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Abstract: Lake Dianchi is one of the most eutrophic lakes in China. The decline in water quality and
the occurrence of massive algal blooms pose a significant threat to the health and environmental
safety of the water ecosystem, making Lake Dianchi a key concern for algal bloom management
in China. Obtaining the spatiotemporal dynamics of algal blooms for the longest time possible
is crucial to algal bloom management and future prediction. However, it is difficult to acquire a
long-term record of algal blooms from a single sensor in order to cover a more extended period of
eutrophication in the lake due to the limitation of the spatial and temporal resolution of the sensors.
In this study, Landsat and Moderate-Resolution Imaging Spectroradiometer (MODIS) images were
combined with the Floating Algae Index (FAI) to reconstruct a unified time series of bloom areas
to analyze the algal bloom dynamics in Lake Dianchi in recent decades. Regarding the interannual
variation, the bloom area showed an increasing trend from 1987 to 2021, with larger bloom areas in
1991–1992, 2000–2003, 2012–2013, and 2020–2021. In terms of seasonal characteristics, the bloom area
was significantly more prominent in the rainy season compared with the dry season during the year.
The spatial distribution of the bloom frequency showed a pattern of higher frequencies in the north
and lower frequencies in the south. From 2000 to 2021, the initial bloom time and bloom duration
showed a trend of delaying and then advancing and decreasing and then increasing, respectively.
We analyzed the importance of long-term records of algal blooms and found that the percentage of
rainy season images is an essential factor in reconstructing time series based on different sensors.
In addition, the relationship between environmental factors and algal blooms was analyzed. The
results show that wind speed and air temperature were the main meteorological factors controlling
the interannual variation in algal blooms in Lake Dianchi. Water quality factors such as nutrients
have less of an influence on the variation in algal blooms because the algal growth demand has been
met. Environmental management measures taken by local governments have led to improvements in
the lake’s trophic state, and continued strengthening of environmental pollution control is expected
to curb the algal blooms in Lake Dianchi. This study provides a long-term record of algal blooms in
Lake Dianchi, which provides essential reference information for a comprehensive understanding of
the development process of algal blooms in Lake Dianchi and its sustainable development.

Keywords: algal bloom; Landsat; MODIS; long-term record; Lake Dianchi; multi-source remote sensing

Remote Sens. 2022, 14, 4000. https://doi.org/10.3390/rs14164000 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14164000
https://doi.org/10.3390/rs14164000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3803-6258
https://orcid.org/0000-0001-9726-4587
https://orcid.org/0000-0001-5329-2906
https://orcid.org/0000-0002-1985-2292
https://doi.org/10.3390/rs14164000
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14164000?type=check_update&version=1


Remote Sens. 2022, 14, 4000 2 of 22

1. Introduction

Lake Dianchi, located on the Yunnan–Guizhou Plateau in China and in the capital
of Yunnan Province, Kunming, has been listed as one of the “Three Lakes” along with
Lake Taihu and Lake Chaohu due to the frequent outbreaks of algal blooms in recent years
and is a crucial target of the Chinese government [1]. Lake Dianchi is the only water body
in its watershed that receives industrial, agricultural, and urban wastewater [2]. With
the pollution, the eutrophication and phytoplankton biomass in the lake have increased
dramatically since the 1980s, and algal blooms have become increasingly severe [3]. In order
to achieve water management goals and predict future changes in the lake’s ecosystem,
it is crucial to obtain a long-term record of algal blooms in lakes (e.g., a record of the
variation in the temporal and spatial distribution) [4,5], especially in the context of global
warming and severe eutrophication. Without continuous, long-term observation of algal
blooms, it is difficult to elucidate the cause-and-effect relationships of changes in the aquatic
environment [6]. The longer the record, the more accurate the understanding of the history
and current state of Lake Dianchi, which may provide decision support for the management
and long-term data for the prediction of the aquatic environment. Therefore, we need to
obtain reliable trends of algal blooms and reconstruct the eutrophication process in the
1980s in order to properly manage Lake Dianchi’s aquatic environment.

Many studies on algal blooms in Lake Dianchi are based on chlorophyll a (Chl-
a) data from field sampling [7–9], which can produce significant spatial and temporal
discontinuities and is costly. In addition, the in situ monitoring sites at Lake Dianchi could
not provide continuous data until the 1990s, and it was difficult to acquire algal bloom
information before that. Over the past few decades, advances in sensor technology and
remote sensing algorithms have made possible the otherwise challenging task of long-term
monitoring of algal blooms [10–16]. Remote sensing provides more reliable information on
algal blooms than traditional methods [17].

Researchers have used such sensors as Landsat, the Moderate-Resolution Imaging
Spectroradiometer (MODIS/Terra), the Ocean and Land Color Imager (OLCI), Gaofen-
5 (GF-5), and HuanJing-1 (HJ-1) to monitor the dynamics of algal blooms in Lake Di-
anchi [2,18,19]. Zhao, et al. [20] used Landsat imagery to obtain the spatial and temporal
dynamics of algal blooms in Lake Dianchi from 1986 to 2016; however, due to the limitation
of Landsat’s temporal resolution (16 days), it was not possible to monitor the rapidly
changing characteristics of algal blooms [21]. Jing, Zhang, Hu, Chu and Ma [2] conducted
high-frequency observations of algal blooms in Lake Dianchi from 2000 to 2018 using
MODIS/Terra data (2000~). However, it was difficult to obtain information on algal blooms
in the initial stage of eutrophication in Lake Dianchi (before 2000) due to the limitation
of the sensor service years. Since the Coastal Zone Color Scanner (CZCS) currently has
no valid data on Lake Dianchi, and the Sea-viewing Wide Field Sensor (SeaWiFS) was
launched in 1997, Landsat data, as the longest-archived satellite data that are currently
available, represent the best data for constructing and expanding a time series of the bloom
area at Lake Dianchi.

Considering the lack of a long-term record of algal blooms in Lake Dianchi since
the 1980s (the period of rapid eutrophication), this study aimed to achieve a reliable
reconstruction of the spatial and temporal dynamics of the algal blooms that have occurred
in Lake Dianchi since the 1980s using Landsat and MODIS/Terra images. In particular, we:
(1) constructed algal bloom extraction methods based on Landsat and MODIS/Terra images
and acquired a dataset on algal blooms in Lake Dianchi from 1987 to 2021; (2) compared the
Landsat and MODIS/Terra algal bloom time series and constructed a dual-sensor long-term
record of algal blooms in Lake Dianchi from the 1980s to the present; and (3) analyzed
the spatial and temporal variation in algal blooms in Lake Dianchi since the 1980s and the
driving forces of algal blooms with meteorological and water quality data. Our results
may help us trace the spatial and temporal characteristics of algal blooms in Lake Dianchi
since the period of its rapid eutrophication and provide valuable references for algal bloom
control and prevention measures in Lake Dianchi and other lakes.
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2. Materials and Methods
2.1. Study Area

Lake Dianchi (102◦36′–103◦40′E, 24◦40’–25◦02′N) is located in the middle of the
Yunnan–Guizhou Plateau in Kunming City, the capital of Yunnan Province, in south-
west China [22] (Figure 1). The average depth of Lake Dianchi is 5 m, and its maximum
depth is 8 m. The surface area is about 310 km2, and Lake Dianchi is the largest freshwater
lake in Yunnan Province [8,23]. The lake is 1887.4 m above sea level, with a shoreline
of 150 km. An artificial dam divides the lake into Caohai and Waihai (Figure 1a), with
Caohai in the north covering only 7.83 km2 and Waihai in the south covering 286.78 km2,
accounting for 97% of the total area [24]. The urbanized land (mainly the urban area of
Kunming City), which accounts for 30.17% of the watershed, is concentrated in the eastern
and northern parts of Lake Dianchi [25]. Several rivers in the watershed flow into the lake
through Kunming City, discharging a significant amount of urban and agricultural sewage
into Lake Dianchi (Figure 1b). With the economic and social development in the watershed,
the water quality of the rivers in Lake Dianchi has been declining, and the water pollution
problems in the lake have become more prominent, especially after the 1980s, when the
water quality deteriorated at an accelerated rate [8]. The water quality of Lake Dianchi
declined rapidly within a short period of time, the eutrophication of the lake increased, and
algal blooms frequently occurred [23].
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Figure 1. Distribution of sampling sites and rivers and the location of the Lake Dianchi Basin.
(a) Distribution of sampling sites and the meteorological station in Kunming City. The yellow star
marks the location of the national meteorological station. The red triangle marks the location of the
sampling sites in Lake Dianchi. (b) Land use in the Lake Dianchi Basin. The black box indicates the
location of Lake Dianchi. (c) Location of Lake Dianchi in China.

2.2. Satellite Data
2.2.1. Landsat Data

USGS Landsat-5 TM/Landsat-7 ETM+/Landsat-8 OLI surface reflectance products
were obtained from Google Earth Engine (https://earthengine.google.com, accessed on
20 December 2021) and used in this study. The spatial resolution of Landsat is 30 m with
a 16-day observation period. The acquisition period was January 1987 to December 2021.
After cloud masking (for details, see Section 2.3.2), images in which the remaining pixels

https://earthengine.google.com
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exceeded more than 50% of the lake were selected (for a total of 314 images, Figure 2a).
These images contain a quality control band (QA Band) that provides information on
such elements as clouds, shadows, snow and ice, and cirrus clouds. In May 2003, the
Landsat-7 ETM+ scan line corrector (SLC) failed, resulting in a data strip loss that rendered
the Landsat-7 ETM+ images unavailable. Therefore, all of the Landsat-7 ETM+ images
used in this study are pre-2003 images.
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Landsat TM/ETM+/OLI and MODIS/Terra scenes examined in this study from the period 2000–2021.
(c) Distributions of the MODIS/Terra scenes examined in this study.

2.2.2. MODIS/Terra Data

MODIS/Terra Level-1A data on Lake Dianchi from February 2000 to December 2021
were obtained from NASA’s OceanColor Web (https://oceandata.gsfc.nasa.gov/, accessed
on 12 Febuary 2021). The Level-1A images were processed to generate Level-1B images
using SeaDAS 7.5.1 (vicarious calibration file: R2018). Then, the Level-1B images were
partially atmospherically corrected to remove the ozone and water vapor absorption and
Rayleigh scattering of atmospheric molecules. The Raleigh-corrected reflectance (Rrc,
dimensionless) was obtained as a reference [26]. Finally, the calculated Rrc data were
mapped to an equidistant cylindrical projection. The data at the 469 nm and 555 nm bands
with an original resolution of 500 m were resampled to a resolution of 250 m. The Rrc
data at three bands (645, 555, and 469 nm) were used to generate ‘true-color’ composite
images with a resolution of 250 m. A total of 1265 cloud-free MODIS/Terra images of the
entire lake were acquired by visual inspection, excluding images containing clouds and
poor-quality images of the lake (Figure 2c).

2.3. Algal Bloom Extraction
2.3.1. Pre-Processing of Satellite Images

Cloud pixels have a high FAI, which makes it difficult to extract algal blooms accu-
rately, so they need to be identified and removed during processing. For the Landsat-5
TM/Landsat-7 ETM+/Landsat-8 OLI images, cloud and cloud shadow pixels were identi-
fied using the QA band (pixel_qa). For the MODIS/Terra Rrc images, since images showing
the presence of thick aerosols or sunglint were removed during the visual inspection (for
details, see Section 2.2.2), we only carried out an analysis to distinguish clean water and
algal blooms from cloud pixels. There are several widely used de-clouding thresholds
for inland waters, such as Rrc(1640) = 0.0215 [27] and Rrc(1640) = 0.03 [28]. We selected
137 images, manually checked the cloud (N = 35,737), algal bloom (N = 45,623), and clear
water (N = 32,093) images, and then counted the numbers of pixels in the acquired images
at different bands. The results show (Figure S1) that Rrc(1640) = 0.0215 and Rrc(1640) = 0.03
masked a large number of algal bloom pixels, and Rrc(1640) = 0.0215 even masked some
clear water pixels. Therefore, none of these thresholds can be used to obtain good re-

https://oceandata.gsfc.nasa.gov/
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sults on Lake Dianchi. So, we developed a new threshold to distinguish cloud pixels in
MODIS/Terra Rrc data. The results also show (Figure S1) that the Rrc(2130) band can distin-
guish cloud pixels and clear water pixels well. The upper limit of 0.0246 for algal bloom
pixels was used as the cloud mask threshold. We verified the accuracy of Rrc(2130) = 0.0246
as the cloud mask threshold with randomly selected samples (for details, see the Supple-
mentary Material). The verification results (Table S1) show that the threshold achieves a
high accuracy rate with an OA above 98% and a Kappa coefficient of 0.9011. In addition,
based on a visual inspection (Figure S2), Rrc(2130) = 0.0246 was found to be able to mask
most cloud pixels while retaining most algal bloom and clear water pixels. In addition, we
shrunk the lake boundary inward by 2 pixels (about 500 m) in order to avoid false-positive
results caused by the influence of land pixels.

2.3.2. Floating Algae Index

The Floating Algae Index (FAI) calculated in the red, near-infrared, and short-wave
infrared bands was used to extract the areas in which algal bloom outbreaks occurred
using thresholds. This method uses the uplift of algal blooms in the near-infrared band to
emphasize the waters affected by algal blooms and reduce the FAI’s sensitivity to different
aerosol types by subtracting the baseline [16]. Due to its excellent performance, the FAI has
been used in many studies [29,30]. The formula for the FAI is as follows:

FAI = Rrc,NIR − R′rc,NIR,

R′rc,NIR = Rrc,Red + (Rrc,SWIR − Rrc,Red)× (λNIR − λRed)/(λSWIR − λRed)
(1)

where R′rc,NIR is the baseline Rrc at the near-infrared band (555 nm) and Rrc,Red, Rrc,NIR, and
Rrc,SWIR are the Rrc in the red, near-infrared, and short-wave infrared bands, respectively.

2.3.3. Thresholds for Distinguishing Algal Bloom Pixels

The maximum gradient method was used to obtain the extraction threshold of algal
blooms. This method has been widely used to identify wetlands, waters, and mining
vessels [28,31,32]. First, the FAI was calculated for each image, and then the corresponding
gradient image was obtained. The pixels of clear water and dense algal blooms were
removed using FAI < −0.01 and FAI > 0.02, respectively, in order to retain the pixels at
the boundary of the bloom area [28]. The pixels that were retained ranged between pure
water and thick algae scum pixels and were at the edge of the algal bloom range. If a
scene has no algae at all, then all pixels in the scene are excluded by FAI < −0.01, and no
response threshold is generated to influence the final threshold determination. Because
the FAI of algal bloom waters is far greater than that of clear waters, the gradient in the
FAI was the largest at the boundary between algal-bloom-infested and clear waters. The
FAI corresponding to the pixels at the maximum spatial gradient was used as the threshold
for determining the boundary between algal-bloom-infested and clear waters. To exclude
outliers, a histogram was constructed using a set of pixels around the boundary rather than
the gradient values of individual pixel points [31], and the results show an approximately
normal distribution. The thresholds for all the images were statistically analyzed to ensure
a that a consistent threshold would be maintained over the whole period. The mean of all
thresholds minus two times the standard deviation was used as the threshold for identifying
algal bloom pixels. The thresholds obtained by subtracting the mean value from the 2-sigma
standard deviation were able to cover 95% of the images and avoid the false positives
caused by the use of the minimum threshold in the statistics. The method was applied
to the Landsat TM/ETM+/OLI and MODIS/Terra Rrc images, and TLandsat = 0.01124 and
TMODIS/Terra = −0.00778, respectively, were determined to be the thresholds for this study
(Figure S3). In summary, the method used in this study excluded non-bloom pixels and
a universal threshold for most images was obtained based on the statistical results of the
approximately normal distribution. Moreover, we examined the consistency of the algal
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bloom results obtained from different sensors by using MODIS/Terra and Landsat on the
same day.

In this study, the bloom area rather than the bloom intensity was applied as an indicator
to reveal the spatial and temporal variation in algal blooms in Lake Dianchi because the
bloom area data were the only verifiable data we could use. Some studies have used bloom
intensity as an evaluation indicator for algal blooms. Ho, et al. [33] used a single band
(the near-infrared band) to characterize bloom intensity and applied it to the assessment of
lakes around the world, but this work has been questioned by Feng, Dai, Hou, Xu, Liu and
Zheng [21] and there is some doubt about the application of this method. Binding, et al. [34]
used pigment concentration as a measure of bloom intensity. Wang, et al. [35] modeled
the AFAI with measured biomass data and revealed the bloom intensity of Sargassum.
However, all of these studies required a large amount of simultaneous satellite and in situ
data. Although we obtained water quality data from automated stations and field surveys
in Lake Dianchi, we lacked simultaneous data on biomass and pigment concentrations.
Therefore, modeling and validation data on the bloom intensity were difficult to obtain for
this study. From another perspective, the relationship between spectral indices (e.g., the FAI
and AFAI) or pigment concentrations of algal blooms and bloom intensity remains unclear.
The relationship between AFAI and algae biomass is not stable [35]. Moreover, the pigment
concentration of the algal bloom area is difficult to accurately obtain by remote sensing [21].
We can conclude that the methods that are currently used to obtain the intensity of an algal
bloom from algal bloom pixels remain immature and fall outside the scope of this study.

2.4. Environmental Factors

In order to analyze the relationship between algal blooms and environmental factors,
meteorological and water quality data on Lake Dianchi were obtained. The average wind
speed, average air temperature, maximum air temperature, minimum air temperature,
20–20 h precipitation (the precipitation from 20:00 to 20:00 on the following day), aver-
age air pressure, and number of sunshine hours at Kunming Station from 1987 to 2021
(No. 56,778, 102◦23′24′′E, 25◦N, altitude of 1889.1 m) were obtained from the Chinese
Meteorological Data Service Center (http://data.cma.cn/, accessed on 28 October 2021)
for subsequent analysis. The water temperature, pH, ammonia nitrogen (NH3-N), total
phosphorus (TP), and total nitrogen (TN) at the national control sampling sites (red tri-
angles in Figure 1a) at Lake Dianchi from 1987 to 2018 were obtained from the Kunming
Environmental Monitoring Center. Details of the meteorological and water quality data
used in this study are shown in Table 1.

Table 1. The minimum, median, mean, and maximum monthly values of physical, chemical, and
biological variables in Lake Dianchi. Abbreviations: TN, total nitrogen; TP, total phosphorus.

Mean Minimum Maximum Median

Water Temperature (◦C) 17.96 7.20 28.70 18.00
pH 8.82 6.27 9.95 8.75

NH3-N (mg/L) 0.26 0.03 1.32 0.27
TP (mg/L) 0.16 0.03 3.28 0.16
TN (mg/L) 1.86 0.40 6.46 2.04

TN/TP ratio (mass) 16.46 4.31 59.35 13.16
Precipitation (mm) 81.68 0.00 474.90 45.50
Air Pressure (hPa) 810.60 805.30 816.50 810.27
Wind Speed (m/s) 2.15 0.80 4.40 2.10

Air Temperature (◦C) 15.59 5.60 21.90 16.65
Sunshine Hours (h) 180.45 44.50 322.00 44.50

http://data.cma.cn/
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2.5. Statistical Methods
2.5.1. Analysis of Algal Bloom Time Series

The Landsat and MODIS/Terra time series of bloom areas between 2000 and 2021
were compared, and the most consistent time series were selected in order to analyze the
algae dynamics that have occurred in Lake Dianchi since the 1980s. The time series of
bloom areas obtained from Landsat and MODIS/Terra were obtained at monthly, one-year,
two-year, three-year, and four-year intervals. A linear fit was performed for each time series
from 2000 to 2021, and the slope difference between the Landsat and MODIS/Terra time
series based on the same time scale was calculated. The time scale of the unified time series
of algal blooms was determined based on the time scale with the smallest slope difference.
It is worth noting that the results of Landsat were used before 1987–1999, and a combination
of MODIS/Terra and Landsat was used after 2000 (if data from both MODIS/Terra and
Landsat were available on the same day, the result with the larger bloom area was selected
on that day).

In addition, the initial bloom time of a year was defined as the average day of the
year (doy) on which the first three algal blooms (whose area is greater than 5%) occurred
in that year. The end time was defined as the average doy of the last three algal blooms.
The bloom duration time was defined as the end time minus the initial bloom time of the
current year. We only analyzed the results after 2000 for annual indicators such as the
bloom frequency, the bloom duration time, and the initial bloom time because of the small
number of practical observations from Landsat.

2.5.2. Statistics of Environmental Factors

The collected data were processed in order to demonstrate the meteorological and
water quality changes that occurred in Lake Dianchi during the study period. The month-
by-month data obtained in this study were used to obtain the annual mean for the meteo-
rological data. For the water quality data, the monthly mean from each sample site was
used as the monthly mean of this factor for that month, and all monthly means for each
year were used to obtain the annual mean. The algal bloom indicators (bloom area, initial
bloom time, and bloom duration time) were used as the corresponding parameters, linear
correlations were obtained, and the correlation and significance of p-values were calculated.

2.5.3. Statistical Metrics

The root square mean error (RSME), the mean absolute percentage error (MAPE), the
relative error (RE), and the coefficient of determination (R2) between the extracted bloom
areas from Landsat data and MODIS/Terra data were used to analyze the consistency
between Landsat and MODIS/Terra. The formulas for the RSME, MRE, and RE are
as follows:

RSME =

√
∑N

i=1(XL,i − XM,i)
2

n
(2)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣XL,i − XM,i

XL,i

∣∣∣∣ (3)

RE = (XL,i − XM,i)× 100% (4)

In Equations (2)–(4), XL is the bloom area extracted from Landsat, XM is the bloom
area extracted from MODIS/Terra, and n denotes the total number of samples.

3. Results
3.1. Combining the Landsat and MODIS/Terra Observations

The trends of the time series of the algal bloom area obtained by Landsat and MODIS/
Terra at different time scales were analyzed (Figure 3). From the monthly scale, due
to the insufficient number of Landsat observations, the characteristics of double peaks
in the MODIS/Terra time series are not reflected in the Landsat time series. The slope
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difference between the Landsat time series (yl = −1.9759x + 4012.0) and the MODIS/Terra
time series (ym = 0.0326x − 3.1128) is the largest (Dif = 2.0085). In the time series of
other scales, the slope difference (Dif = 1.6114) between the three-year Landsat time series
(yl = −1.2948x + 2640) and the MODIS/Terra time series (ym = 0.185x − 180.56) is larger
than the one-year time series (Dif = 1.4068). The slope difference between the Landsat time
series (yl =−1.2023x + 2452.8) and the MODIS/Terra time series (ym = −0.0402x + 123.3) is
1.1621, which is the smallest slope difference. As the two-year time series can represent more
information, the Lake Dianchi time series before 2000 was constructed on a two-year scale.
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Figure 3. Time series of different time scales of the average algal bloom area in Lake Dianchi be‐
tween the Landsat and MODIS/Terra results (during 2000–2021). The time intervals of (a–f) are 1 
day, 1 month, 1 year, 2 years, 3 years, and 4 years, respectively. “ym” represents the fitting equation 
of the time series obtained from MODIS/Terra images at the current time scale. “yl” represents the 

Figure 3. Time series of different time scales of the average algal bloom area in Lake Dianchi between
the Landsat and MODIS/Terra results (during 2000–2021). The time intervals of (a–f) are 1 day,
1 month, 1 year, 2 years, 3 years, and 4 years, respectively. “ym” represents the fitting equation of the
time series obtained from MODIS/Terra images at the current time scale. “yl” represents the fitting
equation of the time series obtained from Landsat images at the current time scale. “x” represents
the independent variable of the fitting equation of the time series at the current time scale. “Dif”
represents the slope difference between the MODIS/Terra time series and the Landsat time series.
The lower the Dif, the greater the similarity of the trends between the time series.

3.2. Long-Term Records of Algal Blooms since the 1980s

From 1987 to 2021 (Figure 4a), the average area of algal blooms in Lake Dianchi
showed an upward trend (y = 1.3387x + 27.976, p = 0.174). From 1987 to 1999, the average
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area of algal blooms in Lake Dianchi showed an upward trend (from 5.4 km2 in 1987–1988
to 52.24 km2 in 1997–1999), and the average area in 1991–1992 reached its peak value
(67.2 km2). After 2000, the algal blooms in Lake Dianchi deteriorated, and the average
bloom area increased to 35.45 km2 during 2000–2021 from 22.46 km2 during 1987–1999.
From 2000 to 2021, the average area of algal blooms in Lake Dianchi showed no significant
upward or downward trend.
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Figure 4. (a) Time series on a 2-year scale of the algal bloom area in Lake Dianchi between Landsat
and MODIS/Terra (during 1987–2021). (b) Time series of the average wind speed and air temperature
during 1987–2020. (c) Time series of the average precipitation and hours of sunshine during 1987–2020.
(d) Time series of the average total nitrogen (TN), total phosphorus (TP), and N/P ratio (TN/TP)
during 1987–2020.

As for the monthly bloom area in Lake Dianchi (Figure 5a), the algal blooms have
noticeable cyclical changes every month, and the bloom area in the rainy season (May–
October) is significantly larger than that in the dry season (November–April of the following



Remote Sens. 2022, 14, 4000 10 of 22

year). From January to March, the bloom area in Lake Dianchi was relatively small (it did
not exceed 20 km2), and the area was the smallest in February (only 6.02 km2). With the
increase in the air temperature, the bloom area increased to about 50 km2 from April to
May. From June, Lake Dianchi reached the peak period of algal blooms, and the average
algal bloom area was greater than 80 km2 until November, exceeding 25% of the entire lake
area. The average bloom area was the highest in July from June to November, reaching
128.02 km2, accounting for 42.9% of the lake area. The average bloom area from August
to October exceeded 100 km2. It can be seen that the bloom area in August (107.19 km2)
was lower than that in July (128.02 km2) and September (121.97 km2), which may have
been caused by the influence of clouds and rain in August and the smaller number of solid
images. In December, the bloom area decreased to 50.23 km2 and reached its lowest value
the following February.
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Figure 5. (a) Monthly algal bloom area in Lake Dianchi generated from all Landsat and MODIS/Terra
images during 1987–2021. (b) Monthly wind speed and air temperature in Lake Dianchi. (c) Monthly
precipitation and hours of sunshine in Lake Dianchi.

3.3. Spatial Distribution of Algal Blooms

Figure 6 shows the algal bloom frequency in each pixel (250 m × 250 m) in the whole
lake. In terms of interannual changes, the bloom frequency in 2000, 2002, 2006, 2008, 2012,
2013, 2019, 2020, and 2021 was relatively high. Algal blooms in 2002, 2006, 2008, 2012, 2013,
2019, 2020, and 2021 had a high degree of intensity and a wide spatial distribution. From the
perspective of the spatial pattern, before 2010, the bloom frequency in the northern region
of the lake was significantly higher than that in other regions, showing an unmistakable
pattern of a high bloom frequency in the north and a low bloom frequency in the south. For
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many years, the bloom frequency in the northern region of the lake exceeded 50%. In 2001,
2005, and 2009, the bloom frequency in the northern region of the lake (>40%) was much
higher than that in other regions (<20%), indicating that algal blooms basically occurred
in the northern region of the lake in these years. After 2010, the difference in the bloom
frequency between the northern region of the lake and other regions decreased, and the
bloom frequency in the northern region of the lake decreased (to below 50% except in 2020),
but the pattern of a high bloom frequency in the north and a low bloom frequency in the
south did not change. The bloom frequency in the southern region of the lake increased,
exceeding 20% in many regions. As for the average bloom frequency over the years, the
northern region of the lake had the highest frequency (>40%), followed by the central region
of the lake (20–30%). The southern region of the lake had the lowest frequency (<20%).
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From the perspective of seasonal characteristics (Figure 7), the bloom frequency in the
entire lake from January to February was low (January, 3.57% on average; February, 2.33%
on average), and the bloom frequency in the entire lake was not higher than 20%. From
March, the bloom frequency gradually increased (by 7.23% on average), the pattern of a
high frequency in the north and a low frequency in the south gradually formed from April
to May, and the bloom frequency in the northern region of the lake was close to 50% in May.
Consistent with the results reported in Section 3.2, Lake Dianchi reached the peak period
of algal blooms from June to November, algal blooms spread from the northern area of the
lake to other areas, and the bloom frequency in the entire lake increased significantly. From
July, the bloom frequency exceeded 60% in most regions in the northern area of the lake
and was greater than 40% in the central area of the lake. The bloom frequency decreased
from November to December, the bloom frequency in the high-bloom-frequency regions of
the northern area of the lake decreased significantly, and the bloom frequency in the other
lake regions decreased to less than 50%.
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3.4. Temporal Characteristics of Algal Blooms

Figure 8 shows the change in the initial bloom time and the duration of algal blooms.
From 2000 to 2021, the initial bloom time in Lake Dianchi showed a trend of first delaying
and then advancing (Figure 8a). From 2000 to 2011, the initial bloom time tended to
be delayed (y = 2.9895x − 5885, p = 0.0749). From 2000 to 2009, the initial bloom time
fluctuated from day 76.66 to the 124th day, and in 2009–2011 it was delayed from the 108th
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day to the 148th day. From 2011 to 2021, the initial bloom time was significantly earlier
(y = −7.8121x + 15858, p = 0.0034). From 2011 to 2016, except for 2013 (on the 91st day), the
initial bloom time in Lake Dianchi was later than the 100th day. After 2014, there was a
significant decrease in the initial bloom time (from day 155.66 to the 76th day (in 2021)).
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Figure 8. Trends in the initial bloom date and bloom duration for Lake Dianchi. (a) The initial bloom
date throughout the time period of 2000–2021. (b) The bloom duration throughout the time period of
2000–2021.

From 2000 to 2021, the duration of algal blooms in Lake Dianchi showed a trend of first
decreasing and then increasing (Figure 8b). From 2000 to 2011, the fluctuation in the dura-
tion of algal blooms decreased, showing a significant downward trend (y = −7.6818x + 293.46,
p < 0.01). The duration increased from 260 days to 323 days in 2000–2002 and then de-
creased to 213 days in 2004. The duration increased to 280 days in 2006 and then decreased
to 190 days in 2011. The duration of algal blooms from 2011 to 2021 showed a significant
upward trend (y = 7.7636x + 199.87, p < 0.01). The duration increased to 259 days in
2011–2013 and then decreased to 183 days in 2014. From 2014, the duration continued to
increase and remained at around 280 days from 2016 to 2021.

4. Discussion
4.1. Uncertainty in Long-Term Record Reconstruction Based on Multi-Source Satellite Data
4.1.1. Observation Frequency of Multi-Source Satellites

The trends in the algal bloom time series reconstructed by Landsat and MODIS/Terra
differed due to various factors (Figure 2b). Due to the characteristics of rapid changes in
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algal blooms within a short period of time [36–39] and the significant seasonal distribution
(e.g., the algal blooms in Lake Dianchi are concentrated into the rainy season), the difference
in the observation frequency between Landsat (16 days/period of time) and MODIS/Terra
(1 day/period of time) may lead to errors in the time series of algal blooms obtained within
the same period. We calculated the relative error in the annual average bloom area obtained
by Landsat and MODIS/Terra and the percentage of valid observations in the rainy season
of the year. The results show (Figure 9) that the difference between the percentage of
observations in the rainy season and the relative error had a significant negative correlation
(y = −4.2888x + 66.7497, p < 0.05), i.e., the closer the percentage of images in the rainy
season of the two sensors, the smaller the difference between the two time series. The
algal bloom in Lake Dianchi had significant seasonal characteristics (Section 3.2), with
a larger area and a higher frequency in the rainy season and a smaller area and a lower
frequency in the dry season. When the percentages of observations in the rainy season from
MODIS/Terra and Landsat are close, the obtained time series do not contain the errors
caused by seasonal differences, resulting in a minor trend difference.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 23 
 

 

tions in the rainy season of the year. The results show (Figure 9) that the difference be‐
tween the percentage of observations in the rainy season and the relative error had a sig‐
nificant negative correlation (y = −4.2888x + 66.7497, p < 0.05), i.e., the closer the percentage 
of images in the rainy season of the two sensors, the smaller the difference between the 
two time series. The algal bloom in Lake Dianchi had significant seasonal characteristics 
(Section 3.2), with a larger area and a higher frequency in the rainy season and a smaller 
area and a lower frequency in the dry season. When the percentages of observations in 
the rainy season from MODIS/Terra and Landsat are close, the obtained time series do not 
contain the errors caused by seasonal differences, resulting in a minor trend difference. 

 
Figure 9. The relationship between the difference in the percentage of images in the rainy season 
and the relative error (RE) in the annual average area of algal blooms between Landsat and 
MODIS/Terra. 

Differences in time series are also related to the time scales. The time series of the 
average bloom area obtained by Landsat and MODIS/Terra at different time scales were 
compared. Figure 4 shows the trend difference between the two time series with the 
change in the time scale. The results on the two‐year scale show a minor difference in the 
trend and more detail, so the time scale for reconstructing the time series was determined 
to be two years. We compared the bloom areas extracted by Landsat and MODIS/Terra 
from 2000 to 2021 (Figure 10). The bloom areas on the two‐year scale were closer to the 
annual bloom areas obtained by MODIS/Terra. The trends obtained from MODIS/Terra 
and Landsat are consistent, although there are differences in some details (e.g., extreme 
values) and the average bloom area decreases and then increases from 2000 to 2019. There 
are some differences between the Landsat time series and the MODIS/Terra time series in 
2020–2021. We examined the original images and found that only two of the nine valid 
Landsat‐8 OLI images from 2021 were obtained in May–October due to the rainy season, 
which is significantly different from the number and distribution of MODIS/Terra obser‐
vations. None of the nine Landsat‐8 OLI images contain significant algal blooms, while 
MODIS/Terra observed multiple significant blooms. This mismatch led to the discrepancy 
between the Landsat monitoring results and the MODIS/Terra monitoring results and is 
the reason why we wanted to obtain a unified time series by changing the observation 
interval. 
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Differences in time series are also related to the time scales. The time series of the
average bloom area obtained by Landsat and MODIS/Terra at different time scales were
compared. Figure 4 shows the trend difference between the two time series with the change
in the time scale. The results on the two-year scale show a minor difference in the trend
and more detail, so the time scale for reconstructing the time series was determined to
be two years. We compared the bloom areas extracted by Landsat and MODIS/Terra
from 2000 to 2021 (Figure 10). The bloom areas on the two-year scale were closer to the
annual bloom areas obtained by MODIS/Terra. The trends obtained from MODIS/Terra
and Landsat are consistent, although there are differences in some details (e.g., extreme
values) and the average bloom area decreases and then increases from 2000 to 2019. There
are some differences between the Landsat time series and the MODIS/Terra time series
in 2020–2021. We examined the original images and found that only two of the nine
valid Landsat-8 OLI images from 2021 were obtained in May–October due to the rainy
season, which is significantly different from the number and distribution of MODIS/Terra
observations. None of the nine Landsat-8 OLI images contain significant algal blooms,
while MODIS/Terra observed multiple significant blooms. This mismatch led to the
discrepancy between the Landsat monitoring results and the MODIS/Terra monitoring
results and is the reason why we wanted to obtain a unified time series by changing the
observation interval.
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4.1.2. The Effect of Algal Bloom Indicators

We also tried to reconstruct the time series of the maximum bloom area from a combi-
nation of Landsat and MODIS/Terra images (Figure S4). The results show that as the time
interval increased, the difference in the time trend between MODIS/Terra and Landsat
became larger, indicating that it is difficult to establish a unified, comprehensive time
series with images from many years. On the one hand, the average bloom area is more
representative of the current period when combining data from different time scales. On
the other hand, the key to the maximum bloom area in a certain period is whether effective
observations are obtained on the day when the maximum bloom area occurs, so it has
a higher degree of contingency due to its indicator definition. Therefore, the widening
gap in the number of observations leads to a widening gap between the time series trends
obtained by Landsat and MODIS/Terra.

4.1.3. The Effect of the Spatial Resolution of Multi-Source Satellites

Differences in spatial resolution may also lead to differences in the time series of algal
blooms obtained with different sensors. Since high-resolution images may capture larger
bloom areas due to the higher number of algal bloom features, low-resolution images
may capture larger bloom areas due to the aggregation of more bloom features in mixed
pixels [40]. The “truth” is often difficult to determine due to the resolution of different
sensors [41], so the premise of reconstructing time series using different sensors is that the
results obtained from different sensors need to be proven to have good consistency. In
this study, Landsat (30 m) and MODIS/Terra (250 m) were used to reconstruct the time
series of algal blooms, and 36 Landsat and MODIS/Terra images were obtained on the
same day for comparison (Figure S5). The results show that the areas obtained by Landsat
and MODIS/Terra are in good agreement (R2 = 0.95). The difference in the bloom area
between Landsat and MODIS/Terra ranged from 0.12 to 43.72 km2, with 55.56% in the
range of 0–10 km2, 19.44% in the range of 10–20 km2, 16.67% in the range of 20–30 km2,
and 8.33% in the range of 30–50 km2. The most significant difference between Landsat
and MODIS/Terra occurred on November 28, 2018 (MODIS/Terra, 100.87 km2; Landsat,
57.14 km2) due to the existence of thin clouds over the MODIS/Terra satellite, resulting in
significant errors. In conclusion, the bloom area results of Landsat and MODIS/Terra can
meet the requirements of time series reconstruction.

4.2. Effect of Environmental Factors on Algal Blooms in Lake Dianchi

The environmental factors that lead to the development of algal growth are complex, as
they often involve the interaction of multiple environmental elements, such as meteorology
and water quality [42]. These factors also have different effects on algae in different areas of
the lake due to the geographical location and environmental characteristics of the lake itself.
In order to explore the relationship between algal blooms and environmental factors over
a long period of time and understand the process and mechanism of the occurrence and
development of algal blooms in Lake Dianchi, we analyzed the relationship between the
reconstructed time series of the bloom area and meteorological and water quality factors.
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4.2.1. Meteorological Conditions

Wind speed is the key to algal bloom formation, and previous studies have generally
concluded that lake surfaces require low wind speeds for algae to rise and form floating
scums [43,44]. From 1987 to 2020 (Table 1), the monthly wind speed at Lake Dianchi
varied from 0.8 to 4.4 m/s. In terms of interannual variation (Figure 4b), the average
wind speed first decreased, then increased, and then remained stable. From 1987 to
1997, the average wind speed at Lake Dianchi decreased from 2.21 m/s to 1.61 m/s in
1997 and then increased to 2.8 m/s in 2006. Since then, the average wind speed at Lake
Dianchi has remained at around 2.5 m/s. Air temperature is also a key factor affecting
the growth of algae. A suitable air temperature will promote the growth of algae and
aggravate algal blooms [42,45,46]. Since 1987 (Table 1), the monthly air temperature at
Lake Dianchi has changed from 5.6 to 21.9 ◦C, showing a significant upward trend as a
whole (p < 0.05) (Figure 4b). Precipitation will transport pollutants in the watershed to
the lake, increasing the degree of eutrophication of the lake, which is conducive to the
growth of algae [47–49]. Since 1987 (Table 1), the monthly precipitation at Lake Dianchi
has changed from 0 to 474.9 mm. From 1987 to 2020 (Figure 4c), the annual precipitation at
Lake Dianchi first increased, then decreased, and then increased again. Sunshine hours are
also necessary factors for algal growth. A proper number of sunshine hours can promote
algal growth [24,50], although some studies have shown that the high altitude (1887.4 m) of
Lake Dianchi results in strong UV light that inhibits algal growth instead [47]. Since 1987
(Figure 4c), the monthly number of sunshine hours at Lake Dianchi has varied between 44.5
and 322 h. We compared the relationships between interannual meteorological factors and
algal bloom parameters (Table 2). The results show that wind speed and air temperature
are correlated with algal blooms. Specifically, wind speed was significantly negatively
correlated with bloom duration time (r = −0.5, p < 0.05), and the average (r = 0.36, p < 0.05),
maximum (r = 0.38, p < 0.05), and minimum (r = 0.39, p < 0.05) air temperatures were
significantly and positively correlated with bloom area, indicating that the interannual
trends of algal blooms in Lake Dianchi are mainly influenced by wind speed and air
temperature. However, the correlations between precipitation, sunshine hours, air pressure,
and algal bloom indicators are poor (Table 2), indicating that these factors are not the main
driving factors of the interannual variation in algal blooms in Lake Dianchi [24]. We further
selected for analysis the bloom areas from March to May, 2019 (Figure 11). There is a
negative relationship between the bloom area and the wind speed on the day (Figure 11a,b);
that is, when the bloom area increases, the wind speed on the day decreases compared with
the previous day, and when the bloom area decreases, the wind speed on the day increases
compared with the previous day. The relationships between air temperature, air pressure,
and sunshine hours and the trend of the bloom area are not significant (Figure 11c–e).

Table 2. Relationship between the initial bloom date, bloom duration, and bloom area in Lake Dianchi
and climate variables.

WS AT ATmax ATmin PP SH AP

Initial Bloom Time r 0.39 −0.21 0.09 −0.14 −0.11 −0.19 −0.27
Duration of Bloom r −0.50 * −0.01 −0.25 0.04 0.36 0.03 0.25

Bloom Area r 0.25 0.36 * 0.38 * 0.39 * 0.03 0.26 −0.28

* p < 0.05. WS, wind speed; AT, air temperature; ATmax, maximum air temperature; ATmin, minimum air
temperature; PP, precipitation; SH, sunshine hours; AP, air pressure.
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was low during the rainy season (the average wind speed during the rainy season was 

Figure 11. Algal bloom area, wind speed, air temperature, air pressure, and sunshine hours. The
black solid circles in (a) represent the bloom areas derived from MODIS/Terra data. (b) Mean daily
wind speed, (c) mean daily air temperature, (d) mean daily air pressure, and (e) mean daily sunshine
hours. The numbered circles represent the 6 days during which the algal bloom areas changed
greatly due to strong winds that triggered the dissipation of algal blooms on the water surface at
Lake Dianchi.

Since the FAI was used to monitor algal blooms in Lake Dianchi, the algal blooms
analyzed in this study were also defined as algal scums floating on the water surface [16],
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which is also in line with the definition used in previous studies [28,51,52]. From the
perspective of floating scums, the most direct effect of wind on floating scums is a reduction
in the formation of floating scums due to mixing in the upper water-column, which is
reflected in our long-term (Table 2) and short-term (Figure 11) monitoring results and is
consistent with previous studies conducted in other regions [28,53]. Some studies have also
found that vertical mixing due to high wind speeds can affect changes in the concentration
of such substances as salt [54]. However, the question of whether similar phenomena can
occur in shallow lakes such as Lake Dianchi (whose average depth is 5 m) remains to be
further investigated. On the other hand, wind-induced waves may change the shape of the
water surface, leading to phenomena such as sunglint, which may change the reflectance
spectrum of the water surface. However, the FAI itself, due to its baseline subtraction
design, is able to provide a more homogeneous background compared with indices such
as the NDVI and the EVI in the face of a complex water surface (e.g., a surface subject to
sunglint) [16]. Therefore, we used the FAI to extract algal blooms, and the reliability of
the results was higher thanks to its relative stability under variable environmental and
observational conditions. However, as temperature affects the rate of growth of algae and
the intensity of lake stratification [8,47,54], the effect of temperature will be reflected to a
greater extent by the long-term changes in algal blooms (Table 2).

Regarding seasonal variation (Figure 5b,c), there was a significant seasonal difference
between meteorological factors at Lake Dianchi during the rainy season (May–October) and
the dry season (November to the following April). The wind speed at Lake Dianchi was
low during the rainy season (the average wind speed during the rainy season was 1.89 m/s,
which is below the wind speed threshold of 3 m/s for algal bloom formation) [2,55] and
the air temperature was high (the average air temperature during the rainy season was
19.04 ◦C, which is close to the cyanobacterial dominance threshold of 20 ◦C) [42], which is
suitable for the rapid growth of algae. At the same time, the high precipitation at this time
and the input of nutrients also promoted algal growth. These conditions led to a larger
algal bloom area in Lake Dianchi during the rainy season compared with the dry season.

4.2.2. Nutrient Conditions

In general, the presence of an abundance of nutrients in the water column is a prerequi-
site for algal blooms, and numerous studies have shown that both nitrogen and phosphorus
in the water column can be limiting factors for algal growth [56–60]. With the gradual
acceleration of industrialization and urbanization in the phosphorus-rich mountainous
regions of southwest China and the increase in the intensity of agricultural production,
Lake Dianchi has become one of the most severely eutrophic lakes in China, and the
high concentration of nutrients in the lake is an important reason for the continuous algal
blooms [8,61]. The algal blooms in Lake Dianchi have attracted the attention of the local
government. A series of lake management and pollution control measures have been
implemented, and the concentration of nutrients in Lake Dianchi has been reduced [7].
Overall (Figure 4d), the TP in Lake Dianchi showed a significant downward trend (p < 0.01)
from 1987 to 2020; specifically, an increase followed by a decrease. From 1987 to 2009,
the TP showed a significant (p < 0.05) upward trend (TP in 1987, 0.20 mg/L; TP in 2009,
0.40 mg/L); after 2010, it showed a significant downward trend (p < 0.01); and, in 2019, it
dropped to the lowest level (0.04 mg/L) of the entire period. From 1987 to 2020, the TN in
Lake Dianchi also showed a decreasing trend (Figure 4d), specifically an increase followed
by a decrease, but it was not significant (p > 0.05). From 1987 to 2009, the TN increased
significantly (p < 0.05) (TN in 1988, 2.58 mg/L; TN in 2009, 5.06 mg/L), and, after 2010, the
TN decreased significantly (p < 0.01) to the lowest level of 1.06 mg/L in 2019. In terms of
the spatial pattern, most of the eastern and northern region of the lake is surrounded by
the urban area of Kunming City, and many rivers flow through the city into the lake. These
rivers discharged a large amount of urban and agricultural sewage into the lake, resulting
in a significant excess of TN and TP, which is the reason for the higher frequency of algal
blooms in the eastern and northern regions of Lake Dianchi.
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The TN/TP ratio affects the composition of algal species, and a low TN/TP ratio
favors the growth of cyanobacteria and promotes algal blooms [42,62]. During the entire ob-
servation period (Figure 4d), the TN/TP ratio showed a significant upward trend (p < 0.01).
From 1987 to 2009, the TN/TP ratio at Lake Dianchi remained low (<15), and, after 2009, it
increased significantly. Our results show that algal blooms in Lake Dianchi have not been
significantly curbed in recent years (Figure 4a) and there is no significant correlation with
the trend of a reduction in the nutrient concentration (Table 3). This is because, although
the nutritional status of Lake Dianchi has improved significantly in recent years, the levels
of TN and TP and the TN/TP ratio in Lake Dianchi have significantly exceeded the demand
for algal growth for a long time [42] and are higher than those of typical eutrophic lakes in
China (such as Lake Taihu and Lake Chaohu) [61,63]. However, the TN/TP ratio of Lake
Dianchi exceeded the threshold of cyanobacterial dominance for temperate lakes (TN/TP
ratio = 29) in 2020 [64]. If the nutrient concentration and TN/TP ratio trends continue to
improve, the algal blooms in Lake Dianchi may be curbed in a real sense in the near future.

Table 3. Relationship between the initial bloom date, bloom duration, and bloom area in Lake Dianchi
and water quality variables.

WT pH NH3-N TN TP TN/TP

Initial Bloom Time r −0.07 −0.12 0.04 0.22 0.06 0.05
Duration of Bloom r 0.04 −0.29 −0.17 −0.31 −0.12 0.00

Bloom Area r 0.32 0.19 0.21 0.16 −0.02 0.39

WT, water temperature; NH3-N, ammonia nitrogen; TN, total nitrogen; TP, total phosphorus; TN/TP,
TN/TP ratio.

5. Conclusions

Algal blooms have plagued Lake Dianchi for a long time. A long-term time series of
algal blooms is crucial to understanding the changes in the lake’s ecological environment
and reducing the harms caused by algal blooms and is also a prerequisite for realizing
algal bloom prediction, early warning systems, and prevention measures. In this study,
we obtained a 34-year time series of the bloom area in Lake Dianchi from 1987 to 2021
by combining Landsat and MODIS/Terra images. A unified time series of bloom areas
was constructed in order to analyze the spatiotemporal dynamics of algal blooms in Lake
Dianchi over the years. The results show that the bloom area in Lake Dianchi had an overall
upward trend from 1987 to 2021. The bloom area in the rainy season was significantly
larger than that in the dry season. In terms of the spatial pattern, the frequency of algal
blooms in the northern area of the lake was higher than that in other lake areas, showing a
pattern of a high frequency in the north and a low frequency in the south.

The relationship between environmental factors and algal blooms was analyzed based
on the reconstructed long-term records of algal blooms. The results show that wind
speed and air temperature are the main meteorological factors controlling the interannual
variation in algal blooms in Lake Dianchi. Since the requirements for algal growth have
already been met, nutrients do not have a significant effect on the algal blooms in Lake
Dianchi. This study provides the longest-term record of the spatiotemporal dynamics of
algal blooms in Lake Dianchi to date, data support for the study of algal blooms in Lake
Dianchi, and new ideas for research on and the management of inland freshwater lakes
throughout the world.
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