible to pathogen infection leading to significant yield reduction. In particular, RKN infection causes substantial damage to roots by disrupting xylem, phloem, epidermis, and cortical tissues [20,21]. RKN infection symptoms are similar to those often attributed to drought stress, where plants exhibit premature wilting, nutrient deficiency, and stunted growth [10,22]. These abnormalities appear in the infected plants due to reduced water uptake and poor water supply to the shoots. This event results in decreased stomatal conductance and net photosynthesis, thereby increasing canopy temperature, which is comparable to plants’ experiencing drought stress [23,24,25]. Exposure of plants to RKN can alter plant metabolism and contribute to premature leaf abscission, which is presumed to affect chlorophyll content and photosynthesis in soybean [26]. Growth is substantially reduced by infection with RKN [23], similar to drought in cotton [24,27].



Early diagnosis of stressors is required to reduce disease spread and facilitate real-time management practice. Recent studies demonstrated that crops share common physiological changes in response to RKN and drought stress [10,22]. However, changes in leaf spectral properties specific to RKN or drought stress are not yet investigated in many crops, including cotton. Recent advancements in remote sensing (multispectral and hyperspectral) can help early diagnosis of stressors before the plant’s visual symptoms appear. Hyperspectral data contain reflectance as hundreds of narrow spectral bands in visible and infrared regions. Hyperspectral sensors have proven to help distinguish subtly different levels of plant stress. In the literature, the hyperspectral data are shown to have the ability to rapidly and early detect various biotic- and abiotic-stress symptoms [28,29]. Stressors alter the optical properties of leaves by changing the leaf pigments, cell structure, water content, leaf physiology, and chemical composition. In response to stressors, plants adjust their leaf optical properties to balance light reflectance, absorption, and transmittance [30,31]. Ground-based sensing of leaf reflectance data measured using spectroradiometers and hyperspectral sensors have a higher potential of discriminating even small differences between the stressed and non-stressed plants due to its richness in a larger number of discrete wavelengths [32,33]. However, hyperspectral data contain highly correlated narrow spectral bands that demand a larger number of training samples to accurately determine class conditional probabilities that are required in statistical machine learning (ML) modeling. The application of dimensionality reduction algorithms can alleviate the small training size issues. ML-based techniques in agriculture have shown the potential to discriminate healthy plants from the stressed ones caused by either RKN [32] or drought stress [34] using the hyperspectral signatures. Several studies have shown that changes in physiology and biochemical processes in response to a broad range of stressors, such as drought, temperature, salinity, nutrient and diseases, can be identified using leaf reflectance properties [35,36,37,38,39]. However, identifying unique and shared spectral profile changes for a broad range of stressors require multidisciplinary approaches.



Hyperspectral imagery records reflectance values over a wide range of continuous narrow spectral bands in the visible and infrared regions. This results in high-dimensional data providing helpful information for land-cover classification, target recognition, and mapping [40,41]. This high dimensionality in hyperspectral imagery often suffers from a Hughes phenomenon [42] that results in poor performances in statistical pattern classification tasks with small sample size. A suitable dimensionality reduction procedure regulates these problems of high dimensionality in hyperspectral image analysis. This method of dimensionality reduction deals with data compression and feature extraction for classification [43]. This reduction process is based on projections and decision rules optimizing a global criterion such as the overall accuracy (OA) or Fisher’s ratio [44]. Principal component analysis (PCA) and Fisher’s linear discriminant analysis (FLDA) are popular methods for such dimensionality reduction and have been widely applied in hyperspectral imagery analysis [40,41,43,45]. In general, FLDA has greater efficiency in feature reduction and classification than PCA and is preferred in hyperspectral data analysis [46]. Stepwise linear discriminant analysis (SLDA) mitigates the effects of a small sample size on its transformations, where forward selection and backward rejection determine the best feature subset. In this study, we are not only interested in identifying the changes in leaf spectral properties in response to individual and combined drought and RKN stresses. We also sought to determine the suitability of a spectral signatures-based screening approach to distinguish stressed plants from healthy ones and to forecast the type of stress the plants undergo (drought or RKN) before the visual symptoms appear.



Therefore, the present study aims to (i) assess the individual and interactive effects of RKN and drought on the physiology and growth of two cotton genotypes; (ii) compare the ability of statistical ML methods in discriminating or classification of healthy plants from stresses under individual and interactive RKN and drought stress treatments; and (iii) determine the best ML classifier and dimensionality reduction approach for early diagnosis of stressors in cotton grown in a greenhouse controlled experiment.




2. Materials and Methods


2.1. Crop Husbandry


Two cotton genotypes, ‘Rk-Rn-1’ (nematode resistant; [47]) and ‘M8’ (nematode susceptible), were used in this study. The experiments were carried out during the years 2020 (year 1) and 2021 (year 2) in a controlled environment greenhouse facility at the USDA—ARS, Mississippi State, MS, USA. Two seeds were sown at a depth of about 2–3 cm in a pot containing a mixture of field soil and sand (1:1 ratio). The seedling was thinned to one per pot at the two-leaf stage. Five replications were maintained for each genotype per treatment (5 × 2 × 2 = 20 pots) in year 1, and ten replications were maintained for each genotype per treatment (10 × 2 × 4 = 80 pots) in year 2. The temperature in the glasshouse was maintained at 30/20 °C (day/night) and 60–70% relative humidity with a photoperiod of 11/13 h (day/night) during the experiment. The soil moisture was monitored using a handheld moisture meter (Theta Probe ML2x, Delta-T Devices, Cambridge, UK).




2.2. Treatment


A M. incognita race 3 population was cultivated on susceptible cotton plants. RKN eggs used for inoculum were collected from infected cotton roots [48]. In year 1, the experiment contains two treatments (control and nematode stress). (1) control—100% irrigation [0.15 m3 m−3 volumetric water content (VMC)] and no nematode inoculation; (2) nematode stress—100% irrigation. Pots receiving RKN inoculum were inoculated with 50,000 RKN eggs ten days after planting. RKN eggs were applied as 10 × 1 mL aliquots into 10 holes surrounding the plant.



In year 2, the experiment contained four treatments: (1) control—100% irrigation, no nematode inoculation; (2) drought stress (DS)—40% irrigation (0.060 m3 m−3 VWC), no nematode inoculation; (3) root-knot nematode stress (RKN)—100% irrigation and nematode inoculation (100,000 RKN eggs); (4) drought and nematode stress (DS + RKN)—40% irrigation and nematode inoculation. As with the year 1 experiment, pots receiving RKN inoculum were inoculated ten days after planting. Approximately 100,000 RKN eggs were applied as 10 × 1 mL aliquots into 10 holes surrounding the plant. The approximate number of RKN eggs per cm3 of soil was equivalent between years 1 and 2. Successful RKN infection of the susceptible control plants was confirmed at the end of the experiments by the appearance of extensive RKN-induced root galling.




2.3. Data Collection


2.3.1. Physiological and Shoot Biomass Traits


Chlorophyll content and nitrogen balance index were measured on a fully opened mainstem leaf, third leaf from the terminal, across all treatments using a handheld Dualex® scientific instrument (Force A DX16641, Paris, France) at 80 days after planting (DAP) or 60 days after stress in year 1 and multiple times (16, 24, 32, 39, 46, 53, and 72 days after stress) in year 2. A portable handheld LI-600 porometer system integrated with a fluorometer (LI-COR Biosciences, Lincoln, NE, USA) was used to measure stomatal conductance and transpiration across all treatments between 10:00 a.m. and 12:00 p.m. in year 1 (60 days after stress) and year 2 (16, 24, 32, 39, 46, 53, and 72 days after stress). Plants were harvested at 60 days after stress in year 1 and 72 days after stress in year 2. Plants were kept in a forced-air oven at 75 °C for three days to determine root and shoot dry weights.




2.3.2. Leaf Hyperspectral Reflectance


Leaf hyperspectral reflectance (350 and 2500 nm) data were collected between 10:00 a.m. and 12:00 p.m. in year 1 (10, 30 and 60 days after stress) and year 2 (32, 39, 46, 53, and 72 days after stress), using a PSR + 3500 spectroradiometer (Spectral Evolution, Haverhill, MA, USA). The spectroradiometer is attached to a leaf clip probe with an internal calibrated light source. The instrument’s spectral range is 350–2500 nm (2150 bands) with a spectral resolution of 2.8 nm at 700 nm, 8 nm at 1500 nm, and 6 nm at 2100 full width at half maximum resampled to produce data at 1 nm. Five instantaneous spectral reflectance measurements were recorded from the adaxial surface in each treatment for each genotype and treatment by keeping the leaf vertical to the optical probe. Each measurement is an average of 10 readings in years 1 and 2. At the beginning of each treatment, a white reference measurement was taken, and each measurement was then radiometrically calibrated based on the white reference.





2.4. Statistical Machine Learning


A maximum likelihood (ML) classifier with a dimensionality reducer approach was used to classify leaf hyperspectral signatures. This setup has shown to effectively classify subtly different classes in hyperspectral data in reduced dimensions without suffering from the Hughes phenomenon. The maximum likelihood classifier assumes that the statistics for each class in each hyperspectral band usually are distributed and computes the probability that a given pixel belongs to a particular class [45]. The different dimensionality reduction algorithms used in this study to differentiate RKN stressed cotton leaf reflectance from drought and control treatments were PCA, FLDA, and SLDA [32]. FLDA and PCA are closely related because they are both linear; however, the method of learning in PCA is unsupervised, while it is supervised in FLDA. The PCA finds the direction of the largest variations without paying attention to the class structure. PCA minimizes the mean square error between observed and predicted vectors. On the other hand, FLDA maximizes the ratio between or within classes and discriminates against the class structure by maximizing the distance and minimizing the variation between classes. PCA and FLDA are intuitive to understand and have shown to be effective in preserving discrimination features in subtly different classes. The samples within each class have the smallest possible scatter at maximum ratio and the most distance between the classes.



The classification analysis was done for the entire set of bands (350–2150 nm) and a range of bands (350–1000 nm) to understand the utilities of the small number of bands to classify RKN and drought stressors. The choice of 350–1000 nm stemmed from the fact that cost-effective, commercially available drone mountable hyperspectral sensors cover this region. Temporal misalignment experiments were conducted to determine if the information contained in hyperspectral data is sufficient to train a ML model with one date and test it later. This analysis will be helpful in deciding on the changes in leaf spectrum between days after stresses and reduce the efforts of ground truth acquisition. Classification accuracy for every four traits was derived, and the OA was compared with the Kappa statistics [49].





3. Results and Discussion


3.1. Physiological Traits


Reduced water transportation from the root to the shoot may cause DS in plants and limit nutrient flow [50]. Unlike DS, there is little information on the effects of nematode parasitism on cotton physiology [7]. The cultivar and treatment were significantly varied (p < 0.05) for both pigment and physiological traits except for chlorophyll and NBI in year 2. The chlorophyll content is a valuable screening proxy to detect stress effects and plant health [51]. In this study, the magnitude of reduction for chlorophyll and NBI were higher in ‘M8’ compared to ‘Rk-Rn-1’ in year 1 (Figure 1A,C). RKN stresses ‘M8’ plants showed significant (p < 0.05) reduction in chlorophyll and NBI compared to control in year 1. Nematodes that live in RKN-infected plant roots consume a portion of the nutrients that are supplied to the plants. As reported in other studies, this could cause nutrient stress in plants, ultimately results in low leaf nitrogen [25,52]. The nematode entry into ‘Rk-Rn-1’ roots had minimal effect on transpiration and stomatal conductance compared to the DS, as the reduction in transpiration and stomatal conductance due to DS and DS + RKN stresses were statistically significant (p < 0.05). A similar observation was also observed in the previous research [7]. Maintaining optimum transpiration under stress is a good indication of normal stem water flux. The reduced transpiration on nematode-infected plants during high evaporative demand suggests a higher hydraulic resistance than the control plants [23]. In this study, the genotype ‘Rk-Rn-1’ maintained relatively high transpiration and stomatal conductance compared to genotype ‘M8’, indicating that the RKN-resistant genotype has less hydraulic resistance than the RKN-susceptible genotype.



The DS had a substantial negative effect on leaf functional parameters in both genotypes; however, the stressors had a higher impact on the ‘M8’ genotypes than the ‘Rk-Rn-1’. Regardless of DS or RKN, traits closely related to plant–water transport (transpiration and stomatal conductance), rather than other traits (pigments), are clearly depicting the negative influence on plant health. These findings demonstrated that DS induced changes in water loss could further amplify [53] the impact of RKN infection regardless of the plant’s sensitivity to nematode stress. Several studies reported that DS decreases leaf chlorophyll content in various crops [54,55]. We found a similar reduction in ‘Rk-Rn-1’ chlorophyll content in response to DS; however, no such decremental pattern was observed when the drought coincided with RKN stress. Based on this observation, we anticipate that RKN stress-induced galls act as a nutrient sink that redirects some nutrients in the RKN-resistant cotton cultivar [22], concealing the detrimental effect caused by DS on chlorophyll content.



Both genotypes and treatments showed markable variation for the chlorophyll content, NBI, transpiration and stomatal conductance measured at various growth stages (16, 24, 32, 46, 53, and 72 days after inoculation) in year 2 (Figure S1 and Figure 2). Despite differences in pigments and physiology between genotypes and treatments, we can see a clear decreasing pattern in chlorophyll and NBI from 16 to 72 days after stress (Figure S1A,B). The reduction in chlorophyll content was about 45% in 72 days after stress compared to 16 days after stress treatment, when averaged across genotypes and treatments (Figure S2A,B). Our results imply that physiology parameters, rather than pigments, have the ability to distinguish DS and DS + RKN stressed plants from control plants. There was precise separation observed under RKN stress since the reduction depends on the cultivars’ sensitivity. Overall, the genotype ‘Rk-Rn-1’ maintained a better physiological status compared to ‘M8’.




3.2. Biomass


Both physiological and biochemical parameters influence leaf photosynthesis, which ultimately determines the biomass accumulation in plants [56,57]. Any disruption in these parameters by single or multiple stresses can cause a significant reduction in biomass production [14,58]. Under control condition, the genetic potential of both genotypes was similar for shoot dry weight (Figure 3). The shoot dry weight was significantly reduced in response to both individual and combined stresses (p < 0.05) compared to their control counterparts (Figure 3) except under RKN stress in year 2 (Figure 3B).



The genetic potential of ‘M8’ for root growth was about one-fold greater than that of the genotype ‘Rk-Rn-1’ under control (Figure S3), but when ‘M8’ was exposed to RKN stress, its total root length was significantly reduced (p < 0.05). For example, the nematode stressed genotype ‘Rk-Rn-1’ increased its total root length by 4% and 20% of its root dry weight compared to the control. RKN-infected plants seem to be momentarily investing more in their root growth in response to RKN treatment [59]. It is conceivable that the increased root length and root dry weight in ‘Rk-Rn-1’ is a form of insurance, compensating for a temporary loss of functionality in infected roots [60]. In response to RKN, the genotype ‘M8’ decreased its total root length (50%) and root dry weight (36%). Unlike root length, root dry weight did not differ between genotypes under RKN stress. This could be due to higher sensitivity of ‘M8’ to RKN stress that possibly increased the number of galls formed, thereby increasing its root dry weight [61] as equal to that of ‘Rk-Rn-1’.



Though both genotypes produced less shoot dry weight in response to RKN stress, the magnitude of reduction in shoot dry weight was three-fold higher in ‘M8’ (70%) than ‘Rk-Rn-1’ (24%) in year 1, whereas the reduction in response to RKN in year 2 was mini-mal for ‘Rk-Rn-1’ (4%) and ‘M8’ (11%). DS and DS + RKN had a substantial negative effect on shoot biomass in both ‘Rk-Rn-1’ (31% and 29%) and ‘M8’ (36% and 50%) (Figure 3B). Studies suggested that RKN stress in cotton reduces water flow in the plant, causing temporary wilting similar to DS [10,22]. The current study results generally suggest that the quantitative differences in the variables affected (shoot and root traits) and the magnitude of effects caused by the stressors are not identical.




3.3. Variation in Spectral Reflectance in Response to Stressors


Overall accuracy in the 0–100% range is often used to assess classifier performance, class accuracies, and Κappa statistics. A Κappa value ≤ 0 indicates no agreement, 0.01–0.20 as none to slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect agreement [62].



The leaf reflectance signatures measured at 10, 30, and 60 days after stress in year 1 were classified using ML with two classes (RKN stress and control) with PCA, FLDA, and SLDA, which had a best overall OA of 95% (Kappa = 0.89) (Table 1). Similarly, the leaf reflectance signatures measured at 16, 24, 32, 46, 53, and 72 days after stress in year 2 were classified using ML with four and eight classes with the three-dimensionality reducers, with the best OA of 99% (Kappa = 0.96) and 98% (Kappa = 0.97), respectively (Table 2 and Table 3). The Kappa values ranged from 0.84 to 0.96 in year 1 and from 0.91 to 0.98 in year 2, indicating the robustness and reliability of treatment classification.



The above-mentioned experiments were conducted with two sets of hyperspectral bands, (1) 350–1000 nm; (2) 350–2500 nm; the OA and Kappa in both sets of experiments (Table 4) were found to be excellent. The differences between classification accuracies are more minor compared to complementary treatments with all the spectral bands in year 1. The ability of ML to classify bands in 350–1000 nm demonstrates that RKN infection and DS symptoms may be mapped at the field level with a commercially available drone mountable hyperspectral sensor.



The performance of the ML classifier with three-dimensionality reduction approaches were tested under two degrees of temporal misalignment between training and testing condition. This helps in understanding the effectiveness of ML classifiers when trained and tested with data collected at various plant growth stages during the cropping season [32]. All spectral signatures measured at 10 days after stress were used to train the ML classifier, which is tested on all spectral signatures obtained at 30 and 60 days after stress in year 1. In year 2, the spectral signatures recorded on 16 days after stress served as training data, which was then tested on the remaining spectral signatures collected on various days after stress. When all the bands were used for training, SLDA showed the best classification accuracies for both ‘Rk-Rn-1’ and ‘M8’. With SLDA, an OA of more than 82% was recorded, with Kappa ranging from 0.63–0.96. With PCA and FLDA, the accuracies were very low. When only a part of the spectral bands (350–1000 nm) was employed to learn ML, overall accuracies and Kappa statistics were decreased. Among the dimensionality reducers, SLDA produced the best accuracies for 350–2500 nm spectral bands and inconclusive results when bands in the 350–1000 nm range were used. A significant confusion between RKN and DS was observed with year 2 data resulting in smaller OA and Kappa with other dimensionality reducers.



Based on the experiments, we observed that RKN stress can be detected at an early stage (10 days after inoculation) from spectral bands in 350–1000 nm and 350–2500 nm by using a basic statistical classifier like ML with a dimensionality reducer. Further experiments need to be conducted to evaluate the ability to detect RKN stress earlier than 10 days after stress. Among the dimensionality reducers, PCA and SLDA work better. Experimental analysis showed that spectral bands in the visual near infrared (VNIR) region (350–1000 nm) are good enough to achieve excellent (>93% OA and Kappa > 0.95) classification accuracy. Temporal alignment experiments showed that RKN stress alone could be detected from ML classifier trained using the data collected at an earlier date. However, when trained with RKN and DS, results are subpar (OA = 60% or less). Based on year 2 results, we observe that both RKN and DS may be successfully differentiated from the control group with excellent OA with VNIR and 350–2500 nm bands. Additional studies are necessary to evaluate the classification accuracy in a larger number of the crop species and to test their robustness under different environmental conditions. In a future study, we intend to repeat these experiments again in a field using a drone-mounted hyperspectral sensor to determine the specific region of the spectral profile that is most informative for predicting various biotic and abiotic stresses.





4. Conclusions


In this study, the genotypes ‘Rk-Rn-1’and ‘M8’ showed differential responses to DS, RKN, and DS + RKN. The magnitude of reduction in response to all three stressors was relatively higher in ‘M8’ than ‘Rk-Rn-1’. The impact of stressors on plant growth followed DS + RKN > DS > RKN. Based on the results, stomatal conductance can be used to distinguish DS and combined DS + RKN stressed plants from non-stressed plants. Though ‘Rk-Rn-1’ performed better than ‘M8’ under RKN stress, its genetic potential under drought could be improved to perform better under DS + RKN stress. Leaf reflectance properties exhibited a significant difference between individual stress treatments, indicating that the hyperspectral sensor data can be used to discriminate the nematode infected plants from the drought-stressed plants. The hyperspectral reflectance properties could be used for phenotyping cotton genotypes for RKN, DS or combined stress tolerance after validating under field conditions. Our study reveals that hyperspectral and physiological changes in response to RKN and DS could help diagnose plant health before the plant’s visual symptoms appears. In addition, developing cotton varieties with improved tolerance to combined biotic and abiotic stresses is essential to sustain production under varied nematode-infected fields coupled with low rainfall. Furthermore, the methodology used in this study could be adapted to explore different biotic and abiotic stress interactions in cotton and other crops.
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Figure 1. Drought and nematode effects on chlorophyll content (A,B) and nitrogen balance index (C,D) of cotton genotypes (Rk-Rn-1 and M8) measured under control (CNT), drought stress (DS), nematode stress (RKN), and DS + RKN combination in 2020 (A,C) and 2021 (B,D). Vertical bars denote mean ± SE. Means followed by a common letter are not significantly different by Duncan’s multiple range test at the 5% level of significance. 






Figure 1. Drought and nematode effects on chlorophyll content (A,B) and nitrogen balance index (C,D) of cotton genotypes (Rk-Rn-1 and M8) measured under control (CNT), drought stress (DS), nematode stress (RKN), and DS + RKN combination in 2020 (A,C) and 2021 (B,D). Vertical bars denote mean ± SE. Means followed by a common letter are not significantly different by Duncan’s multiple range test at the 5% level of significance.



[image: Remotesensing 14 04021 g001]







[image: Remotesensing 14 04021 g002 550] 





Figure 2. Drought and nematode treatments effects on (A) transpiration (mmol m−2 s−1); (B) stomatal conductance (mmol m−2 s−1) of cotton genotypes (Rk-Rn-1 and M8) measured under control (CNT), drought stress (DS), nematode stress (RKN), and DS + RKN combination in 2021. Vertical bars denote mean ± SE. Means followed by a common letter are not significantly different by Duncan’s multiple range test at the 5% level of significance. 
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Figure 3. Drought and nematode effects on shoot dry weight (A,B) of cotton genotypes (Rk-Rn-1 and M8) measured under control (CNT), drought stress (DS), nematode stress (RKN), and DS + RKN combination in 2020 (A) and 2021 (B). Vertical bars denote mean ± SE. Means followed by a common letter are not significantly different by Duncan’s multiple range test at the 5% level of significance. 
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Table 1. Classification accuracies for a two-class problem (M8 vs. Rk-Rn-1) using leaf spectral reflectance information between 350–1000 nm and 350–2500 nm measured at 10, 30, and 60 days after stress treatment in 2020.
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Days after Stress

	
Class Accuracy

	
M8

	
Rk-Rn-1




	
PCA

	
SLDA

	
FLDA

	
PCA

	
SLDA

	
FLDA






	

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm




	
10

	
Control

	
96

	
96

	
100

	
92

	
80

	
68

	
100

	
100

	
100

	
88

	
72

	
52




	
RKN

	
96

	
92

	
96

	
100

	
68

	
32

	
96

	
100

	
96

	
92

	
52

	
68




	
OA

	
96

	
94

	
98

	
96

	
74

	
50

	
98

	
100

	
98

	
90

	
62

	
60




	
Kappa

	
0.92

	
0.88

	
0.96

	
0.92

	
0.48

	
0.0

	
0.96

	
1.0

	
0.96

	
0.80

	
0.24

	
0.20




	
30

	
Control

	
95

	
100

	
95

	
95

	
95

	
57

	
96

	
100

	
98

	
92

	
72

	
4




	
RKN

	
96

	
96

	
100

	
100

	
64

	
72

	
100

	
96

	
100

	
88

	
80

	
76




	
OA

	
96

	
98

	
98

	
94

	
78

	
65

	
98

	
98

	
98

	
90

	
76

	
40




	
Kappa

	
0.91

	
0.96

	
0.96

	
0.87

	
0.57

	
0.29

	
0.96

	
0.96

	
0.96

	
0.92

	
0.52

	
−0.20




	
60

	
Control

	
87

	
87

	
93

	
93

	
53

	
40

	
100

	
96

	
96

	
100

	
84

	
80




	
RKN

	
100

	
100

	
100

	
100

	
84

	
84

	
96

	
96

	
96

	
96

	
88

	
80




	
OA

	
95

	
95

	
98

	
98

	
73

	
68

	
98

	
96

	
96

	
98

	
86

	
80




	
Kappa

	
0.89

	
0.89

	
0.89

	
0.95

	
0.39

	
0.26

	
0.96

	
0.92

	
0.92

	
0.96

	
0.72

	
0.80








PCA = Principal component analysis; SLDA = Stepwise linear discriminant analysis; FLDA = Fisher’s linear discriminant analysis; OA = Overall accuracy.
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Table 2. Classification accuracies for a four-class problem (control, drought stress (DS), root–knot nematode (RKN) stress, and DS + RKN stress combination) using leaf spectral reflectance information between 350–1000 nm and 350–2500 nm measured of two cotton genotypes (M8 and Rk-Rn-1) at 32, 39, 46, 53, and 72 days after stress treatment in 2021.
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Days after Stress

	
Class Accuracy

	
M8

	
Rk-Rn-1




	
PCA

	
SLDA

	
FLDA

	
PCA

	
SLDA

	
FLDA






	

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm




	
32

	
Control

	
96

	
96

	
96

	
98

	
96

	
98

	
96

	
98

	
94

	
100

	
100

	
100




	
RKN

	
100

	
100

	
95

	
98

	
100

	
91

	
100

	
100

	
98

	
96

	
89

	
98




	
DS

	
100

	
94

	
83

	
85

	
100

	
96

	
94

	
98

	
92

	
96

	
98

	
94




	
DS + RKN

	
98

	
100

	
98

	
100

	
98

	
93

	
98

	
100

	
98

	
100

	
85

	
89




	
OA

	
99

	
96

	
93

	
90

	
99

	
97

	
96

	
98

	
95

	
95

	
92

	
92




	
Kappa

	
1.0

	
0.97

	
0.90

	
0.93

	
1.0

	
0.92

	
0.98

	
0.99

	
0.94

	
0.97

	
0.90

	
0.93




	

	
Control

	
98

	
98

	
100

	
96

	
100

	
100

	
98

	
94

	
100

	
96

	
100

	
100




	
39

	
RKN

	
98

	
98

	
100

	
100

	
94

	
94

	
100

	
100

	
100

	
100

	
91

	
92




	
DS

	
100

	
100

	
94

	
89

	
98

	
98

	
98

	
98

	
94

	
96

	
96

	
92




	
DS + RKN

	
98

	
98

	
98

	
98

	
94

	
93

	
98

	
98

	
100

	
100

	
98

	
98




	
OA

	
99

	
98

	
98

	
95

	
97

	
95

	
99

	
97

	
98

	
97

	
96

	
94




	
Kappa

	
1.0

	
0.98

	
0.97

	
0.94

	
1.00

	
0.97

	
0.98

	
0.97

	
0.98

	
0.97

	
0.95

	
0.94




	

	
Control

	
98

	
98

	
96

	
100

	
100

	
100

	
98

	
98

	
96

	
98

	
100

	
100




	
46

	
RKN

	
100

	
98

	
80

	
83

	
94

	
96

	
98

	
98

	
100

	
100

	
88

	
94




	
DS

	
99

	
100

	
100

	
100

	
94

	
95

	
98

	
98

	
91

	
86

	
98

	
98




	
DS + RKN

	
99

	
99

	
98

	
96

	
98

	
99

	
100

	
100

	
98

	
100

	
94

	
94




	
OA

	
99

	
98

	
94

	
96

	
96

	
93

	
99

	
98

	
96

	
94

	
95

	
95




	
Kappa

	
1.0

	
0.98

	
0.92

	
0.93

	
0.90

	
0.96

	
0.98

	
0.98

	
0.95

	
0.94

	
0.93

	
0.95




	

	
Control

	
98

	
96

	
96

	
94

	
100

	
100

	
98

	
98

	
98

	
94

	
100

	
100




	
53

	
RKN

	
98

	
98

	
100

	
100

	
92

	
89

	
100

	
98

	
100

	
100

	
89

	
89




	
DS

	
98

	
98

	
82

	
94

	
98

	
96

	
98

	
97

	
94

	
94

	
96

	
94




	
DS + RKN

	
100

	
100

	
98

	
100

	
96

	
98

	
100

	
98

	
98

	
98

	
94

	
96




	
OA

	
99

	
97

	
93

	
97

	
97

	
93

	
99

	
98

	
98

	
95

	
95

	
94




	
Kappa

	
1.0

	
0.97

	
0.91

	
0.96

	
1.0

	
0.94

	
0.99

	
0.97

	
0.97

	
0.95

	
0.93

	
0.93




	

	
Control

	
98

	
98

	
94

	
94

	
93

	
96

	
98

	
98

	
96

	
98

	
98

	
100




	
72

	
RKN

	
100

	
98

	
97

	
88

	
91

	
94

	
100

	
98

	
97

	
100

	
93

	
94




	
DS

	
88

	
98

	
80

	
94

	
93

	
96

	
88

	
98

	
78

	
86

	
89

	
96




	
DS + RKN

	
100

	
100

	
100

	
98

	
92

	
96

	
100

	
100

	
97

	
100

	
93

	
100




	
OA

	
96

	
97

	
92

	
93

	
92

	
88

	
96

	
99

	
91

	
96

	
93

	
98




	
Kappa

	
0.95

	
0.98

	
0.89

	
0.91

	
0.90

	
0.94

	
0.95

	
0.98

	
0.87

	
0.94

	
0.91

	
0.97








PCA = Principal component analysis; SLDA = Stepwise linear discriminant analysis; FLDA = Fisher’s linear discriminant analysis; OA = Overall accuracy.
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Table 3. Classification accuracies on an eight-class problem (control vs. drought stress vs. RKN stress vs. genotypes) using leaf spectral reflectance information between 350–1000 nm and 350–2500 nm of two cotton genotypes (M8 and Rk-Rn-1) measured at 32, 39, 46, 53, and 72 days after stress treatment in 2021.
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Days after Stress/

Class Accuracy

	
PCA

	
SLDA

	
FLDA




	

	
32

	
39

	
46

	
53

	
72

	
32

	
39

	
46

	
53

	
72

	
32

	
39

	
46

	
53

	
72






	
Wavelengths (350–1000 nm)

	
M8–DS + RKN

	
92.6

	
98.0

	
98.0

	
95.2

	
97.8

	
94.3

	
100

	
96.2

	
96.2

	
97.8

	
100

	
100

	
100

	
100

	
100




	
M8–RKN

	
97.9

	
98.0

	
98.0

	
98.0

	
100

	
100

	
98.0

	
100

	
100

	
100

	
87.7

	
92.5

	
92.5

	
92.5

	
88.0




	
Rk-Rn-1–DS + RKN

	
98.0

	
100

	
98.0

	
100

	
90.0

	
92.5

	
96.1

	
98.0

	
94.3

	
79.0

	
100

	
98.0

	
98.0

	
98.0

	
100




	
Rk-Rn-1–RKN

	
98.0

	
98.0

	
100

	
98.0

	
100

	
98.0

	
96.1

	
96.0

	
98.0

	
97.4

	
100

	
100

	
100

	
98.0

	
97.8




	
M8–DS

	
100

	
96.0

	
98.0

	
100

	
95.7

	
98.0

	
96.1

	
95.7

	
96.0

	
99.8

	
94.2

	
94.3

	
90.9

	
94.3

	
95.7




	
M8–control

	
97.8

	
98.0

	
100.0

	
94.2

	
95.7

	
100

	
100

	
94.1

	
96.0

	
97.8

	
95.4

	
97.9

	
100.0

	
97.9

	
89.8




	
Rk-Rn-1–DS

	
98.0

	
98.0

	
98.0

	
98.0

	
97.7

	
98.0

	
100

	
96.1

	
98.0

	
97.7

	
98.0

	
98.0

	
98.0

	
98.0

	
95.5




	
Rk-Rn-1–control

	
98.0

	
98.0

	
98.0

	
98.0

	
97.8

	
98.0

	
100

	
98.0

	
100

	
97.8

	
96.2

	
98.0

	
98.0

	
98.0

	
100




	
OA

	
98.0

	
98.0

	
98.5

	
97.8

	
96.7

	
97.2

	
98.3

	
96.8

	
97.3

	
95.0

	
96.2

	
97.3

	
97.0

	
97.0

	
95.6




	
Kappa

	
0.97

	
0.98

	
0.98

	
0.97

	
0.96

	
0.97

	
0.98

	
0.96

	
0.97

	
0.94

	
0.96

	
0.97

	
0.97

	
0.97

	
0.95




	
Wavelengths (350–2500 nm)

	
M8–DS + RKN

	
92.6

	
100

	
96.2

	
96.2

	
97.8

	
95.2

	
100

	
96.2

	
96.2

	
97.8

	
100

	
100

	
100

	
100

	
100




	
M8–RKN

	
97.8

	
100

	
97.9

	
98.0

	
100

	
100

	
98.0

	
100

	
100

	
100

	
87.7

	
94.2

	
92.5

	
92.5

	
88.2




	
Rk-Rn-1–DS + RKN

	
98.0

	
100

	
96.1

	
100

	
88.2

	
89.3

	
96.0

	
98.0

	
94.3

	
83.3

	
100

	
98.0

	
98.0

	
98.0

	
100




	
Rk-Rn-1–RKN

	
96.2

	
98.0

	
98.0

	
96.2

	
97.7

	
98.0

	
96.0

	
96.0

	
98.0

	
97.5

	
100

	
100

	
100

	
98.0

	
97.8




	
M8–DS

	
100

	
94.3

	
100

	
100

	
100

	
98.0

	
96.0

	
95.7

	
100

	
97.8

	
94.2

	
94.3

	
90.9

	
94.3

	
97.8




	
M8–control

	
93.8

	
100

	
100

	
98.0

	
95.7

	
97.7

	
100

	
94.1

	
100

	
100

	
95.4

	
97.9

	
100

	
95.9

	
93.6




	
Rk-Rn-1–DS

	
100

	
98.0

	
96.1

	
98.0

	
97.8

	
98.0

	
98.0

	
96.1

	
98.0

	
97.8

	
98.0

	
98.0

	
98.0

	
98.0

	
93.3




	
Rk-Rn-1–control

	
98.0

	
98.0

	
98.0

	
98.0

	
100

	
98.0

	
100

	
98.0

	
100

	
97.8

	
96.2

	
100

	
98.0

	
98.0

	
100




	
OA

	
97.0

	
98.0

	
97.8

	
98.0

	
96.9

	
96.7

	
98.0

	
96.8

	
98.3

	
96.1

	
96.2

	
97.8

	
97.0

	
96.8

	
96.1




	
Kappa

	
0.97

	
0.98

	
0.97

	
0.98

	
0.97

	
0.96

	
0.98

	
0.96

	
0.98

	
0.96

	
0.96

	
0.97

	
0.97

	
0.96

	
0.96








RKN = Root–knot nematode; PCA = Principal component analysis; SLDA = Stepwise linear discriminant analysis; FLDA = Fisher’s linear discriminant analysis; OA = Overall accuracy.
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Table 4. Temporal misalignments in a two-class problem (M8 vs. Rk-Rn-1) using leaf spectral reflectance information between 350–1000 nm and 350–2500 nm of cotton genotypes measured at 10, 30, and 60 days after stress treatment in 2020.
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Days after Stress

	
Class Accuracy

	
M8

	
Rk-Rn-1




	
PCA

	
SLDA

	
FLDA

	
PCA

	
SLDA

	
FLDA






	

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm

	
350–1000 nm

	
350–2500 nm




	
10 vs. 30

	
Control

	
39

	
52

	
70

	
78

	
65

	
35

	
56

	
40

	
96

	
36

	
32

	
48




	
RKN

	
100

	
100

	
100

	
100

	
100

	
80

	
100

	
100

	
100

	
100

	
100

	
100




	
OA

	
70

	
77

	
85

	
90

	
83

	
58

	
78

	
70

	
98

	
68

	
66

	
74




	
Kappa

	
0.44

	
0.53

	
0.70

	
0.90

	
0.66

	
0.15

	
0.56

	
0.40

	
0.96

	
0.36

	
0.32

	
0.48




	
10 vs. 60

	
Control

	
44

	
55

	
60

	
30

	
25

	
30

	
48

	
36

	
88

	
80

	
24

	
40




	
RKN

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
80




	
OA

	
76

	
80

	
82

	
69

	
67

	
69

	
74

	
68

	
94

	
90

	
62

	
60




	
Kappa

	
0.48

	
0.58

	
0.63

	
0.32

	
0.27

	
0.32

	
0.48

	
0.36

	
0.88

	
0.8

	
0.24

	
0.20








PCA = Principal component analysis; SLDA = Stepwise linear discriminant analysis; FLDA = Fisher’s linear discriminant analysis; OA = Overall accuracy.
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