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Abstract: Leaf-level hyperspectral-based species identification has a long research history. However,
unlike hyperspectral image-based species classification models, convolutional neural network (CNN)
models are rarely used for the one-dimensional (1D) structured leaf-level spectrum. Our research
focuses on hyperspectral data from five laboratories worldwide to test the general use of effective
identification of the CNN model by reshaping 1D structure hyperspectral data into two-dimensional
greyscale images without principal component analysis (PCA) or downscaling. We compared the
performance of two-dimensional CNNs with the deep cross neural network (DCN), support vector
machine, random forest, gradient boosting machine, and decision tree in individual tree species
classification from leaf-level hyperspectral data. We tested the general performance of the models
by simulating an application phase using data from different labs or years as the unseen data for
prediction. The best-performing CNN model had validation accuracy of 98.6%, prediction accuracy
of 91.6%, and precision of 74.9%, compared to the support vector machine, with 98.6%, 88.8%, and
66.4%, respectively, and DCN, with 94.0%, 85.7%, and 57.1%, respectively. Compared with the
reference models, CNNs more efficiently recognized Fagus crenata, and had high accuracy in Quercus
rubra identification. Our results provide a template for a species classification method based on
hyperspectral data and point to a new way of reshaping 1D data into a two-dimensional image, as
the key to better species prediction. This method may also be helpful for foliar trait estimation.

Keywords: species identification; convolutional neural network; hyperspectral reflectance; data
reshape; 2D image; machine learning

1. Introduction

Plant species discrimination is essential because of concerns about climate change
and the resultant changes in geographic distribution and species abundance. However,
identifying plants by conventional keys is complex and time-consuming, and the use of
specific botanical terms is frustrating to non-experts [1]. The development of digital cam-
eras and computer vision-related techniques significantly boosts automated image-based
species identification [2–4], which extracts features based on leaf shape, texture, color, or
venation [2]. Designing and orchestrating such methods are problem-specific, with models
customized to specific applications [4]. Deep artificial neural networks (ANNs) such as
the convolutional neural network (CNN) automate the critical feature-extraction step by
learning a suitable representation of the training data and systematically developing a
robust classification model, producing promising and constantly improving results in auto-
mated plant species classification [4]. Furthermore, identification utilizing CNNs reached
an average accuracy of 99.5% on the ILSVRC2012 dataset covering 44 species [5,6], and a
26-layer network ResNet architecture achieved 99.65% accuracy on the Flavia dataset [7].
Nevertheless, more general image processing issues, such as ambiguity caused by unknown
illumination and poses remain problematic [3], and image-based species identification con-
sumes many storage, network, and computational resources. Although leaf hyperspectral
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data are more difficult to obtain than image data, (1) their acquisition uses a standard
process, with no image processing problems such as illumination angle and positions;
(2) the structured data are small; and (3) they require fewer computer resources.

Several machine learning methods have been commonly applied for species discrimi-
nation based on hyperspectral data, such as linear discriminant analysis (LDA), maximum
likelihood (ML), spectral angle mapper (SAM), logistic regression (LR), gradient boost-
ing machine (GBM), random forest (RF), and support vector machine (SVM) [8–11]. For
instance, an overall accuracy of 86% was achieved with an object-based LDA classifier
for better discrimination of seven species of emergent trees in a lowland tropical rain
forest based on spectrometer and airborne hyperspectral reflectance data [10], while an
SVM study on major forests and plant species discrimination in the Mudumalai forest
region in India showed a very high accuracy of 92.37% [12]. A study in a Jamaican tropical
wetland obtained 91.8% and 84.8% accuracy with importance-ranked spectral indices and
reflectance spectra, respectively, using an RF classifier to discriminate 46 plant species [13].
More recent research using LR to discriminate 26 tropical dry forest tree species had an
overall accuracy of 89% [14]. These results have demonstrated the good performance and
large potential of machine learning in plant species identification.

Deep learning methods such as ANNs and CNNs have also been used. Gong et al. [15]
suggested the performance of ANN was better than that of LDA, obtaining an accuracy
of 91% when using only average sunlit samples for the identification of six conifer tree
species. Similarly, the application of a CNN classifier to high-resolution hyperspectral
and RGB imagery labeled to predict tree species at a pixel level was solid at species-level
classification in a Sierran mixed-conifer forest [16]. A 3D-CNN utilizing 4 m airborne
hyperspectral image patches achieved an overall F1-score (harmonic mean of recall and
precision) of 0.86 and accuracy of 87% when classifying Scots pine, Norway spruce, and
birch, and could more efficiently distinguish coniferous species than other models [17].
Furthermore, a 3D-1D-CNN model could reduce computation while achieving 93.14%
accuracy when classifying eight species based on airborne hyperspectral remote sensing
data [18].

Classification with hyperspectral measurements, acquired by narrowband spectrora-
diometers or imaging sensors, generally required some form of spectral feature selection
to reduce the dimensionality of the data to a level suitable for the construction of a clas-
sification model [19]. Bands selected using an ensemble of methods improved logistic
regression classification performance by 3% compared to a result without band selec-
tion [14]. Optimal regions of the spectrum for species discrimination varied with scale.
However, near-infrared (700–1327 nm) bands were consistently important regions across all
scales [10,19,20]. Bands in the visible (437–700 nm) and shortwave infrared (1994–2435 nm)
regions were more critical at pixel and canopy scales [10]. However, the possibility of
discriminatory spectral regions being associated with specific taxonomic, structural, or
functional groupings of plants is inconclusive due to variability between studies [19]. More-
over, spectral feature selection mainly suits classification models, as the full wavelength
is too complicated. However, such preprocessing can be ignored when using the CNN
model. CNNs outperform standard chemometric methods, especially for classification
tasks with no preprocessing [21], for images made of 10,000 pixels (values) with associated
color information, obtaining very high accuracy in recognition problems [17]. Moreover,
CNNs can effectively extract spatial information and share weights by establishing local
connections, which greatly reduces model parameters and provides a way to extract fea-
tures from the original input image [22]. As a result, CNN models are commonly used for
species discrimination based on hyperspectral image data.

Continuous efforts have been made to construct a practical plant species classifica-
tion model based on hyperspectral data [15,19,23]. Leaf spectroscopy data are related to
carotenoid/chlorophyll, carbon, water, and leaf mass per area [24–26], which are on the
biochemical level, whereas leaf image data are on an organic level. Moreover, broad plant
groups, orders, and families, and can be identified from reflectance spectra due to the
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phylogenetic signals present in leaf spectra [27]. Hence these kinds of datasets are ideal for
species discrimination. Unfortunately, few studies have applied CNN models based on leaf
spectroscopy data, which are in general 1D structured data, while CNNs are mostly used
for multidimensional image data. However, reshaping 1D leaf spectral data into a two-
dimensional (2D) matrix may provide a solution. Since leaf-level hyperspectral data are
taken as multidimensional in most studies, PCA or downscaling is essential for modeling.
In comparison, few studies ever consider reshaping these data to find more information,
although this is a common task in practical data analysis [28–31]. Luo et al. [32] extracted a
1D spectral-spatial feature from a hyperspectral image target pixel and its neighbors, then
stacked it into a 2D matrix to feed a CNN, and found that the performance of hyperspec-
tral image classification had improved. Han and Gao [33] found that a reshaped image
established by a pixel-level spectral was good enough to detect aflatoxin in peanuts, with a
recognition rate above 95%.

In this study, we demonstrate the effective identification of plant species with a CNN
model fed by a reshaped 2D greyscale image input from 1D hyperspectral data without
PCA or downscaling. This is based on composite data including six tree species from
different locations: Acer pseudoplatanus L., Acer rubrum L., Acer shirasawanum Koidzumi,
Andropogon gerardii Vitman, Fagus crenata Blume, and Quercus rubra L. The constructed
CNN model is compared extensively with deep cross neural network (DCN), SVM, RF,
GBM, and DT models. To our knowledge, no previous attempt has been made to rearrange
leaf spectroscopy data to a higher dimension for species identification modeling.

2. Materials and Methods
2.1. Dataset Description
2.1.1. Data Source

The measured database is a compilation of five independent datasets: ANGERS (AN),
LOPEX93 (LO), NEON (NE, Fresh Leaf Spectra to Estimate LMA over NEON domains in
the eastern United States Dataset, University of Wisconsin Environmental Spectroscopy
Laboratory) [34], CCLTER (CC, FAB Leaf Spectra Across a Light Gradient at Cedar Creek
LTER, Cavender-Bares Lab, College of Biological Sciences, University of Minnesota, Saint
Paul) [35], and SHIZUOKA (SH, Shizuoka University). Figure 1 shows the worldwide
distribution of data sources.
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The reflectance spectra of AN, NE, and SH were measured using an ASD Field Spec,
of CC using a Spectral Evolution PSR+, and of LO using a Perkin–Elmer Lambda 19
spectroradiometer. Respective samples in the AN, LO, and NE datasets had 2, 5, and 5 or
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10 replicates. Some species in the AN, LO, NE, and SH datasets were sampled more than
once to incorporate variability due to the development stage. The CC dataset had only
one measurement per leaf, each an automatic average of multiple spectra. The reflectance
spectra of AN, NE, SH, and LO were measured at 1 nm resolution, and the software
automatically resampled CC to 1 nm resolution and interpolated over sensor overlap.
Datasets were measured between 350 (400) and 2450 (2500) nm, except CC (Andropogon
gerardii Vitman), which was measured between 400 and 2400 nm. As we mainly used
wavelengths between 400 and 2450 nm, those outside that range were removed; for CC (A.
gerardii), the 2400 nm value was used to fill the range from 2401 to 2450.

2.1.2. Plant Species Selection

Training a classification model with thousands of spectral features generally requires
a large sample size. However, since the collection of samples for hyperspectral studies is
onerous, with high costs for imagery and arduous field measurements, sample sizes tend
to be small [19]. A deep learning model needs enough samples for training and validation;
BeamLab suggests 100–1000 samples [36]. In this study, species selection is based on sample
sizes in the collected dataset and whether there are enough prediction items for each species.
For datasets from one laboratory, it is hard to get enough hyperspectral data samples for
each species. We chose a sample from more than 80 places and laboratories as the target
species, and finally selected Acer pseudoplatanus L., Acer rubrum L., Acer shirasawanum
Koidzumi, Andropogon gerardii Vitman, Fagus crenata Blume, and Quercus rubra L., and a
total of 945 samples were included in this study. The sample size, symbol, and code for
each species are shown in Table 1. The general performance of models was tested using
data from different laboratories or years by separating them for training and prediction
data, and the training leaf spectra are shown in Figure 2.
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Table 1. Source of training, validation, and prediction datasets (AN = ANGERS, NE = NEON,
SH = SHIZUOKA, CC = CCLTER, LO = LOPEX).

Latin Name Symbol Code Group
Training and Validation Prediction

AN NE SH Total LO CC SH Total

Acer pseudoplatanus L. ACPS 0 Tree 181 181 10 10
Acer rubrum L. ACRU 1 Tree 156 156 18 18

Acer shirasawanum Koidzumi ACSH 2 Shrub-tree 100 100 9 9
Andropogon gerardii Vitman ANGE 3 Grass 89 89 16 16

Fagus crenata Blume FACR 4 Tree 214 214 24 24
Quercus rubra L. QURU 5 Tree 105 105 5 18 23

Total 181 350 314 845 52 15 33 100

2.1.3. Image Data Preparation for CNN Models

Unlike most conventional methods, we reshape 1D reflectance data into 2D grey image
data as the input of the CNN model. To our knowledge, the reshaping of 1D leaf spectral
data to 2D images as CNN training data has not been investigated. We use NumPy to
reshape 1D leaf reflectance data into a 2D array, and Keras image preprocessing to save
the array to a grey image, in the Python platform. The reflectance data was reshaped into
a 45 × 45 square image. To get such a 2D image, we select wavelengths from 400 to 2424,
which contain 2025 features, which we reshape into a 45 × 45 grey image, where each pixel
represents a feature. During this process, leaf reflectance values from 0 to 1 are scaled from
0 to 255 (Figure 3).
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(A): original reflectance structure data; (B): colorized reflectance structure data; (C): reshaped 2D
image data. Reflectance wavelengths range from 400–2424 nm, and 2025 features are selected.
Generated origin image is greyscaled, and the sample image is colorized to better understand each
part of the reflectance. Reflectance values in the range 0–1 are reshaped into the grey image, with
integer values scaled to 0–255. Hence, row 0 and column 0 represent 400 nm wavelength scaled value,
and row −44 and column 44 represent 2424 nm.

2.2. CNN Model Architectures

Eight fully convolutional neural networks (CNNs) based on leaf reflectance data
for species identification were developed. Each model contains one input layer, one or
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more convolution (Conv) and pooling (Pooling) layers, one flattened (Flatten) layer, one
dense (Dense) layer, and one output layer with six channels (dense) corresponding to
the six species. These models differ mainly by the number of Conv and Pooling layers.
Table 2 summarizes the CNN model architecture. Figure 4 shows the CNN8 architecture in
this study.

Table 2. Summary of CNN model architecture. Numbers 1, 2, 3 after CNN indicate number of
convolutional layers; A, B, C show difference of pooling layer after convolutional layers.

CNN1A CNN1B CNN2A CNN2B CNN2C CNN3A CNN3B CNN3C

Input 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3
Rescaling 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3 45 × 45 × 3

Conv1
Kernel 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3
Stride 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1

Output 45 × 45 × 32 45 × 45 × 32 45 × 45 × 32 45 × 45 × 32 45 × 45 × 32 45 × 45 × 32 45 × 45 × 32 45 × 45 × 32

Pooling Output - 22 × 22 × 32 - 22 × 22 × 32 22 × 22 × 32 - 22 × 22 × 32 22 × 22 × 32

Conv2
Kernel - - 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3
Stride - - 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1 1 × 1

Output - - 45 × 45 × 32 22 × 22 × 32 22 × 22 × 32 - 22 × 22 × 32 22 × 22 × 32

Pooling Output - - - - 11 × 11 × 32 - 11 × 11 × 32 11 × 11 × 32

Conv3
Kernel - - - - - 3 × 3 3 × 3 3 × 3
Stride - - - - - 1 × 1 1 × 1 1 × 1

Output - - - - - 45 × 45 × 64 11 × 11 × 32 11 × 11 × 32

Pooling Output - - - - - - - 5 × 5 × 64
Dropout Rate (%) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Flatten 64,800 15,488 64,800 15,488 3872 129,600 7744 1600
Dense 64,800 × 128 15,488 × 128 64,800 × 128 15,488 × 128 3872 × 128 129,600 × 128 7744 × 128 1600 × 128

Output 1 × 6 1 × 6 1 × 6 1 × 6 1 × 6 1 × 6 1 × 6 1 × 6
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six species.

The input of the model is the reshaped 2D grey image. The grey image value in the
[0, 255] range is rescaled to [0, 1] using the Keras preprocessing rescaling function, and this
value is passed as the input of the first convolutional layer. Convolutional layers Conv1,
Conv2 have 32 neurons, and Conv3 has 64 neurons, each with a 3 × 3 filter, and the stride
is 1. Some models with a pooling layer use max pooling for 2D spatial data, with 2 × 2
default pooling sizes, with no stride and valid padding. Layer Flatten is used to concatenate
the parallel outputs of the Conv or Pooling layer and convert them to a 1D vector, which
is fed into the fully connected dense layer. The Flatten layer has no parameters to be
trained. Instead, a dropout layer (rate of 0.2) before the flattening layer is adopted to
prevent model overfitting and improve computing performance by randomly killing off
many neurons [37]. We use the rectified linear unit (ReLU) activation function [38] for the
convolutional layers and fully connected layer, and use the Adam optimizer [39] to train the
model and find a local minimum of the objective function; sparse categorical cross-entropy
is used to compute the cross-entropy loss between labels and predictions.
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2.3. Model Comparison

The performance of eight CNN models is compared, and the best model is selected to
compare with other typical models.

2.3.1. Comparison of CNN Models with DCN

The CNN models were compared to DCN, another artificial neural network that starts
with an embedding and stacking layer, followed by a cross-network and deep network in
parallel, and a final layer that combines their outputs [40]. Although traditional feedforward
neural networks learn feature crosses inefficiently, DCN shows limited expressiveness in its
cross-network at learning more predictive feature interactions [41] and has lower log loss
than a deep neural network with fewer parameters by nearly an order of magnitude [40].
The same wavelength in CNN models was used in DCN to discriminate species without
PCA analysis or downscaling. DCN architectures are the same as used by Wang et al. [40].
DCN codes are from Keras Code Examples [42]. An early stopping strategy is used to
avoid overfitting.

2.3.2. Comparison of CNN Models with Conventional Models

To compare CNN models with other classification methods, four popular nonlinear
or linear conventional classification approaches, namely SVM, RF, decision tree (DT), and
gradient boosting decision tree (GBDT) were considered (Figure 5). Input data were
structured leaf reflectance data standardized using the Sickie-learn preprocessing standard
scaler. All models were implemented on the Anaconda Python platform using TensorFlow-
Keras [43] and the Scikit-learn [44] library on a Windows 10 desktop with 32 GB RAM and
an Nvidia Geforce GTX3070 graphics card with 12 GB RAM.
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Figure 5. Flowchart of the process followed in this study [4]. In the training phase, 1D structured
reflectance data are reshaped into a 2D grey image as the input for CNN models, while 1D data are
used for DCN and conventional algorithms. The application phase is a simulated phase using unseen
data for trained model prediction. Unseen data are from different areas, labs, or years. Predicted and
actual species are compared to generate prediction metrics.
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SVM is a supervised nonparametric statistical learning technique [45]. SVMs are
particularly appealing in remote sensing due to their ability to work with small training
datasets, often with higher classification accuracy than traditional methods [46]. We
compared linear, RBF, poly, and sigmoid kernels for SVM (Figure S1). The probability
estimates of each class were calculated using five-fold cross-validation, and the linear
kernel implemented a one-vs-the-rest multiclass strategy to train six classes.

The RF classifier is based on the classification tree approach and is efficient on large
datasets with high accuracy [1]. We used 100 estimators, using gini as the criterion, with a
max depth of 5.

DTs play an essential role in artificial intelligence and SVM applications [47]. They can
easily interpret rules used to categorize datasets while simultaneously finding the relative
importance of variables in the studied system [48]. We optimized DT with the gini criterion
and best splitter, and expanded nodes until all leaves were pure.

GBDT is a family of powerful machine learning techniques that have shown success
in a wide range of applications [49]. This accurate and effective off-the-shelf procedure can
be used for regression and classification problems in areas including Web search ranking
and ecology. The GBDT was optimized with a deviance loss function, 0.1 learning rate,
100 estimators, and maximum depth of 3.

2.4. Model Evaluation

In most species’ discrimination or classification studies, the test or validation matrix is
used to evaluate model performance. However, this is limited to a dataset collected by one
laboratory in one study field. Therefore, the evaluated model may not perform well for
other reflectance datasets.

We collected datasets from different areas and laboratories and divided the experiment
into training and simulated application phases. We used AN, NE, and SH data for training
and validation, and LO, CC, and SH (different years) data for prediction in the application
phase. We evaluated the general performance of the models by the prediction accuracy,
precision, and F1-score, which can be obtained from a confusion matrix based on their
phases [50]. A confusion matrix allows the visualization of the performance of an algorithm.
Based on the actual and predicted labels of a species, data samples can be divided in four
buckets, as shown in Table 3: true positive—actual = 1, predicted = 1; false positive—
actual = 0, predicted = 1; false negative—actual = 1, predicted = 0; and true negative—
actual = 0, predicted = 0.

Table 3. Actual and predicted label confusion matrix.

Confusion Matrix
Predicted

Positive Negative

Actual
Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

Accuracy is the proportion of correctly identified positive and negative values,

Accuracy =
TP + FN

TP + TN + FP + FN
(1)

Sensitivity (or recall) is the proportion of correctly predicted positive events,

Sensitivity =
TP

TP + FN
(2)

Precision is the proportion of predicted positive events that are actually positive,

Precision =
TP

TP + FP
(3)
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The F1-score is the harmonic mean of recall and precision, where a higher score
indicates a better model, balancing precision (exactness) and sensitivity (completeness),

F1-score =
2 × TP

2 × TP + FN + FP
(4)

All models were trained and validated 100 times for a dataset, which was randomly
divided into training and validation in a 75:25 ratio, and a final model was saved for the
application phase to identify species in the prediction dataset. The actual and predicted
species labels were used to calculate prediction metrics.

2.5. Process Flowchart

This study includes training and validation, simulate application, and evaluation
phases. In the training phase (orange in Figure 5), training and validation data are reshaped
to 2D images for CNN and taken directly as input for conventional algorithms. Validation
accuracy is generated in this phase. Both CNN and conventional algorithms then generate
predictive models. We take the prediction dataset as the unseen data for identification and
simulate this phase (green in Figure 5) to evaluate the general performance of each model.
The actual species labels and identified labels are used to calculate confusion metrics.
Validation accuracy from the training phase, precision, and F1-score from the application
phase are used to evaluate each model’s performance (blue in Figure 5). By adding the
simulated application phase, we determine whether the predictive models can be widely
used for leaf reflectance data from different places, labs, and periods.

3. Results
3.1. Comparison of CNN Models

All CNN models had high validation accuracy in the training phase. CNN1B, CNN2B,
and CNN2C reached 98.6%, demonstrating high performance in species discrimination
(Table 4). CNN2A had 98.0% accuracy, the lowest among these models.

Table 4. Predictive results obtained by CNN models: mean and standard deviation of validation
accuracy, prediction accuracy, precision, and F1-score from 100 runs.

Training Phase Application Phase

Model Validation Accuracy (%) Prediction Accuracy (%) Precision (%) F1-Score

CNN1A 98.4 ± 1.5 87.6 ± 1.7 62.9 ± 5.0 0.54 ± 0.04
CNN1B 98.6 ± 0.7 88.9 ± 1.7 66.6 ± 5.2 0.58 ± 0.05
CNN2A 98.0 ± 2.0 87.6 ± 2.3 62.7 ± 7.0 0.54 ± 0.07
CNN2B 98.6 ± 0.9 90.5 ± 2.6 71.5 ± 7.7 0.62 ± 0.07
CNN2C 98.6 ± 0.8 91.6 ± 2.7 74.9 ± 8.2 0.65 ± 0.08
CNN3A 98.5 ± 1.2 88.6 ± 3.0 65.9 ± 8.9 0.57 ± 0.09
CNN3B 98.5 ± 1.1 91.2 ± 2.2 73.6 ± 6.7 0.63 ± 0.08
CNN3C 98.2 ± 1.1 90.8 ± 2.9 72.5 ± 8.6 0.62 ± 0.09

In the application phase, the end-to-end learning approach of CNN2C obtained a
mean prediction accuracy of 91.6%, precision of 74.9%, and F1-score of 0.65 (Table 4), which
was much better than the other models. The second best performance was that of CNN3B,
with a mean prediction accuracy of 91.2%, precision of 73.6%, and F1-score of 0.63. CNN1A
and CNN2A obtained a mean prediction accuracy of 87.6%; precision of 62.9% and 62.7%,
respectively; and F1-score of 0.54, which shows they could not discriminate the six species
as well as other models in this phase.

3.2. Comparison of CNN with DCN and Conventional Models

DCN obtained a validation accuracy of 94.0% in the training phase (Table 5), 4.9%
lower than CNN2C. In the application phase, DCN had a mean prediction accuracy of
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85.5%, mean precision of 57.1%, and mean F1-score of 0.48, which are 6.9%, 31.1%, and
36.6% lower than CNN2C, respectively.

Table 5. Predictive results of conventional models: mean and standard deviation of validation
accuracy, prediction accuracy, precision, and F1-score from 100 runs.

Training Phase Application Phase

Model Validation Accuracy (%) Prediction Accuracy (%) Precision (%) F1-Score

DCN 94.0 ± 13.9 85.7 ± 2.5 57.1 ± 7.5 0.48 ± 0.09
SVM 98.6 ± 1.0 88.8 ± 1.2 66.4 ± 3.7 0.64 ± 0.04
RF 86.7 ± 2.6 83.6 ± 0.9 50.7 ± 2.8 0.46 ± 0.03

GBDT 91.6 ± 1.9 83.4 ± 1.1 50.4 ± 3.2 0.44 ± 0.03
DT 83.4 ± 2.6 80.9 ± 1.6 42.8 ± 4.9 0.38 ± 0.05

SVM obtained a mean validation accuracy of 98.6%, the best among the conventional
models. It had a mean prediction accuracy of 88.8%, mean precision of 66.4%, and mean
F1-score of 0.64 in the application phase, which were 3.2%, 12.7%, and 2.3% lower than
CNN2C, respectively.

RF, GBDT, and DT performed relatively well in the training phase, with mean valida-
tion accuracies of 86.7%, 91.6%, and 83.4%, respectively, but they performed poorly in the
application phase, with prediction precision scores of 50.7%, 50.4%, and 42.8%, which were
47.7%, 48.7%, and 74.7% lower than CNN2C.

3.3. Identification Results

CNN models clearly outperformed DCN and conventional methods, as seen in
Tables 4 and 5, and Figure 6 (see Supplementary File Figure S2 for identification confusion
matrix results).

CNN2C outperformed the other models on ACRU, FACR, QURU prediction, with
88.9%, 100%, and 65.2% precision, respectively (Table 6). DCN and SVM had the second
best prediction on ACRU, both with 72.2% precision, 23.1% lower than CNN2C. SVM had
the second-best prediction on FACR, with 95.8% precision, and DCN was second best on
QURU, with 47.8% precision. CNN2C, DCN, and SVM showed more clear advantages in
ACRU identification than the other conventional models. CNN2C was the only model that
could identify QURU better than a random prediction. DCN and conventional models had
significant difficulties separating QURU from ACRU (Figure 6).

Table 6. Correct prediction ratio for comparison methods in application phase (%).

Species CNN2C DCN SVM RF GBDT DT

ACPS 0.1 0.0 77.0 59.0 26.0 23.0
ACRU 88.9 72.2 72.2 48.9 54.4 26.7
ACSH 74.4 87.8 44.4 7.2 0.1 13.3
ANGE 68.8 29.4 81.3 93.8 93.8 87.5
FACR 100.0 83.3 95.8 79.2 87.5 70.8
QURU 65.2 47.8 17.4 8.7 8.3 13.9

CNN2C performed second best on ACSH, with 74.4% precision, while DCN was the
best, at 87.8%. Conventional models had significant difficulties separating ACSH from
other species (Figure 6). No neural network model could identify ACPS. CNN2C and DCN
tended to predict ACPS as QURU (Figure 6). SVM had a correct prediction ratio of 77% on
ACPS, which outperformed the other models.
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4. Discussion and Future Work
4.1. Reshaping Leaf Spectroscopy Data to Feed CNN Models

CNN models have been successfully applied since the early 2000 s to detect, segment,
and recognize objects and regions in images [51]. While it is common to use CNN models
to classify vegetation species from hyperspectral image data [17,18,52], little research
has made full use of leaf spectroscopy data on species classification together with CNN
models, which cannot use this 1D data. As a result, species classification based on leaf-level
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reflectance data relies more on ANNs and other conventional models, which use structured
input data. Although there have been attempts to use 1D leaf spectroscopy data as the
input for a CNN model [21], few studies have reshaped structural leaf spectroscopy data
into 2D image data to feed a CNN model.

In this study, we have combined leaf scale spectroscopy data and a CNN model, whose
superior performance, whether in the training or application phase, suggests its feasibility.
There are noticeable differences in leaf pigments, cell structures, and water content among
the samples in the dataset (Figure 7A). The DCN and conventional models should have
learned these differences from the structured reflectance data to discriminate species.
However, these differences are limited to one dimension (vertical in Figure 7A), and minor
differences from other dimensions were ignored. When the reflectance data were reshaped
into a 2D image, the differences could have been scaled in both the vertical and horizontal
dimensions (Figure 7B). Thus, the differences between species can be exaggerated from a
line to a surface (Figure 8). As a result, CNN models using these images may learn more
unique features of each species and discriminate them well. The high performance in the
application phase may also indicate that the learned features are more general for each
species than in the DCN and conventional models, resulting in the unseen data also being
more correctly identified.
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Figure 8. Average reflectance image-stretched 3D charts of six species. Reshaped grey images are
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CNN models may learn more features from image data than DCN and conventional models, which
use 1D structured data.

4.2. Superiority of CNN Model on Species Classification Using Leaf Spectroscopy Data

The results clearly show that in the training phase, the CNN model had the best
validation accuracy. Furthermore, in the application phase, the CNN model, with two
Conv layers, each with a pooling layer (CNN2C), had the best identification accuracy
and precision. The high performance of CNN models in the training phase shows that
they could perfectly discriminate six species, and only SVM could perform comparably
among the conventional models. The advantage of the CNN model, however, is more
apparent in the application phase. Thus, using 2D reshaped reflectance image data, the
CNN model may be more general for unseen leaf reflectance data discrimination and have
more application value for plant species identification.
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Furthermore, the CNN2C model well separated ACRU, FACR, and QURU. Surpris-
ingly, although all neural network models had difficulty distinguishing between ACPS and
QURU, SVM performed much better. It is noticed that the ACPS training data were from
ANGERS, using an ASD Field Spec spectroradiometer, while the identification data were
from LOPEX93, using a Spectral Evolution PSR+ spectroradiometer. To determine whether
the difference in instruments caused the problem, we excluded the five LOPEX93 QURU
data items from the prediction dataset, and reinvestigated the application phase for the
CNN2C model. The results showed that the correctly predicted QURU decreased from
15 (Figure 6 CNN2C) to 10 (Figure 9), 6.1 out of 23 QURU were still predicted as ACRU.
This means that neither the different datasets nor the difference in instruments caused the
problem, and that the CNN models may have learned characters similar to ACRU and
QURU, finally causing the misidentification of QURU. More examination may be necessary.
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4.3. Advantages and Uncertainty of Approach; Future Studies

Most studies followed data-driven approaches and pursued an optimization of classi-
fication accuracy, while a concrete hypothesis or a targeted application was missing in all
but a few exceptional studies [23]. The data from different locations or time periods were
used as the unseen prediction data for the trained model. The CNN2C model performs
best in this application phase. Although SVM performed as well as CNN2C in the train-
ing phase, it had difficulty identifying ACSH and QURU, clearly indicating that models
established from data-driven approaches may only perform well in the training phase but
not for unseen data, and may not find use in further species identification applications.
Alternatively, CNN2C may be a more general model for species identification based on
hyperspectral data.

Several sources of uncertainty remain. Compared with previous work, e.g., 46 species
in Prospere et al. [13], 33 species in Kalacska et al. [53], and 40 species in Bahrami and
Mobasheri [54], we had only six species, unfortunately, as the only ones with more than
80 samples in five datasets, while Beamlab [36] suggested that 100–1000 samples should
be used in deep learning. Thirty species with fewer than 80 and more than 30 reflectance
samples were not included, and whether these samples of small sizes affect the classification
results was not examined. Thus, more experiments should be conducted, or leaf reflectance
data of more species should be collected.

Similarly to the square images that are commonly used to feed CNNs, we reshaped
2025 reflectance features into 45 × 45 images for both training and prediction. To determine
whether square-shaped image reflectance data are preferable, we used 14 differently shaped
images (Figure 10) for CNN models. Results showed that the image in Figure 10j obtained
higher prediction accuracy and precision for CNN2C, with an F1-score of 0.68. The image
in Figure 10k obtained much better prediction accuracy and precision for CNN2 and CNN3.
We may conclude that a square leaf hyperspectral image is not necessarily the best, and a
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tall, narrow rectangle shape may provide better results for deeper CNN models in species
classification problems. The shapes of reflectance data for different CNN models should be
carefully studied.
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Unlike studies that use wavelength selection preprocessing to downscale the training
dataset, we adopted almost the full domain of reflectance data; whether the downscaled
data affect the classification results is still unknown. Additionally, compared to other
traditional methods, the proposed method of this study requires more time during the
procedure, thus some improvements could be carried out in future studies. Overall, we
attempted to reshape 1D reflectance data into 2D image reflectance data to feed a CNN, and
showed that it could effectively classify and identify six species from different locations.
The approach can be extended to estimate other leaf traits.

5. Conclusions

We reshaped 1D leaf-level reflectance data into a 2D grey image and presented a
workflow for tree species classification from hyperspectral data to produce an end-to-end
classification method. We compared the performance of eight feedforward neural network
architectures, a DCN, SVM, RF, a gradient boosting machine, and a DT model for this
task. The study showed that species identification can be conducted with high accuracy
with the given methods and 2D image data. The implemented CNN2C was the best
model, outperforming DCN, SVM, RF, GBDT, and DT in the application phase. We aim
to use 2D image data instead of 1D structure data to feed CNN models and simulate an
application phase to produce a general model for comprehensive data source classification
tasks. Developing these methods is crucial for the use of leaf levels and remote sensing
hyperspectral data, which are projected to become increasingly available in the future, for
large-scale biodiversity monitoring.
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