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Abstract: The atmospheric duct (AD) is an anomalous structure in which electromagnetic waves can
make transhorizon propagation. ADs often occur in the formation, development and disappearance
of tropical cyclones (TCs). In this work, the eXtreme Gradient Boosting (XGBoost) model is used to
predict TC ducts and a relatively high accuracy of 81.3% is obtained. Shapely additional explanations
(SHAP) values of the features including TC parameters and local meteorological parameters are
employed to interpret XGBoost model predictions of the TC ducts existence. Furthermore, the
importance ranking of the features is revealed, among which the distance between dropsondes and
TC eyes is the most important. In addition, the detailed relationships between the AD existence and
the features are presented. Hence, this work can not only improve the knowledge of the relationship
between TC ducts and the features, but also be of great value to the ducts prediction.
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1. Introduction

The propagation of the electromagnetic wave (EMW) in the atmosphere depends on
the atmospheric refraction index. The atmospheric duct (AD) is an anomalous refraction
structure. When the AD appears, the propagation path of EMW bends downward and the
energy will be restricted in the AD layer with small dissipation. Hence, the propagation
length of the EMW can be extremely long. As a result, the detectability of radars and the
smoothness of the communication system improve greatly. On the other hand, the existence
of the ducting layer results in the radar electromagnetic blind area and positioning errors.

The formation of the AD is associated with many synoptic processes. In 2004,
Von Engeln et al. [1] held the opinion that elevated ducts are usually caused by the subsi-
dence of air masses and the diurnal warming and cooling of the planetary boundary layer
(PBL). Sun et al. [2] found the elevated ducts were caused by the intermittent turbulence
in the PBL for the first time in 2016. Turton et al. [3] enumerated five synoptic processes
in favor of the formation of ducts in their work in 1988. In recent years, some research
focused on the atmospheric ducts related to the tropical cyclones (TCs). Pan et al. pointed
out that the atmospheric condition in the western and northwestern edge of the TCs was
beneficial to the formation of ADs [4]. The ducts induced by TCs over the northwestern
Pacific Ocean were analyzed based on the Global Position System (GPS) dropsonde data
by Ding et al. [5]. They found that the ducts formed in the transition zones tended to be
stronger and thicker than those formed inside the TCs. In 2019, Shi et al. [6] researched
the impact of the typhoon on the evaporation duct in the Northwestern Pacific Ocean and
discovered that the evaporation duct height in the typhoon eye was very low primarily due
to the low wind speed in this region. Fei et al. [7] investigated the impacts of the Bogus Data
Assimilation (BDA) and sea spray parameterization (SSP) on the typhoon ducts prediction
induced by Typhoon Mindule (2004) and GPS dropsonde data is used to compare with the
predictions. They found that the probability of the existence of typhoon ducts is nearly
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equal in every direction around the typhoon center and most of them are elevated ducts.
However, the sample size of their research is relatively small and only one typhoon with
ducts is investigated. As a result, the conclusion they obtained may be one-sided.

In recent years, reanalysis data have been widely utilized to perform surface, elevated
and evaporation duct climatology [8,9]. Based on these works, many statistical charac-
teristics of ducts were obtained. However, because of its coarse vertical resolution, the
ducting layers in high layers could not be reflected. Therefore, the data from GPS drop-
sondes, aircraft and radiosondes were used in the literature. Manjula et al. analyzed the
diurnal variation of atmospheric ducts in different seasons and the ducts characteristics
contrast between different seasons in Gadanki [10]. Zhao et al. [11] used radiosonde data
on the balloons by ship to detect the ducts occurrence in 2013, and they concluded that the
probability of ducts in the South China Sea is about 75% during 2010–2012. However, the
shortcomings of these works are obvious. Firstly, the sample number is small, which makes
the conclusions lack universality. Secondly, traditional dropsondes data have a vertical
resolution of about 100 m, failing to detect thin ducting layers [12,13].

Nowadays, as machine learning becomes more and more popular, it has been applied
to the field of meteorology much more frequently [14–20]. This method is suitable for big
data analysis and can easily establish the mapping relationship between the features and
the targets. For the atmospheric duct, many machine learning algorithms are also used to
improve the prediction accuracy. Zhu et al. [21] proposed a method based on a multilayer
perceptron to predict the evaporation duct height (EDH) and improves the accuracy a lot
compared with the Paulus–Jeske (P-J) model. Han et al. [22] put forward a method for EDH
nowcasting based on a long short-term memory (LSTM) network and a fully connected
network. It turns out that this method has a higher accuracy than traditional time series
forecasting methods. Extreme gradient boosting (XGBoost) is a popular machine learning
algorithm based on the decision tree [23]. It is much faster than traditional machine learning
algorithms. In addition, it has had a very good prediction performance in many research
works in recent years [24,25].

In this work, the high-vertical-resolution, long-term GPS dropsonde data from the
National Oceanic and Atmospheric Administration (NOAA), SRTM15 elevation data from
the National Aeronautics and Space Administration (NASA) and the National Bureau of
Image and Mapping (NIMA), TC-related information from the International Best Track
Archive for Climate Stewardship (IBTrACS) project from NOAA and ERA-5 reanalysis
dataset from European Centre for Medium-Range Weather Forecasts (ECWMF) are used to
analyze the TC ducts existence factors to the western and eastern coast of America from
1996 to 2020 based on XGBoost. Furthermore, the SHAP (shapely additional explanations)
values [26] are applied to interpret the XGBoost predictions of TC ducts existence to find
out how different factors influence the ducts existence.

2. Data, Model and Methods
2.1. The Method of Determining TC Ducts

The definition of the radio refractivity was put forward in 1953 [27]; the expression is
as follows:

N =
77.6p

T
− 5.6e

T
+

3.75× 105e
T2 (1)

where T is the absolute temperature (Kelvin), p is the atmospheric pressure (hPa), e is
the water vapor pressure (hPa). After taking the earth curvature into consideration, the
modified refractivity is introduced:

M = N +
z

R× 10−6 = N + 0.157z (2)

where R is the radius of the earth with a value of 6.371× 106 meters, and z is the height
above the sea surface (meters). The occurrence of the AD is judged by dM/dz < 0 as the
curvature radius of the EMW track is smaller than that of the earth in this case; thus, the
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EMW is trapped in the specific layer and the AD is formed. Temperature, pressure and
humidity profiles from GPS dropsondes are used to calculate the profiles of the modified
refractivity. Since some of the dropsondes positions are on land, the elevation change is
taken into account.

Due to the existence of turbulence and instrumental noise, the raw data is firstly
processed by the software named Atmospheric Sounding Processing Environment (ASPEN)
from the National Center for Atmospheric Research (NCAR) (http://www.eol.ucar.edu/
software/aspen (accessed on 13 June 2022)). This software can analyze the data, perform
smoothing, sensor time response corrections and remove suspect data points [28]. After the
profiles are calculated, each potential ducting layer corresponds to a cut-off wavelength,
which represents the ability to capture the EMW. The longer it is, the more stable the
ducting layer will be. The cut-off wavelength is calculated by the equation below [29]:

λmax =
2× C× d×

√
δM

3
(3)

where λmax is the cut-off wavelength (meters), d is the depth of the ducting layer (meters),
and δM is the duct strength (M). C is a constant value of 5.66× 10−3 for an elevated duct
and 3.773 × 10−3 for a surface duct. In this work, the potential ducting layers whose
λmax ≥ 0.5 are considered as effective ducting layers. The reason for taking this index as a
restriction is the two characteristics of the duct are taken into consideration. A layer that
satisfies the above equations can be regarded as an atmospheric duct when both of the duct
strength and the duct thickness are big enough. In this way, the unreal ducts caused by the
instrumental error and the random disturbance error can be filtered since their thicknesses
are too small or their strength is too tiny. With the above steps, the negative effects are
eliminated and the real ducting layers are obtained. Finally, 15,216 profiles are calculated
in 164 TCs from 1996 to 2020 (Figure 1).
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Figure 1. The tracks of 164 hurricanes in the eastern Pacific and North Atlantic during 1996–2020.

2.2. Datasets for the Predictions of TC Ducts

The temperature, pressure and humidity data come from the GPS dropsondes de-
ployed from high altitudes by hurricane research aircraft from NOAA from 1996 to 2020 for
over 20,000 times (https://www.aoml.noaa.gov/hrd/data_sub/dropsonde.html (accessed
on 13 June 2022)). The data including temperature, humidity, wind speed and direction
are available every 0.5 s. The vertical resolution of the data is about 5–15 m. Secondly, the
elevation data used here is SRTM15 Digital Elevation Model (DEM) from the NASA and
the NIMA. The horizontal resolution of the data is 450 m, and the coverage area is global
land. With the computed elevation and other parameters combined, the profile of modified
refractivity can be calculated.

http://www.eol.ucar.edu/software/aspen
http://www.eol.ucar.edu/software/aspen
https://www.aoml.noaa.gov/hrd/data_sub/dropsonde.html
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The TC-related information in this paper is from the IBTrACS project version 04 pub-
lished by NOAA (ncdc.noaa.gov/ibtracs/index.php (accessed on 13 June 2022)) [30]. The
variables have a temporal resolution of 3 h for each TC. According to the prior knowl-
edge and reasonable conjecture, four variables are chosen to be the features: TC grades
(TC intensities are classified into eleven categories of unknown type, post-tropical, misc-
disturbances, subtropical, tropical-depression and tropical-storm from −5 to 0 and cate-
gories 1–5 by the Saffir–Simpson scale based on the 10 min average maximum sustained
winds), TC radius of the maximum winds (RMW), the distance between dropsondes and
the TC eye (TC-dropsonde distance) and the positional relation between dropsondes and
TC tracks (The dropsonde can be on the four quadrants: the left-front, left-back, right-front
and right-back side of TC tracks, respectively, represented by 1–4). We call it the dropsonde
quadrant. Among the points in the tracks of the TC, the variables at the point whose time
is closest to the deploying time are selected to be the features of the profile.

Furthermore, meteorological parameters at standard pressure levels used in this paper
are derived from the ERA-5 reanalysis dataset (https://cds.climate.copernicus.eu/cdsapp#
!/home (accessed on 13 June 2022)) from ECWMF. The temporal resolution of the dataset is
one hour and the spatial resolution is 0.25◦ × 0.25◦. The maximum height we consider does
not exceed 5000 m since most ADs occur below this height [31]. As a result, the pressure
levels include 1000 hPa, 975 hPa, 950 hPa, 925 hPa, 900 hPa, 875 hPa, 850 hPa, 825 hPa,
800 hPa, 775 hPa, 750 hPa, 700 hPa, 650 hPa, 600 hPa, 550 hPa and 500 hPa. For better
summary in the following text, these pressure levels are divided into three parts: upper
layer (500–600 hPa), middle layer (600–750 hPa) and lower layer (775–1000 hPa) according
to the pressure-altitude correspondence. The parameters are the specific humidity, the
temperature and zonal and meridional winds at these levels. In terms of the selection of
grid data, according to Peng and Shu [32], the horizontal advection range of the dropsondes
can be negligible compared to the hurricane scale in most cases, and since the maximum
height is 5000 m, the horizontal range within the height does not exceed a few kilometers.
Based on the above analysis, we conclude that GPS dropsondes maintain a relatively fixed
position, that is, dropsondes can detect local vertical meteorological parameters precisely.
Hence, the grid in which the dropsonde is located is chosen and the time is chosen to be
the hourly time closest to the deploying time of the dropsonde. The local meteorological
parameters combined with the TC parameters and the locations of dropsondes make up
the feature set, and then predict the TC ducts (Table 1).

Table 1. The features used for the duct existence prediction.

Category Feature Name

Meteorological parameters

Specific humidity (1000–500 hPa)
Temperature (1000–500 hPa)
Zonal winds (1000–500 hPa)

Meridional winds (1000–500 hPa)

TC parameters

TC grades
TC RMW

Dropsonde quadrant
TC-dropsonde distance

Location parameters Latitude
Longitude

2.3. XGBoost Model

XGBoost is converted from the gradient boosting decision tree (GBDT) algorithm,
which avoids over-fitting by adding regular terms into the cost function [33,34]. Its basic
theory is as follows [25]:

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (4)

ncdc.noaa.gov/ibtracs/index.php
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
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where t is the number of basic tree models, ft(xi) is the prediction of the t-th tree for the
i-th sample and ŷ(t)i is the prediction of the t basic tree models for the i-th sample.

The goal of the algorithm is to make the integrated model achieve the best performance,
which also means minimizing the loss function:

ξ =
n
∑
i

l(yi, ŷi) +
t

∑
k=1

Ω( fk)

Ω( ft) = γ ∗ T + 1
2 λ

T
∑

j=1
w2

j

(5)

where l is a twice differentiable convex function used to measure the error between the
actual value ŷ and the predicted value ŷi. T is the number of nodes in a decision tree and wj
is the weight of the j-th node in all leaf nodes. γ and λ is the difficulty of node segmentation
and the regularization coefficient, respectively. Ω( f ) is the summary of the complexity of
the t trees which can be used for the penalty function.

Since XGBoost uses the forward iteration, the t-th tree is focused on and the predictions
of the former t− 1 trees can be regarded as constant:

ξ(t) =
n
∑
i

l(yi, ŷi) +
t

∑
k=1

Ω( fk)

=
n
∑

i=1
l(yi, ŷ(t−1)

i + ft(xi)) +
t

∑
k=1

Ω( fk)

=
n
∑

i=1
l(yi, ŷ(t−1)

i + ft(xi)) + Ω( ft) + C

(6)

Next, Taylor series expansion is utilized for the loss function, and the original loss
function is modified as:

ξ(t) =
n

∑
i=1

[l(yi, ŷ(t−1)
i ) + gi ft(xi) +

1
2

hi f 2
t (xi)] + Ω( ft) + C (7)

where gi represents the first derivative and hi represents the second derivative. Then,
Equation (5) is plugged into Equation (7):

ξ(t) =
T
∑

j=1
[Gjwj +

1
2 (Hj + λ)w2

j ] + γT

Gj = ∑
i∈Ij

gi

Hj = ∑
i∈Ij

hi

(8)

To obtain wj, the loss function is taken the derivative of with regard to it. Then, wj and
ξ can be expressed as below:

wj = −
Gj

Hj+λ

ξ = − 1
2 ∑T

j=1
G2

j
Hj+λ + γT

(9)

XGBoost classifier includes the following parameters: learning_rate (control the learn-
ing speed), max_depth (the max depth of the decision tree), n_estimators (maximum
number of decision trees), min_child_weight (defines the minimum sum of weights re-
quired in a child), reg_lambda (L2 regularization term), reg_alpha (L1 regularization term),
subsample (control the proportion of random sampling number), colsample_bytree (control
the proportion of random sampling features) and gamma (minimum decrease in the loss
function for node splitting).



Remote Sens. 2022, 14, 3952 6 of 16

As for the data features and labels, the features we use are as described in the previous
section. These features are employed to predict the occurrence of TC ducts. We use 0 and 1
as labels. The 1 represents no TC ducts in this profile, and the 0 represents the opposite.
The sampling method used in this work is over-sampling due to the large gap between the
numbers of data of the two classes. Specifically, the dataset includes 5727 samples with the
value of 0 and 9489 samples with the value of 1. Artificial points are added to the samples
with value 1 randomly, making the number of the two classes equal-sized.

Next, the total data set is divided into a training set (70% of the sample size) and a
testing set (30% of the sample size). The loss function is chosen to be binary cross entropy.
Every parameter is set within a fixed range according to prior knowledge. The grid search
algorithm is used to find all the parameter combinations within the range of settings and
then the performance of each combination is calculated utilizing cross-validation on the
training set [35]. After a large number of computer experiments are accomplished, the best
parameter combination is obtained as is shown in Table 2.

Table 2. The parameter combination with the best test performance for XGBoost.

Parameter Value

Learning_rate 0.05
Max_depth 9

N_estimators 3000
Min_child_weight 1

Reg_lamda 1
Reg_alpha 0.1
Subsample 0.9

Colsample_bytree 0.9
Gamma 0

The estimation indexes are chosen to be the kappa index and classification accuracy.
Kappa index is a measure of agreement between measured data and simulated data [36].
It is a popular indicator in the present field of machine learning, especially in the field of
spatial matching. The expression of Kappa index is as follows:

κ = p0−pe
1−pe

pe =
a1×b1+a2×b2

n×n

(10)

where p0 is the sum of the correctly classified samples for each category divided by the total
number of samples, a1, a2 represent the real number of samples for each category and b1, b2
represent the predicted number of samples for each category. The relationship between its
values and the degree of agreement is as follows [37]:

strong agreement
high agreement

moderate agreement
poor agreement

κ > 0.8
0.6 < κ < 0.8
0.4 < κ < 0.6

κ < 0.4

(11)

2.4. SHAP Interpretation for the TC Ducts Prediction

SHAP is a “model interpretation” package developed in Python that interprets the
output of any machine learning model. SHAP can quantitatively analyze the relationships
between machine learning algorithm predictions and input variables. The SHAP value for
each variable represents its effects and importance on the predictions. SHAP values can
sort the importance of the variables to the predictions, and thus, SHAP can be used for
feature selection. Furthermore, compared with the original XGBoost ranking, SHAP has
two big advantages, consistency and accuracy, respectively. As for consistency, it means
that when the number of features changes, the change of the original feature importance
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ranking order will be as little as possible. With regard to the accuracy, this advantage makes
sure that each feature’s contribution to the total importance remains the same when some of
the features are deleted from the feature set [26,38]. The basic theory of the SHAP is called
the shapely value method put forward by Shapely [39] in 1953. It belongs to the field of the
cooperative game to solve the contradiction caused by the distribution of interests in the
process of cooperation. One advantage of applying the Shapely value is that the benefits
are distributed according to the marginal contribution rate of members to the alliance, that
is, the benefits shared by member i are equal to the average value of marginal benefits
created by the member for the alliance he participates in. The basic theory is as follows:

ϕi(v) = ∑S∈N
[(|S| − 1)!(n− |S|)!]

n!
× [v(S)− v(S\{i})] (12)

where n is the number of members in the cooperative game system, and N = {1, 2, . . . , n}.
S is the subset of N composed of different members. v(S) represents the benefits of
the alliance S and ϕi(v) represents the benefits obtained by member i of the alliance S.
|S| represents the number of members in the alliance S. n! represents the n factorial.
S\{i} represents the set after the element i is removed from S. The marginal contribution
created by member i participating in different alliances S is denoted as [v(S)− v(S\{i})].
The weight of the benefits created by the member i in the whole alliance is denoted as
[(|S|−1)!(n−|S|)!]

n! .
The basic theory of the shapely value method is applied to SHAP. In machine learning,

every feature in the feature set is a member of the alliance. There is a predicted value of the
machine learning algorithm for each sample, and the SHAP value is the value assigned to
each feature in the feature set. The formula for SHAP value is as follows:

zi = zbase + h(xi1) + h(xi2) + . . . + h(xij) (13)

where xij represents the j-th feature of the i-th sample, and zi represents the predicted value
of the i-th sample. zbase is the baseline of the model and h(xij) means the value contributed
to the final prediction by the j-th feature of the i-th sample.

In this work, this method is employed to find the relationship between the existence of
TC ducts and different factors. Furthermore, the importance of the factors is sorted to find
out the primary factor. Additionally, the primary cause of each TC duct can be discovered.

In summary, the feature set including meteorological parameters, TC parameters and
location parameters, combined with the label set is used in XGBoost algorithm to predict the
existence of the AD in oceanic TC. Then, the SHAP is utilized to interpret the predictions of
the XGBoost and analyze the relations between the TC-AD and these features. The overall
structure of the algorithm is shown in Figure 2.
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3. Results and Discussion
3.1. The Performance of the XGBoost Algorithm on the Testing Dataset

The trained model is tested by kappa index and accuracy on the testing set, which
can reach 0.6258 and 81.30%, respectively. From Equation (11), our features have a high
agreement with the TC ducts existence. Logistic regression is a generalized linear regression
analysis model and belongs to supervised learning. The derivation process and calculation
method are similar to the regression method. Nevertheless, it is mainly used to address
dichotomies problems. It is used here as the benchmark model to compare its performance
with that of XGBoost. Logistic regression has the following parameters: regularization
parameter (C), penalty term (penalty), optimization method (solver) and the best param-
eters combination are C = 0.1, penalty = L2 and solver = ”lbfgs”. The testing accuracy of
the model is about 69.5% and the testing kappa index is about 0.391. It turns out that the
XGBoost model performance improves a lot compared with logistic regression.

3.2. The Top 20 Most Important Features to the Existence of the AD

SHAP is used to quantitatively analyze the predictions of the XGBoost model trained
on the training set, and then the importance of features is sorted according to the SHAP
values on the total dataset (Figure 3). This figure presents the SHAP values of the top 20
most important features and how they affect the predictions. The positive values indicate
the probability of TC ducts becoming lower and the negative indicates the opposite. The
gradient color from red to blue on the color bar corresponds to the feature values from
high to low. As shown in Figure 3, Firstly, the horizontal distance between the TC eye and
the dropsonde has the greatest effect on the TC ducts existence. however, the relationship
between them is not linear. Secondly, the geographical position of the dropsonde takes the
second position among the TC parameters. With regard to the TC grades, the RMW of TCs
and the relative position of dropsondes to TCs, they have few effects on the existence. From
the aspect of local meteorological parameters of dropsondes, the humidity at the pressure
level of 700 hPa is the most crucial factor. Additionally, it was found that the humidity
at various levels is the most important, the temperature at levels comes second. As for
the zonal and meridional wind at levels, the only level worthy of attention is the 500 hPa
pressure level.

3.3. The Relationship between AD Existence and the Features

Next, we in detail analyze the relationship between the SHAP values and different
factors. Firstly, we investigate the TC parameters (Figure 4). It is vividly shown that it
is more likely to form TC ducts on the right-back of the TC tracks compared to the other
quadrants (Figure 4a). This conclusion consists with the result obtained by Ding et al.’s [5]
work that most ducts are formed on the right side of the TC tracks in the transition zone.
However, our results contradict the results from Fei et al. ’s [7] work that ducts are likely to
form in every direction around the typhoon center. This may be because of the occasionality
caused by the limit of their sample size. From Figure 4b, the probability of ducts first
decreases and then increases with the increase in distance between dropsondes and the
TC eyes. It is beneficial to the ducts formation in the TC eye; this is mainly because of
the subsidence of dryer air masses in the upper layer, and meeting with the humid air in
the lower layer. This leads to a high vertical humidity gradient and then forms TC ducts.
It is unfavorable for the ducts existence when the dropsonde is out of the eye. With the
distance increasing to about 250 km, the ducts probability increases. In Ding et al.’s [5]
work, they found that most ducts formed in the transition zone, which also supports our
above discussion. Then, when the distance continues to increase, the probability remains
unchanged. The geographical location of dropsondes has no obvious effects on the ducts
existence (Figure 4c,d). With regard to the TC grade, there is no evident relationship
between SHAP value and it. Finally, the probability of TC ducts decreases with the increase
in the RMW of the TC.
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When it comes to the local meteorological parameters, we first compute the average
SHAP values of the specific humidity at each pressure level (Figure 5a) and select the
most important two levels: 700 hPa and 750 hPa to analyze the SHAP values dependence
on them (Figure 5b,c). It was discovered that the probability of ducts decreases with the
increase in the humidity at the two levels. It can be inferred that the increase in the humidity
makes the humidity gradient between the upper and the lower layer smaller, leading to a
decreasing probability.

Afterwards, the effects of the temperature at each pressure level are focused (Figure 6a),
and the top two important ones: 550 hPa and 600 hPa are selected to research their relation-
ships with SHAP values (Figure 6b,c). It was found that their relationships are relatively
complicated with no linear-like relationships presented. However, it can be referred that
the condition of 270–275 K at 550 and 600 hPa pressure levels is the most conducive to the
ducts’ existence.

Finally, the effects of zonal and meridional winds at each pressure level are paid
attention to (Figure 7a,b). According to Figure 3, the impacts of the winds are totally little,
so we combine them into a figure. It is clearly presented that the zonal and meridional
winds at 500 hPa pressure level take the first place. Then, the SHAP values’ dependence on
them is plotted (Figure 7c,d). No obvious relationship is presented. Generally speaking,
the meteorological parameters in the middle and upper layers play a decisive role in the
TC ducts formation.
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4. Case Analysis in the Tropical Storm Nestor

To investigate the relationship between the existence of ducts and the features more
specifically, the dropsondes related to the tropical storm Nestor are taken into consideration.
Nestor developed into a tropical storm at 1800 UTC 18 October 2019, with its minimum
central pressure of 1000 hPa and the RMW of about 92.6 km based on IBTrACS dataset. It
was generated in Gulf of Mexico and moved northeastward to the east coast of America. In
Nestor, there are totally 25 dropsondes along the track of it, 12 of which detected ducts and
13 detected no ducts. The track of the tropical storm and the locations of the dropsondes
with ducts and with no ducts are plotted in Figure 8. In addition, three dropsondes with
ducts named, respectively, Point 1, Point 2 and Point 3 for further analysis of the reason for
existing ducts are also marked out in this figure. Besides, since the temperature, humidity,
etc. are given at pressure levels, a table of pressure-altitude correspondence at normal
atmospheric pressure (Table 3) is given to better discuss the change of these variables at
different altitudes.
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Figure 9 shows the decomposed SHAP values for the individual prediction of the
three examples with ducts. Additionally, to explain the reasons for forming duct better, the
vertical profile of the modified refractivity, temperature and water vapor pressure at the
three points are plotted in Figure 10. In Figure 9, the features that higher the prediction
are shown in red and those features that lower the prediction are shown in blue [40]. In
the prediction of the existence of ADs, the former represents the decreasing probability of
ducts and the latter represents the increasing probability of ducts. Next, a detailed analysis
of the reason why ducts exist in these three points is given. For Point 1, the duct here
is the surface duct and the duct is formed by the vertical moisture gradient in the lower
layer (Figure 10a–c). The features that are most beneficial to the duct formation are the
specific humidity at 700 and 600 hPa and the most suppressive feature is the TC-dropsonde
distance. As for the TC-dropsonde distance, it is revealed in Section 3 that in the TC, with
the distance increasing, the probability of forming ducts decreases rapidly. The existing
duct here consists with the conclusion well since the TC-dropsonde distance is smaller than
the RMW, which means the dropsonde was in the tropical storm.
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Figure 9. Decomposed SHAP values for the individual prediction of three examples with ducts.

For Point 2, the most important features are all specific humidity at different heights,
among which the specific humidity at 700 hPa restrains the existence of ducts and the
specific humidity at 550 and 975 hPa pressure level are helpful to the duct existence, this
may be because this is a surface duct and it is mainly formed by the vertical humidity
gradient from Figure 10d–f. Sequentially, the relatively big value of the specific humidity
at 950 hPa makes the gradient bigger, while the relatively big value of that at 700 hPa
makes the gradient smaller. As has been clarified above, the low humidity in the middle
layer can indeed make it easier to form ADs for the big vertical humidity gradient in the
atmosphere. For Point 3, the helpful features of the duct existence are specific humidity
at 900 hPa and the temperature at 500 hPa. From Figure 10g–i, Tthehe duct is a surface
duct, too. Meanwhile, it is caused by the humidity gradient and the high value of specific
humidity at 950 hPa pressure level makes the absolute difference between the lower layer and
the middle layer bigger. As for the temperature at 550 hPa, this consists with the conclusion
obtained in Section 3 that the ducts are more likely to form under the condition of 270–275 K.
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5. Conclusions

Based on dropsonde data, in addition to IBTrACS dataset, SRTM15 dataset and ERA-5
reanalysis data, a machine learning method named XGBoost is utilized to predict the TC
ducts. Additionally, SHAP is used to interpret the predictions of the model. Through the
model’s performance on the testing set, it can be considered that this model has a high
reference value for the prediction of TC ducts and ducts in the normal atmosphere. The
importance of the factors is sorted according to their SHAP values, and the SHAP values’
dependence on various factors is analyzed. The following conclusions are obtained:

(1) The most important factor in TC ducts formation is the distance between dropson-
des and the TC eye. The local meteorological parameters take the second place, in which
the humidity and temperature in the upper layer are the most crucial.



Remote Sens. 2022, 14, 3952 15 of 16

(2) The TC ducts are easy to form in the TC eye and the opposite out of the eye. The
probability of ducts increases and keeps unchanged with the distance increasing. Secondly,
the probability is positively correlated with the RMW. Moreover, the TC ducts are more
likely to form in the right-back of the TC tracks.

(3) The increase in the humidity in the middle layer is harmful to the ducts existence.
Besides, the situation that the temperature is between 270–275 K in the middle layer is the
most favorable for the AD existence.
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