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Abstract: Global Positioning System (GPS) has been confirmed to be a feasible tool to measure
displacement of civil engineering structures. In this paper, we report on an analysis of annual
deformations of a pumped-storage power station dam using historical GPS observations. Data
spanning more than nine years are resolved using the GAMIT (GPS at MIT) software, and a GPS
time-series method is employed to extract linear trends and annual cycle signals. It is evident that
the monument located on the main dam has a linear trend, with rates of 1.0 mm/yr and 1.8 mm/yr
in east and up directions, respectively. Annual cycles with amplitudes larger than 0.5 mm are
shown in coordinate components at all monitoring stations. However, the annual amplitude can
be 30–84% lower when a monitoring station whose monument materials and height are similar to
other monitoring stations is chosen as the reference station. This suggests that differential thermal
expansion of monuments could be 30% to 80% and even higher in baseline time series. A spurious
offset style annual signal with 5 mm amplitude that is highly correlated with annual temperature
variance is observed in the east–west direction of the monitoring station located at the east side of the
reservoir. This suggests that upper ground layer movement correlated with temperature could be
responsible for these annual cycles. Meanwhile, no periodic correlations are observed between the
water level data and the baseline time series.

Keywords: short-baseline GPS time series; dam deformation monitoring network; annual and
semiannual signals; sub-daily signals and multipath; thermal expansion

1. Introduction

Dams are important hydraulic infrastructures and play a vital role in irrigation, hy-
droelectricity generation and flood control. The performance of these structures under
operational and environmental loads may deteriorate over time due to aging, floods, earth-
quakes and other factors. Dams may collapse, leading to heavy economic and life losses, if
they were not well managed and maintained [1,2]. Therefore, the establishment of a Struc-
tural Health Monitoring (SHM) system is extremely important to monitor the performance
of dams and to help asset owners make timely maintenance decisions.

Compared with traditional deformation monitoring technologies, Global Navigation
Satellite System (GNSS) has the advantages of high sampling rate, real-time and contin-
uous severability, and high-precision monitoring. It has been a feasible tool to monitor
the health conditions of dams [3–12]. Behr et al. and Hudnut and Behr applied Global
Positioning System (GPS) technology in dam deformation monitoring and concluded that
GPS can achieve precisions of 4–6 mm in horizontal and 12 mm in vertical components,
which is sufficient for dam health monitoring [3,4]. Kalkan utilized GPS and conventional
measurement to investigate deformations of the Ataturk dam and found that GPS had a
comparable accuracy (<±1 cm) with conventional measurement data [9]. In the follow-
ing research, Xi et al. employed GPS observations based on water-level fluctuation and
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analyzed the correlation of water level and deformation by monitoring time series of a
dam [13]. Xiao et al. compared the performance of GPS and BeiDou Navigation Satellite
System (BDS) deformation monitoring application of a dam [14].

With respect to deformation pattern analysis of dams, self-weight, hydrostatic pressure
and temperature variations could be the principal factors that cause deformation of dams.
Pytharouli and Stiros applied a power-spectrum method to process the levelling and
water-level data to reveal the correlations between long-term deformation results and
water-level fluctuation, which is not observable in the time domain [15]. Using a high-
order polynomial fitting method, Behr, and Hudnut and Behr found that movement of
monitoring stations was highly correlated with the local temperature and probably had a
negligible relationship with water-level variation [3,4]. Bayrak investigated the relationship
of the reservoir water level and displacement on a dam observed via a total station. They
revealed that variation of reservoir water level is an important factor for Yamula Dam
deformation [16]. However, no significant relationship was found between the reservoir
water level and radial displacements of the Ataturk dam [9]. Time-series analysis methods
such as polynomial fitting [17–19], autoregressive analysis (AR) [20], principal component
analysis (PCA) [21], empirical mode decomposition (EMD) [22], complementary ensemble
empirical mode decomposition (CEEMD) [23], etc., have been adopted to model seasonal
oscillations in GNSS time series and obtain an internal relationship of deformation time
series with temperature and water-level data to build prediction models.

In this study, we aim to isolate the real annual motion of monitoring stations of the
Xilongchi Dam and investigate the movement sources, such as temperature and water-level
variations, from historical GPS observations using GPS time-series analysis. Since the
distance between monitoring stations and the reference station is short, a short-baseline
GPS network is the best choice for dam deformation monitoring. Compared with the
GPS time series of large-scale deformation-monitoring networks in geophysical research,
double-difference (DD) technology can effectively eliminate satellite orbit-related errors
and reduce atmospheric delays and geophysical effects such as environmental loading, non-
tidal oceanic loading, etc., to achieve a high-precision solution. However, in a short-baseline
network, site-specific effects are the vital issue restricting monitoring of real movement
of observed objects, and these effects include monument and bedrock thermal expansion,
multipath effects and mismodeled antenna phase center variances [24,25]. Thus, in this
study, we separate annual deformation signals in GPS coordinate time series and explain
annual motion sources on the Xilongchi Dam by comparing them with temperature data
and water-level variations.

The rest of the paper is organized as follows. In Section 2, we introduce the test bed,
Xilongchi Dam, the detailed station set-ups of the GPS deformation monitoring system
and information related to water level and temperature datasets. The GPS data-processing
method and GPS time-series method adopted in this paper are also included in Section 2.
In Section 3, we present the baseline time series and model the linear trend and periodic
signals. In Section 4, temperature and water-level data are compared with the baseline time
series to investigate the source of annual signals. In Section 5, the conclusions of this study
are presented.

2. Materials and Methods
2.1. Materials
2.1.1. Introduction of Xilongchi Dam

The Xilongchi Pumped-Storage Power Station is located in Xinzhou, Shanxi Province,
China, where the geologic condition is relatively stable and is not in a seismic zone. The
geographical location of the Xilongchi Reservoir is shown in Figure 1. The head reservoir
was formed by excavating up-hill land with a height of 1460 m above mean sea level, and it
has a crest length of 401.6 m and dam height of 50 m. The capacity of the reservoir is about
4.94 million m3, and the working depth is 25.5 m. A main dam and an auxiliary dam are
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constructed on the southern and northern sides of the reservoir, respectively. A rock-fill
dam with asphalt–concrete facing is used in the head reservoir dam.
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Figure 1. Geographical location of the Xilongchi Reservoir.

2.1.2. GPS Station Layout

A short-baseline GPS network is set up around the head reservoir with two base
stations (TN01 and TN02) and five monitoring stations (L022, L132, S171, S191 and S071).
L022 and L132 are located on the main dam and an auxiliary dam, respectively. The layout
of the stations is shown in Figure 2. The two base stations are constructed at two stable
places with an open viewing environment on the northeast corner (TN02) and southeast
corner (TN01) of the reservoir. Each base station has a concrete pillar monument, which
consists of reinforced concrete set within a tubular concrete form. A steel sheet was also
applied to cover the pillar to maintain the safety of the pillar and to prevent deformation
caused by direct solar radiation. The levelling mount and GPS antenna are secured to a
stainless-steel pin that is anchored within the top of the pillar. The foundation of the pillar
is a cuboid concrete pillar anchored in bedrock. The five monitoring stations are mounted
around the reservoir. Each of them has a reinforced cuboid concrete pillar and is 1.3 m
high. It should be noted that the main dam monitoring site L022 is connected to the dam
body, which is anchored in bedrock. At each station, a TRIMBLE NETRS receiver and a
CHOKE RING (TRM29659.00) antenna made by the Trimble in California, America, are
installed similarly to the stations used for the International GNSS Service (IGS). Real-time
GPS observations at each site are recorded at 5 s intervals and transferred through optical
fiber in Radio Technical Commission for Maritime Services (RTCM) format to the server
24 h a day continuously. Before data processing, RTCM format data need to be transferred
to the receiver independent exchange format (RINEX).

In this study, the data acquired from 1 July 2009 (in decimal year 2009.52) to 1 August 2018
(in decimal year 2018.58) are processed to generate deformation time series. The coordinates
of TN02 are fixed in the data processing as the reference station, and short baselines are
formed between monitoring stations (including TN01 and TN02). The detailed information
of baselines is shown in Table 1. The long-term stability of reference stations has been
analyzed by Liu et al. and Liu [26,27]. No obvious non-tectonic trends were found from a
comparison between TN01/TN02 and nearby CORS (Continuously Operating Reference
System) stations and IGS stations. Due to hardware failures or extreme weather conditions,
data gaps occur occasionally in the time series. Table 1 presents the data integrity rate of
the baseline time series. We can see that more than 90% of the data are available for every
baseline, which meets the requirements of data integrity for time-series analysis.
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Figure 2. (a) Station layout at the head reservoir of the Xilongchi pumped-storage power station:
(b) monitoring station S071 and (c) reference station TN01.

Table 1. Baseline information for the GPS network.

Baseline N (m) E (m) U (m) Length (m) Data Integrity (%)

L022–TN02 487.95 407.59 13.91 635.94 96.40
L132–TN02 33.35 289.17 13.83 291.42 97.73
S171–TN02 56.75 565.22 13.37 568.22 92.63
S191–TN02 188.17 621.74 13.40 649.73 93.95
S071–TN02 354.00 122.69 13.33 374.90 96.06
TN01–TN02 511.67 −11.00 −1.70 511.79 97.34

2.1.3. Temperature and Water-Level Datasets

The temperature data come from Wutaishan Weather Station (~70 km from Xilongchi
Reservoir) and can be downloaded from the National Climatic Data Center (NCDC) (ftp:
//ftp.ncdc.noaa.gov/pub/data/gsod, accessed on 3 September 2019). The geographic
height of these two spots is similar. The data are available through the end of 2016 and
include maximum and minimum values with a 3 h sampling rate. The water-level data are
the daily records from the dam safety monitoring department and have centimeter-level
accuracy. Unfortunately, the water-level data are only available from 2013 to 2015.

2.2. Methods
2.2.1. GPS Data Processing

We processed the GPS data using the GAMIT (GPS at MIT) software package [28].
With the GAMIT 10.6 software, the daily static baseline solutions were obtained. Since the
baseline lengths of our dataset were all shorter than 700 m, tropospheric and ionospheric
delays and any common unmodeled components could be eliminated to a negligible level
with double-difference observations, which is technology that differences the observations
between sites and satellites to remove common errors. In static daily data processing,
L1 frequency data were applied to estimate site positions, and L2 frequency data were
used to help resolve cycle slips and ambiguities. The first-order difference of Melbourne–

ftp://ftp.ncdc.noaa.gov/pub/data/gsod
ftp://ftp.ncdc.noaa.gov/pub/data/gsod
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Wübbena (MW) and geometry-free (GF) combination time series were employed to detect
cycles slips, and short segments (less than 60 epochs) were deleted. Least squares estima-
tion was applied to estimate the parameters, and float ambiguities were fixed using the
bootstrapping and decision function method [29]. The satellite orbits were fixed to the IGS
final orbits, and the earth rotation and orientation parameters were not estimated. Tidal
loading was not considered either. The cutoff elevation angle was 15◦, and the sampling
interval was 30 s. The detailed data-processing flowchart and strategies are shown in
Figure 3 and Table 2.
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Table 2. GPS data processing strategies.

Model and Parameters Static Solution

Software GAMIT 10.6
Observation L1_only

Baseline processing Network solution
Estimator Least squares

Elevation cutoff 15◦

Tropospheric zenith delay (TZD) Differenced
Ionospheric delay Differenced

Sampling rate 30 s
Observation weighting model Elevation weight model

Orbit IGS final orbit (fixed)
Ambiguity resolution Bootstrapping + decision function method [29]
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2.2.2. Time-Series Analysis Method

King and Watson and King and Williams demonstrated that an annual signal can be
related to global or local geophysical signals such as hydrology and atmospheric load-
ings [30,31]. Meanwhile, daily or sub-daily signals can also propagate to 24 h solutions
to be a factor in creating annual and semiannual signals in long-term time series [31].
However, the baseline length in this study is short. More analyses are needed to identify
signal sources.

In order to better understand the characteristics of the long-period signals, the baseline
time series were fitted with a model consisting of offset, linear and harmonic terms using
the Hector software [32]. In this paper, the annual and semiannual signals were considered
in the model. In addition, since the secular trend was reducing, a three-order polynomial
was also considered. Thus, the model can be expressed as

y =
3

∑
i=0

aixi +
2

∑
j=1

(
bj sin

(
2π f jx

)
+ cj cos

(
2π f jx

))
(1)

where f j is the annul and semiannual term, and ai, bj, cj are parameters to be estimated. The
power-law noise plus white noise (PLWN) stochastic model is also estimated (a detailed
noise analysis will be carried out in the future). The fitting results are shown in Figure 4
with green lines in each time series, and the parameter esitmates are shown in Table 3. It
should be noted that the north component of baseline L022–TN02 is divided into two time
series to be estimated separately: before and after 2012. From the fitting models, the annual
signals are apparant in all components of all baselines. Several time series have semiannual
signals, espectially in the up component.
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Figure 4. Baseline coordinate time-series and fitting models (North and Up components are moved
upward and downward to distinguish the time series. Note the range of the coordinate axes of
L022–TN02 and S071–TN02 is larger than that of other baselines). The vertical cyan lines indicate
days when there was heavy snowfall and the snow cover changed the antenna phase center, resulting
in aberrant solutions in the time series. The gray slices indicate the data gaps.
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Table 3. Linear trend term (mm/yr) and annual and semiannual signal amplitude estimates (mm).

Baseline Component Linear Trend Annual
Amplitude

Semiannual
Amplitude

L022–TN02

N 1 −0.2 0.7 0.3
N 2 0.0 0.2 0.1
E 1.0 1.0 0.1
U −1.8 0.9 0.4

L132–TN02
N −0.5 0.9 0.1
E 0.0 0.3 0.0
U −0.4 0.6 0.4

S171–TN02
N −0.3 0.3 0.1
E 0.0 0.6 0.1
U 0.0 0.3 0.3

S191–TN02
N −0.2 0.5 0.1
E 0.0 0.9 0.1
U 0.2 0.6 0.4

S071–TN02
N −0.2 0.5 0.3
E −0.2 4.8 2.0
U 0.0 0.7 0.5

TN01–TN02
N −0.2 0.5 0.1
E 0.0 0.1 0.2
U 0.2 0.2 0.1

Linear trend values larger than 0.4 mm, annual amplitudes larger than 0.5 mm and semiannual amplitudes larger
than 0.3 mm are shown in bold.

2.2.3. Lomb–Scargle Periodogram Method

Due to data gaps caused by equipment failure and outliers, the commonly used fast
Fourier transform (FFT) cannot be applied in spectral analysis to measure the periodic sig-
nal characteristics. Time-series separation or imputation of missing data using interpolation
may introduce additional noise or bias or remove long-term periodicities [33,34]. As alterna-
tive methods for spectral analysis of unevenly spaced data, least-squares spectral analysis
(LSSA) [35–38] and Lomb–Scargle periodogram [39,40] are often applied to estimate the
frequency spectrum of a given time series. In this study, a Lomb–Scargle periodogram was
used to show the power spectra of the GPS time series and the temperature and water-level
time series.

The Lomb–Scargle periodogram is based on the algorithm developed by Lomb [39]
and later by Scargle [40] for spectral analysis of both evenly and unevenly distributed data.
It is equivalent to the fitting of a sine curve of the form [34]

h(t) = a· cos
(

2π

T
(t − τ)

)
+ b· sin

(
2π

T
(t − τ)

)
(2)

where t indicates time; a and b are amplitudes of the curve; T is the period and τ is time
offset. For a given time series, h(t) = hi at time ti(i = 1, . . . , N), the Lomb–Scargle P(T) for
a period T is defined as

PN(T) =
1

2σ2


[

N
∑

i=1

(
hi − h

)
cos 2π

T (ti − τ)

]2

N
∑

i=1
cos2 2π

T (ti − τ)

+

[
N
∑

i=1

(
hi − h

)
sin 2π

T (ti − τ)

]2

N
∑

i=1
sin2 2π

T (ti − τ)

 (3)

where the time offset τ is defined by
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tan
(

4π

T
τ

)
=

N
∑

i=1
sin 4π

T ti

N
∑

i=1
cos 4π

T ti

(4)

and

h =
1
N

N

∑
i=1

hi (5)

σ2 =
1

N − 1

N

∑
i=1

(
hi − h

)2

(6)

The maximum in the periodogram occurs at the same frequency that minimizes the
sum of squares of the residuals of the fit of a sine wave to the time series [34].

3. Results

The daily time series (north, east and up) of each baseline generated with the GAMIT
software are shown in Figure 4. In the figure, the cyan lines indicate days when there was
heavy snowfall and the snow cover changed the antenna phase center, resulting in aberrant
solutions in the time series. The gray slices indicate data gaps caused by equipment failures.
Outliers that exceed an absolute tolerance of 0.01 m (horizontal) and 0.015 m (vertical) from
the median or that have formal errors greater than 0.1 m have been removed from the times
series [24].

In Figure 4, periodic signals are exhibited in several components of every baseline,
and signal amplitudes may have different patterns. The maximum amplitude is shown
in the east component of S071, which has an offset style annual signal. L022 and L132
are located at the main dam and auxiliary dam, respectively. Signals with a linear trend
can be observed in some components of these two baselines, especially in the east and up
components of L022. The north component of baseline L022 also has an evident linear
trend. However, such a linear trend signal is missing from the beginning of 2012.

In Table 3, the linear trend and annual and semiannual parameters have been estimated
with (1). Monitoring station L022 has secular components of 1.0 mm/yr and 1.8 mm/yr in
east and up components, respectively, and L132 has a trend larger than 0.4 mm/yr in north
and east components. All of the baselines have annual amplitudes larger than 0.5 mm in
one or more coordinate components. S191 and S071 have annual amplitudes larger than
0.5 mm in all three components. The east component of baseline S071 has the largest annual
amplitude of 4.8 mm. As for the semiannual signals, except for TN01, all of the baselines
have amplitudes larger than 0.3 mm in the up component, but the largest of 2.0 mm is still
shown in the east component of S071.

Figures 5 and 6 show the baseline coordinate time-series power spectra and the power
spectra of the residuals after removing the fitting models. We computed the power spectra
using the Lomb–Scargle periodogram [39,40]. It reveals that signals in the annual band are
obvious, and some components of the baselines are also evident. As for the residuals, the
annual and semiannual signals are reduced to the noise level. Table 4 gives the baseline
RMS statistics before and after removing the fitting models. It shows the RMSs of all the
time series are reduced to the submillimeter level. The small RMSs of TN01–TN02 time
series indicate that the noise of the GPS daily solution is at the submillimeter level, and
the base stations are stable enough to provide the surveying datum for the deformation
monitoring system.
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Table 4. Baseline RMS statistics (station-TN02) before and after removing the fitting models.

Prefit RMS (mm) Postfit RMS (mm)

Baseline N E U N E U

L022–TN02 2.3 3.4 6.1 0.5 0.5 0.9
L132–TN02 1.4 0.5 1.6 0.5 0.4 0.5
S171–TN02 0.9 0.7 1.0 0.6 0.5 0.7
S191–TN02 0.7 0.9 0.9 0.6 0.5 0.6
S071–TN02 0.8 4.4 0.9 0.6 2.2 0.7
TN01–TN02 0.7 0.4 0.7 0.5 0.3 0.5

4. Discussion
4.1. Annual Signals

As previously mentioned, there are three candidate sources in short GPS baseline an-
nual cycle movements, including differential thermal expansion of monuments, differential
time-constant multipath, and errors in phase-center modeling of antennas [24,25]. King and
Williams and Jiang et al. found that annual signals are largely invariant to elevation cutoff
angles [24,41]. Therefore, the multipath effect has a negligible influence on the annual
signals of short baseline GPS time series. Meanwhile, in this study, all the stations were
equipped with the same antenna; hence, phase center variation (PCV) modeling errors were
out of consideration [42]. However, water-level fluctuation would be one of the important
factors to cause movement of stations. Therefore, temperature and water-level variations
were the focus of investigating the origin of signals.

Dong et al. and Yan et al. indicated that thermal expansion in monuments or bedrock
is responsible for the annual cycle of movement in the vertical component of GPS time
series [43,44]. Monument thermal expansion is mainly related to the coefficient of linear
thermal expansion of materials, the height of the monument and the variation of tem-
perature. For the two reference stations of the Xilongchi Dam deformation monitoring
network, the monument material and height are exactly identical. Therefore, the ther-
mal expansion of the monuments can be differenced by the double-difference method in
TN01–TN02. The annual and semiannual cycle movements are relatively small in the east
and up components. From Table 1, we see that all the monitoring stations share the same
monument materials, and the height differences are fairly small. Considering that the
thermal expansion of monuments between monitoring stations can also be differenced, we
selected S191 as the reference station to form baselines (station–S191) with other monitoring
stations. We processed the GPS data once again with the strategies in Table 2 to get daily
baseline solutions (Figure 7).

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 17 
 

 

series [43,44]. Monument thermal expansion is mainly related to the coefficient of linear 

thermal expansion of materials, the height of the monument and the variation of temper-

ature. For the two reference stations of the Xilongchi Dam deformation monitoring net-

work, the monument material and height are exactly identical. Therefore, the thermal ex-

pansion of the monuments can be differenced by the double-difference method in TN01–

TN02. The annual and semiannual cycle movements are relatively small in the east and 

up components. From Table 1, we see that all the monitoring stations share the same mon-

ument materials, and the height differences are fairly small. Considering that the thermal 

expansion of monuments between monitoring stations can also be differenced, we se-

lected S191 as the reference station to form baselines (station–S191) with other monitoring 

stations. We processed the GPS data once again with the strategies in Table 2 to get daily 

baseline solutions (Figure 7). 

 

Figure 7. Baseline coordinate time series and their fitting models. The symbols and ranges of coor-

dinates axes in the figure are same as those in Figure 4. In the north component of L022–S191, the 

time series were estimated starting from 2012. 

Comparing Figure 7 with Figure 4, we can see that the annual amplitudes of baselines 

are mostly reduced, and some components of baselines are even negligible, such as all 

three components of S171–S191 and the north and up components of S071–S191. However, 

some annual amplitudes, such as the east component of L132–S191, become even larger, 

and spurious signals still exist in the east component of S071–S191. 

We estimated the linear trend, annual cycles and semiannual signals of baseline sta-

tions–S191, shown in Table 5. The fitting models are also plotted in green lines in Figure 

7. Compared with the estimates in Table 3 (station–TN02), the annual amplitudes of sta-

tion–S191 were mostly 30% to 84% lower than for station–TN02, and the reduction rate of 

the large amplitudes in station–TN02 (>0.5 mm) mostly reaches up to even more than 50%. 

However, it increases for the north component of L022–S191 and the east component of 

L132–S191, and both of them show smaller amplitudes when the reference is TN02. With 

regard to the semiannual signal, the amplitudes are about 70% to 80% lower than those of 

station–TN02. 

  

Figure 7. Baseline coordinate time series and their fitting models. The symbols and ranges of
coordinates axes in the figure are same as those in Figure 4. In the north component of L022–S191, the
time series were estimated starting from 2012.



Remote Sens. 2022, 14, 4018 11 of 17

Comparing Figure 7 with Figure 4, we can see that the annual amplitudes of baselines
are mostly reduced, and some components of baselines are even negligible, such as all
three components of S171–S191 and the north and up components of S071–S191. However,
some annual amplitudes, such as the east component of L132–S191, become even larger,
and spurious signals still exist in the east component of S071–S191.

We estimated the linear trend, annual cycles and semiannual signals of baseline
stations–S191, shown in Table 5. The fitting models are also plotted in green lines in
Figure 7. Compared with the estimates in Table 3 (station–TN02), the annual amplitudes of
station–S191 were mostly 30% to 84% lower than for station–TN02, and the reduction rate
of the large amplitudes in station–TN02 (>0.5 mm) mostly reaches up to even more than
50%. However, it increases for the north component of L022–S191 and the east component
of L132–S191, and both of them show smaller amplitudes when the reference is TN02. With
regard to the semiannual signal, the amplitudes are about 70% to 80% lower than those of
station–TN02.

Table 5. Linear trend and annual and semiannual amplitude estimations (mm). Percent 1 and 2
indicate the annual and semiannual, respectively, amplitude-reducing percentage of station–S191
with respect to station–TN02. The figures in bold are the bold components in Table 3.

Baseline Component Linear Trend Annual
Amplitude

Reduced Percentage
of Annual
Amplitude

Semiannual
Amplitude

Reduced Percentage
of Semiannual

Amplitude

L022–S191
N 2 0.2 0.6 −150.8% 0.1 −48.1%
E 1.0 0.5 53.9% 0.0 58.3%
U −2.0 0.3 62.6% 0.1 80.1%

L132- S191
N −0.4 0.4 54.6% 0.1 −38.3%
E −0.2 0.6 −130.4% 0.1 −104.2%
U −0.6 0.2 60.4% 0.1 72.2%

S171- S191
N −0.2 0.2 29.2% 0.2 −38.7%
E −0.0 0.2 68.0% 0.1 11.1%
U −0.2 0.3 38.5% 0.1 69.0%

S071- S191
N 0.0 0.3 35.0% 0.2 24.6%
E −0.5 5.2 −7.4% 1.7 12.2%
U −0.0 0.1 84.2% 0.1 75.4%

The annual amplitude in the east component of L132–S191 is 0.6 mm, which is larger
than that of L132–TN02 at 0.3 mm. However, the annual amplitude of S191–TN02 is 0.9 mm.
This demonstrates that the increase of the amplitude in L132–S191 is due to the large annual
movement of S191. This is also the case for the north component of L022–S191.

According to the previous statements, if S191 is fixed, double-difference can remove the
thermal expansion of the monument to a negligible level due to the short baseline, similar
materials and the same height. The residual annual signals may likely only be related
to the movement of upper ground layers. The spurious signals in the east component
of S071 may illustrate the movement of the upper ground layer. Therefore, the annual
cycles in station–TN02 seem to be the combination of differential thermal expansion of the
monument and upper ground layers related to annual temperature variance.

Table 6 shows the RMS statistics before and after removing the fitting models. It shows
that the RMSs are mostly within 0.3–0.5 mm after removing the fitting models, which is
lower than that of station–TN02.
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Table 6. Baseline RMS (station-S191)statistics before and after removing the fitting models.

Baselines
Before Removing Fitting Models After Removing Fitting Models

N E U N E U

L022–S191 0.8 3.0 5.7 0.3 0.4 0.7
L132–S191 0.9 0.6 1.5 0.5 0.5 0.5
S171–S191 0.6 0.3 0.6 0.3 0.3 0.4
S071–S191 0.5 4.6 0.6 0.4 2.6 0.6

4.2. The Spurious Signals in the East Component of S071–TN02

The east component of S071–TN02 has an offset similar to annual signals, with an
amplitude of 4.8 mm, which is extremely larger than other baselines. Analyzing the sur-
roundings of S071, there is a slope to the east side of the station that may shelter the GPS
signals when the satellite elevation is lower than 25◦, which may cause multipath effects.
However, all three components should have a similar multipath effect disturbance [24],
not only the east component. Thus, the ~4.8 mm amplitude annual signal may relate to
temperature or water fluctuation.

As an example, Figure 8 compares water-level data (a), water data daily difference (b),
temperature data (c) and the baseline times series (d) in 2013. Firstly, the water level
variance is evident for the day of year (DOY) 1–65, 140–240 and 330–360 in 2013. This
is because of power shortages during these periods, meaning the reservoir needed to
pump and draw off water frequently to provide electricity, which caused the water level
to rise and fall. However, it seems no relationships can be seen by comparing water level
(Figure 8a), water level variation (Figure 8b) and baseline time series (Figure 8d). Even
though the east component of the baseline time series shows upward offset in the summer,
when the water level has large and frequent variance, there are still many cases for which
the offset happened in a stationary period of the water’s surface. Thus, the water level may
not be the cause of these spurious signals.

Comparing with the temperature data, we can see that when the baseline offset signal
is present, the maximum temperature is mostly larger than 10 ◦C, which is shown in purple
in Figure 8c. Therefore, we give a statistic for the temperature data and baseline time series
in the following schemes: the east component of baseline time series (ETS) from 2010–2015
is divided into three sections: ETS > 5.0 mm, 5.0 mm > ETS > −3.0 mm and ETS < −3.0 mm;
the maximum values of temperature data are divided into temperature groups as well:
T > 10 ◦C, 10 ◦C > T > 0 ◦C and T < 0 ◦C. Then, we count and calculate the percentage of
temperature groups that occurred in the controlled baseline time series groups in Table 7.

Table 7. Statistics of displacements and maximum temperatures (percentage).

Year
ETS > 5.0 mm 5.0 mm > ETS > −3.0 mm ETS < −3.0 mm

T > 10 ◦C 10 ◦C > T > 0 ◦C T < 0 ◦C T > 10 ◦C 10 ◦C > T > 0 ◦C T < 0 ◦C T > 10 ◦C 10 ◦C > T > 0 ◦C T < 0 ◦C

2010 67.89 19.27 12.84 7.25 32.61 60.14 2.63 39.47 57.89
2011 86.08 12.66 1.27 6.38 47.87 45.74 0.00 12.71 87.29
2012 86.42 12.35 1.23 8.67 38.73 52.60 0.00 16.44 83.56
2013 96.39 3.61 0.00 15.85 41.46 42.68 1.86 21.74 76.40
2014 89.13 10.87 0.00 8.06 48.39 43.55 0.00 38.64 61.36
2015 80.23 18.60 1.16 14.29 52.86 32.86 0.00 21.48 78.52

Table 7 shows that over 80 percent of the maximum temperature is higher than 10 ◦C,
and less than 2 percent and even 0 percent are lower than 0 ◦C, when the ETS is larger
than 5.0 mm. On the contrary, nearly 0 percent of the maximum temperatures are higher
than 10 ◦C when the solutions are larger than −3.0 mm. For solutions between 5.0 mm
and −3.0 mm, only in 15 percent or fewer of the cases is the maximum temperature higher
than 10 ◦C. Therefore, the spurious signals in the east component of S071–TN02 are highly
correlated with the daily temperature data. If the maximum temperature was higher than
10 ◦C, it seems that something melts to cause an 8 mm displacement in the east side of S071.
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When the maximum value is lower than 10 and the minimum value mostly lower than 0,
the baseline time series will go backwards to the other stable statement. We infer that this
could be movement correlated with the temperature of the foundation of the monument
that causes this phenomenon. More details, including materials of the foundation, need to
be gathered to confirm this in the future.
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4.3. Water Level Variation

Although the water level is dependent on the power demand of residents, leading
to active phases during the summer and winter and quiet periods in spring and autumn,
there are no apparent periodic signals from the water level data (Figure 9). However,
instantaneous changes of water level may cause corresponding movement of the stations
located at dams. Figure 10 shows an example of water level time series in a quiet period
(40 days in total from DOY 146 to 185 in 2015) and an active phase (40 days in total from
DOY 326 to 365 in 2015), and the corresponding baseline time series of L022–TN02 and
L132–TN02 are also shown. No matter whether in a quiet period or active phase, the
baseline time series on dams show no relevant movement with respect to water level
variations, even when the water level changes 20 m a day. More research may need to be
carried out to identify the relationship between water level and baseline time series.
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Figure 10. Water levels (a,c) and baseline time series (b,d) comparison during quiet and active periods.
The baseline time series of L132–TN02 are moved downward to −5 mm for clarity.

5. Conclusions

In this paper, we report on an analysis of annual deformations of a pumped-storage
power station dam using historical GPS observations. GPS data spanning more than nine
years are processed with the GAMIT software to generate static daily solutions. The time
series show that the linear trend signals for the dam monitoring stations are obvious,
with 1.0 mm/yr and 1.8 mm/yr in the east and up components, respectively, of L022, and
0.5 mm/yr and 0.4 mm/yr in the north and up components, respectively, of L132. However,
the movement rate is reducing gradually.

Seasonal cycles occur in all the baseline time series. If the baselines were formed
between the monitoring stations and the reference station TN02, amplitudes >0.5 mm can
be seen for all baselines in one or more directions. The largest amplitude is shown in the
east component of S071 at 4.8 mm. Except for TN01, the amplitudes of semiannual signals
in the up component of all the baselines are larger than 0.3 mm, and the largest is in the
east component of S071 at 2.0 mm.

Due to the fact that TN01/TN02 share the same monument materials and observation
conditions, the annual amplitudes of up components caused by monument and bedrock
thermal expansion are eliminated by the double-difference method. Similarly, S191 was
selected as the reference station, and baselines station–S191 were formed to obtain the
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daily time series. Results show that the annual amplitudes of baselines station–S191 could
be 30–84% lower than those of station–TN02. Since all the monitoring stations share the
same monument materials and height, the thermal expansion of monuments could be
differenced. This suggests that the differential thermal expansion of monuments could be
over 30% higher in short baseline time series.

The offset style annual cycle in the east component of S071 is highly correlated with
annual temperature variations. The offset style movements mostly appear when the
maximum air temperature is higher than 10 ◦C or lower than 0 ◦C. This suggests that upper
ground layer movement correlated with temperature may be responsible for these annual
cycles. More details, including materials of the foundations, need to be gathered to confirm
this in the future.

From the comparison of water level and baseline time series, no evident periodic
relations were found. Further research needs to be done to identify the relationship be-
tween them.
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