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Abstract: The rate of vegetation green-up (RVG) indicates the ability of vegetation to respond to
changes in climatic conditions. Understanding long-term RVG trends can clarify the changes in how
quickly the vegetation grows from dormancy to maturity with time. However, how RVG trends
respond to environmental variables and variable interactions remains unknown. We examined the
long-term RVG trends (1981–2018) over the northern extratropics and determined the influence of
environment variables and interactions between variables on the RVG trends based on the Global
Land Surface Satellite leaf area index and a multivariable regression considering interactions between
variables (MRCI). Our results showed a persistent increase in RVG at 0.020% (8-day)−1 year−1

over the entire region. Except for shrublands (−0.032% (8-day)−1 year−1), RVG trends increased
significantly, particularly in woody savannas (0.095% (8-day)−1 year−1) and mixed forests (0.076%
(8-day)−1 year−1). The relative importance of interactive effects (RIIAE) to the RVG trends is roughly
30%. Rising CO2, enhanced vapor pressure deficit (VPD), and warming are the primary factors
affecting the RVG trends, both at the pixel and the biome scales. The accelerated RVG is triggered by
both rising CO2 and warming but is partially offset by increased VPD. Our findings shed light on the
relative contribution of variable interactions and assessed the relationship between environmental
factors and RVG trends across different biomes, hence strengthening our knowledge of vegetation
spring green-up in response to global change.

Keywords: climate change; rate of vegetation green-up trends; phenology; multiple linear regression;
vapor pressure deficit

1. Introduction

Vegetation of the northern extratropics is shifting its seasonal growth cycles to adapt
to global change [1–3]. Changes in vegetation phenology are considered clear signals that
global changes affect terrestrial ecosystems [4,5]. Previous studies, however, had already
centered on discrete phenological events such as the start of the growing season [6], the
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length of the growing season [7], and the peak of the growing season [8], with little attention
paid to continuous phenological events such as spring green-up or autumn senescence,
which reflect how quickly the vegetation can respond to changes in climatic conditions [9].
Thus, continuous phenological events should be studied to have a better understanding of
how vegetation grows in the context of global change.

The rate of vegetation green-up (RVG) represents the growing velocity of plant growth
over time from dormancy to maturity [2,10]. Variations in RVG influence annual carbon
assimilation due to altering the growing season length [9], and consequently affect the
biosphere–atmosphere exchange of energy, carbon, and water [11,12]. Previous studies
suggest that several variables such as atmospheric carbon dioxide concentrations (CO2),
temperature, and water availability might affect the vegetation greening rate individually
or interactively [2,13,14]. Rising CO2 could enhance carboxylation and enhance water use
efficiency [15], thus promoting foliage development and vegetation productivity [16,17].
A growing body of evidence suggests that spring phenology is extremely sensitive to
temperature change [10,14,18–20] and that RVG acceleration is strongly linked to warming
at high latitudes [2]. Although precipitation has a minimal influence on the RVG trends [2],
plant water stress is largely reliant on the conditions of atmospheric aridity and soil
moisture. Current research suggests that the intensification of atmospheric aridity over
the past few decades has had a profound effect on ecosystems [21]. Given the influence of
water on the greening rate, particularly in arid/semiarid terrestrial ecosystems [22], the
function of water scarcity on leaf development must be investigated further.

During the greening of plants, it is impossible to disregard the complex interactions
involving temperature, radiation, water availability, and atmospheric CO2 concentra-
tions [10,23,24]. For example, warming may enhance the drought risk of the ecosystem
because the increasing evaporation would enhance soil water consumption and exacerbate
drought conditions for plants [21]. Cook et al. [24] found that warming could reduce chill-
ing accumulation and then accelerate spring leaf expansion because the reduced chilling
accumulation could delay the date of leaf unfolding. Generally, the effects of elevated
atmospheric CO2 concentrations on plant development are regulated by temperature [25],
nutrient limitation, and water availability [26,27]. The CO2 fertilization effect requires an
ample level of water and nutrients, i.e., an absence of drought and nutrient stress effects.
In other words, the benefits of the CO2 fertilization effect could be reduced in the case of
water scarcity and a lack of soil nutrients. While the mechanics of these interactions are
closely connected to plant phenology and growth, the influences of interactions on vegeta-
tion greening rate remain scarce. Moreover, there are biome-specific shifts in vegetation
phenology [28], meaning that variations in leaf development can be affected by the makeup
of the various forest types [14]. In contrast, at the biome level, the effects of multiple
environmental factors and their interactions on the trends of leaf development are still not
well understood, and a thorough understanding of the RVG trends and environmental
factors is essential.

In this study we firstly analyzed the long-term RVG trends (1981–2018) across the
northern extratropics and across different biomes. Secondly, we assessed the relative
importance of interactive effects at the pixel and biome scales employing the multivariable
linear regression considering interactions between variables. Finally, we examined the
dominant factors driving the RVG trends at the pixel scale over the northern extratropics,
as well as factor attribution across the different biomes. The purpose of this research was to
determine the influence of each variable and their interactions on the RVG trends, and to
gain a better understanding of spring vegetation green-up in response to climate change.

2. Materials and Methods
2.1. The Global Land Surface Satellite Leaf Area Index (GLASS LAI) and Land-Cover Classification

The Global Land Surface Satellite leaf area index (GLASS LAI version 5), which is
produced by general regression neural networks based on AVHRR (http://glass.umd.edu/,
accessed on 6 July 2021), covers the world at a 0.05◦ spatial resolution and an 8-day time
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interval from 1981–2018 [29]. We chose GLASS LAI in this work because it exhibits superior
quality and accuracy over other long-term LAI products [30,31]. In our research, we used
the International Geosphere-Biosphere Programme (IGBP) global land-cover classification
MCD12C1 product (https://search.earthdata.nasa.gov/, accessed on 8 July 2021), which
has a spatial resolution of 0.05◦ for the entire globe from 2001 to 2018 [32]. Given the
mismatch between time periods of the MCD12C1 dataset (2001 to 2018) and the study
period (1981–2018), the authors primarily focused on pixels that did not suffer changes
in deciduous vegetation types. Finally, the land cover data were divided into seven
classes, including deciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF),
mixed forests (MIF), shrublands (SHL), woody savannas (WSN), savannas (SVN), and
grasslands (GRL).

2.2. Environmental Variables Data

Fundamental climatic variables (air temperature at 2 m, relative humidity, volumetric
soil moisture, and solar radiation at the surface) were obtained from the Copernicus Climate
Data Store [33], and the CO2 concentrations dataset was retrieved from the atmospheric
CO2 field simulations (sEXTocNEET_v4.3: http://www.bgc-jena.mpg.de/CarboScope,
accessed on 10 July 2021) [34]. Next, the nearest-neighbor method was used to interpolate
the datasets to the 0.05◦ spatial resolution. We calculated the following six environmental
variables for each pixel and each year from 1981–2018: chilling accumulation (CA), CO2,
growing degree-day (GDD), solar radiation (RD), soil moisture (SM), and VPD. Calculations
were completed using Equations (1)–(6) as follows:

CARVG =
SOSclim

∑
Jan1st


0 for T(t) < 0 °C

1 for 0 °C ≤ T(t) ≤ 5 °C
0 for T(t) > 5 °C

(1)

CO2RVG =
∑SOSclim

Jan 1st C(t)

SOSclim − Jan 1st
(2)

GDDRVG =
SOSclim

∑
Jan 1st

{
0 for T(t) < 0 °C

T(t)− 0 °C for T(t) ≥ 0 °C
(3)

RDRVG =
SOSclim+15

∑
SOSclim−15

R(t) (4)

SMRVG =
∑SOSclim

Jan 1st M(t)

SOSclim − Jan 1st
(5)

VPDRVG =
∑SOSclim

Jan 1st V(t)

SOSclim − Jan 1st
(6)

where T(t), C(t), R(t), M(t), and V(t) represent daily temperature at 2 m (◦C), atmosphere
CO2 concentrations (ppm), surface solar radiation (J m−2), soil moisture (m3 m−3), and
vapor pressure deficit (hpa), respectively. SOSclim indicates the climatological start of the
growing season (SOS) averaged during 1981–2018 for each pixel. CA is the number of days
when the daily temperature is >0 and <5 ◦C from the first day of a year to SOSclim. The GDD
is defined as the accumulated temperature (>0 ◦C) from the first day of a year to SOSclim.
RD measures the intensity of surface solar radiation absorbed for 31 days around SOSclim,
when high light intensity can accelerate green-up processes [35]. SM and VPD, which have
significant influences on vegetation growth by altering water availability [13], indicate the
mean of soil moisture and atmospheric aridity before SOSclim, respectively. CO2 is defined
as the average atmospheric carbon dioxide concentration before SOSclim; an increase in CO2
could alter plant structures and the development of leaves [36]. Remarkably, Park et al. [2]
suggested that the differences of temporal windows and temperature thresholds for the
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environmental variables did not induce noticeable changes, thus we employed similar
temporal windows and thresholds.

2.3. Calculation of RVG from LAI Records

In this study we used the ensemble empirical mode decomposition (EEMD) approach
to remove the high-frequency noise component from the LAI time series, to limit the likely
effect of snow or cloud [37]. The seven-parameter logistic function was fitted to extract land
surface phenology metrics (Equation (7)). The biological significance of the parameters was
described in detail by Gonsamo et al. [38] as follows:

LAI(t) = α1 +
α2

1 + e−∂1(t−β1)
− α3

1 + e−∂2(t−β2)
(7)

From the fitted seven parameters, the start of the growing season (SOS) is defined as
the date of inflection (β1) in the double logistic curve:

SOS = β1 (8)

RVG is defined as the maximum rate of increase when LAI reaches SOS, normalized
by the difference between the background and the amplitude of the spring and early
summer plateau (α2 − α1), since this removes the effects of LAI increments during canopy
development [13]. The unit of RVG was converted to a percentage (8-day)−1 by multiplying
by 100% and 8 days (Equation (11)):

LAI′(t) =
α2∂1e∂1(t+β1)

(e∂1β1 + e∂1t)
2 −

α3∂2e∂2(t+β2)

(e∂2β2 + e∂2t)
2 (9)

Rate = LAI′(t = β1) =

(
α2∂1

4
− α3∂2

ek1 + e−k1 + 2

)
, k1 = ∂2(β1 − β2) (10)

RVG =
Rate

α2 − α1
× 8× 100% (11)

2.4. Multivariable Regression Considering Interactions between Variables (MRCI)

We incorporated interaction terms into the multilinear regression model analyses to
better assess the effect of interactions between variables on the vegetation greening rate.
RVG was expressed by a linear combination of the six variables and their interaction terms.
The regressed RVG (RVGreg) based on the environmental variables and their interactions
could be formulized as follows:

RVGreg(t) = aGDDGDD(t) + aCACA(t) + aRDRD(t) + aSMSM(t) + aVPDVPD(t) + aCO2CO2(t)

+aGDD×CAGDD(t)CA(t) + aGDD×RDGDD(t)RD(t) + aGDD×SMGDD(t) SM(t)

+aGDD×VPDGDD(t)VPD(t) + aGDD×CO2GDD(t)CO2(t)

+aCA∗RDCA(t)RD(t) + aCA×SMCA(t)SM(t) + aCA×VPDCA(t)VPD(t) + aCA×CO2CA(t)CO2(t)

+aRD×SMRD(t)SM(t) + aRD×VPDRD(t)VPD(t) + aRD×CO2RD(t)CO2(t)

+aSM×VPDSM(t)VPD(t) + aSM×CO2SM(t)CO2(t)

+aVPD×CO2VPD(t)CO2(t) + b

(12)

By obtaining a time derivative of Equation (12), RVGreg could be decomposed into
the trends of the contributions of each environment variable and their interactive items
as follows:
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dRVGreg
dt = dCA

dt × aCA + dGDD
dt × aGDD + dVPD

dt × aVPD + dRD
dt × aRD + dSM

dt × aSM + dCO2
dt × aCO2

+dGDDCA
dt × aGDD×CA + dGDDRD

dt × aGDD×RD + dGDDSM
dt × aGDD×SM

+dGDDVPD
dt × aGDD×VPD + dGDDCO2

dt × aGDD×CO2 +
dCARD

dt × aCA×RD

+dCASM
dt × aCA×SM + dCAVPD

dt × aCACVPD + dCACO2
dt × aCA×CO2

+dRDSM
dt × aRD×SM + dRDVPD

dt × aRD×VPD + dRDCO2
dt × aRD×CO2

+dSMVPD
dt × aSM×VPD + dSMCO2

dt × aSM×CO2 +
dVPDCO2

dt × aVPD×CO2

(13)

The relative contribution of the interactive effects (RIIAE) was determined by dividing
the absolute values of all interaction terms’ contributions by the sum of the absolute values
of all factors’ contributions (Equations (14)–(16)).

ConA =

∣∣∣∣dCA
dt
× aCA

∣∣∣∣+ ∣∣∣∣dGDD
dt

× aGDD

∣∣∣∣+ ∣∣∣∣dVPD
dt

× aVPD

∣∣∣∣+ ∣∣∣∣dRD
dt
× aRD

∣∣∣∣+ ∣∣∣∣dSM
dt
× aSM

∣∣∣∣+ ∣∣∣∣dCO2

dt
× aCO2

∣∣∣∣ (14)

ConB =
∣∣∣dGDDCA

dt × aGDD×CA

∣∣∣+ ∣∣∣dGDDRD
dt × aGDD×RD

∣∣∣+ ∣∣∣dGDDSM
dt × aGDD×SM

∣∣∣+ ∣∣∣dGDDVPD
dt × aGDD×VPD

∣∣∣
+
∣∣∣dGDDCO

dt × aGDD2×CO2

∣∣∣+ ∣∣∣dCARD
dt × aCA×RD

∣∣∣+ ∣∣∣dCASM
dt × aCA×SM

∣∣∣+ ∣∣∣dCAVPD
dt × aCA×VPD

∣∣∣
+
∣∣∣dCACO2

dt × aCA×CO2

∣∣∣+ ∣∣∣dRDSM
dt × aRD×SM

∣∣∣+ ∣∣∣dRDVPD
dt × aRD×VPD

∣∣∣+ ∣∣∣dRDCO2
dt × aRD×CO2

∣∣∣
+
∣∣∣dSMVPD

dt × aSM×VPD

∣∣∣+ ∣∣∣dSMCO2
dt × aSM×CO2

∣∣∣+ ∣∣∣dVPDCO2
dt × aVPD×CO2

∣∣∣
(15)

RIIAE =
ConB

ConA + ConB
× 100% (16)

We implemented data centering for interaction items and removed interaction items
with a variance inflation factor (VIF) greater than 10 to reduce multicollinearity. All
variables plus the remaining interaction items were combined to form the final MRCI
model. For the different biomes, the corresponding MRCI models and VIFs are shown
in the Supplementary Materials (Table S1). Although the final model may still exhibit
multicollinearity, the collinearity is not a major issue in general interaction models [39].

3. Results
3.1. RVG Trends over the Northern Extratropics and Different Biomes

Figure 1a shows the spatial distribution of the seven vegetation types used in this
study. The area-weighted RVG trend (0.020% (8-day)−1 year−1) was noticeable over the
entire region (Figure 1b). The RVG trends were positive in 52.80% (15.07% of all regions
were significant) of the entire study region and negative in 47.20% of the entire study region
(10.38% of all regions were significant). As shown in Figure 1c, RVG trends in most biomes
were positive (>0.04% (8-day)−1 year−1), except in SHL (−0.032% (8-day)−1 year−1). The
temporal trend in WSN was much higher than in other biomes (0.095% (8-day)−1 year−1).
Positive RVG trends were followed in MIF (0.076% (8-day)−1 year−1) and DBF (0.058%
(8-day)−1 year−1), and RVG trends in SVN and GRL also increased significantly (0.047%
(8-day)−1 year−1 and 0.042% (8-day)−1 year−1, respectively), which implied a rapid in-
crease in RVG in those biomes.
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Figure 1. Spatial distribution of (a) seven vegetation types including deciduous needleleaf forests 
(DNF), deciduous broadleaf forests (DBF), mixed forests (MIF), shrublands (SHL), woody savannas 
(WSN), savannas (SVN), and grasslands (GRL); (b) RVG trends over northern extratropics (the area-
weighted average RVG and its trend are marked in the upper left corner, and the proportion of 
positive and negative trends is shown in the lower left corner. N and P represent a negative trend 
and a positive trend, respectively); (c) RVG trends across different biomes during the period 1981–
2018. 

3.2. The Relative Importance of Interactive Effects (RIIAE) 
Our results showed that the relative importance of interactive effects (RIIAE) was 

29.6±15.8% over the entire region (Figure 2a). RIIAE was relatively low in the low latitude 
of North America and Siberia, while relatively high in Europe, China, and southern Can-
ada. As shown in Figure 2b, RIIAE increased with the increasing latitude from 30° N–50° 
N, reaching a maximum at 50°N (approximately 32%), then it gradually decreased when 
the latitude exceeded 50° N, and was only 28% at 80° N. We also investigated RIIAE across 
different biomes (Figure 2c). RIIAE in the MIF biome was the highest (34.6%), followed by 
DBF and DNF (34.1% and 33.4%, respectively). RIIAE in the SHL biome was the lowest 
(only 23.7%), which was far below the regional average RIIAE. 

Figure 1. Spatial distribution of (a) seven vegetation types including deciduous needleleaf forests
(DNF), deciduous broadleaf forests (DBF), mixed forests (MIF), shrublands (SHL), woody savannas
(WSN), savannas (SVN), and grasslands (GRL); (b) RVG trends over northern extratropics (the
area-weighted average RVG and its trend are marked in the upper left corner, and the proportion of
positive and negative trends is shown in the lower left corner. N and P represent a negative trend and
a positive trend, respectively); (c) RVG trends across different biomes during the period 1981–2018.

3.2. The Relative Importance of Interactive Effects (RIIAE)

Our results showed that the relative importance of interactive effects (RIIAE) was
29.6 ± 15.8% over the entire region (Figure 2a). RIIAE was relatively low in the low latitude
of North America and Siberia, while relatively high in Europe, China, and southern Canada.
As shown in Figure 2b, RIIAE increased with the increasing latitude from 30◦N–50◦N,
reaching a maximum at 50◦N (approximately 32%), then it gradually decreased when
the latitude exceeded 50◦N, and was only 28% at 80◦N. We also investigated RIIAE across
different biomes (Figure 2c). RIIAE in the MIF biome was the highest (34.6%), followed by
DBF and DNF (34.1% and 33.4%, respectively). RIIAE in the SHL biome was the lowest
(only 23.7%), which was far below the regional average RIIAE.
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RVGreg trends over the northern extratropics. RIIAE (b) along the latitudinal gradient and (c) across 
different biomes including deciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF), 
mixed forests (MIF), shrublands (SHL), woody savannas (WSN), savannas (SVN), and grasslands 
(GRL). 

3.3. The Key Driving Factors of RVG Trends and Factors Attribution 
Figure 3 shows the spatial pattern of the top three drivers of RVG trends and IAE-

dominated regions. IAE had dominant contributions to the RVG trends in 11.71% of pixels 
over the northern extratropics. Our results found that for each pixel over the northern 
extratropics, CO2 was the first contributor to RVG trends in 50.98% of pixels, followed by 
VPD in 18.41% of pixels and GDD in 11.70% of pixels (Figure 3a). That is, the majority of 
regions, such as North America, Eastern Europe, Central Asia, and China’s Qinghai-Tibet 
Plateau, can capture a strong influence of rising CO2 on the RVG trends. As shown in 
Figure 3b, for the second most significant contribution to the RVG trends in each pixel, 
the influences of VPD and GDD were comparable (27.24% and 25.19%, respectively), but 
CO2 ranked second in only 12.81% of pixels. As shown in Figure 3c, GDD was the third 
most influential contributor to the RVG trends in 23.86% of pixels, followed by VPD 

Figure 2. (a) The spatial distribution of the relative importance of interactive effects (RIIAE) on the
RVGreg trends over the northern extratropics. RIIAE (b) along the latitudinal gradient and (c) across dif-
ferent biomes including deciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF), mixed
forests (MIF), shrublands (SHL), woody savannas (WSN), savannas (SVN), and grasslands (GRL).

3.3. The Key Driving Factors of RVG Trends and Factors Attribution

Figure 3 shows the spatial pattern of the top three drivers of RVG trends and IAE-
dominated regions. IAE had dominant contributions to the RVG trends in 11.71% of pixels
over the northern extratropics. Our results found that for each pixel over the northern
extratropics, CO2 was the first contributor to RVG trends in 50.98% of pixels, followed by
VPD in 18.41% of pixels and GDD in 11.70% of pixels (Figure 3a). That is, the majority of
regions, such as North America, Eastern Europe, Central Asia, and China’s Qinghai-Tibet
Plateau, can capture a strong influence of rising CO2 on the RVG trends. As shown in
Figure 3b, for the second most significant contribution to the RVG trends in each pixel, the
influences of VPD and GDD were comparable (27.24% and 25.19%, respectively), but CO2
ranked second in only 12.81% of pixels. As shown in Figure 3c, GDD was the third most
influential contributor to the RVG trends in 23.86% of pixels, followed by VPD (18.83%)
and RD (15.85%). Furthermore, we averaged the first, second, and third contributors to
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RVG trends over the northern extratropics (Figure 3d), and our findings revealed that CO2,
VPD, and GDD were the primary influences on RVG trends.
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All factors, including environmental variables and interactions between variables,
were quantified to help us better understand the driving mechanisms of RVG trends across
the different biomes. As shown in Figure 4, the RVGreg trends could be decomposed into
the trends of CA, CO2, GDD, RD, SM, VPD, and interactive items. The RVGreg trend in
DNF was 0.431% (8-day)−1 decade−1, which was 94.89% of the RVG trend (Figure 4a).
The CO2 trend was the most important driver (0.728% (8-day)−1 decade−1) of the posi-
tive RVGreg trend, slightly strengthened by the GDD trend (0.132% (8-day)−1 decade−1),
but partly offset by the RD trend (−0.240% (8-day)−1 decade−1), VPD trend (−0.180%
(8-day)−1 decade−1) and the trend of interactions between CA and VPD (−0.172%
(8-day)−1 decade−1). The RVG and RVGreg trends in the DBF biome (Figure 4b) were al-
most equal (0.583% (8-day)−1 decade−1). The trends of GDD (0.417% (8-day)−1 decade−1)
and CO2 (0.391% (8-day)−1 decade−1) were the primary drivers of the increasing RVGreg
trend, but the VPD trend (−0.144% (8-day)−1 decade−1) and the trends of interactive
effects (CA:CO2, RD:SM, RD:CO2) partly counteracted the positive RVGreg trend. The
RVG trend and RVGreg trend in the MIF biome (Figure 4c) were 0.764% and 0.758%
(8-day)−1 decade−1, respectively. The VPD trend (0.468% (8-day)−1 decade−1) was the
predominant factor of the RVGreg trend, with the supportive influences of the CO2 trend
and RD trend, at 0.266% and 0.150% (8-day)−1 decade−1, respectively. The RVG and
RVGreg trends (Figure 4d) are negative only in the SHL biome and almost equal at −0.324%
(8-day)−1 decade−1. The decelerated RVGreg was mainly influenced by the GDD trend
(−0.267% (8-day)−1 decade−1) and the CO2 trend (−0.205% (8-day)−1 decade−1), but was
partly counteracted by the VPD trend (0.163% (8-day)−1 decade−1). The RVGreg trend
in the WSN biome (Figure 4e) was 0.947% (8-day)−1 decade−1. The CO2 trend (1.183%
(8-day)−1 decade−1) was the most important driver of RVGreg acceleration, with a sup-



Remote Sens. 2022, 14, 3946 9 of 15

portive influence of the GDD trend (0.443% (8-day)−1 decade−1), but the trends of VPD
(−0.472% (8-day)−1 decade−1) and RD (−0.137%% (8-day)−1 decade−1) partly alleviated
the positive RVGreg trend. The RVG and RVGreg trends in the SVN biome (Figure 4f)
were 0.478% and 0.474% (8-day)−1 decade−1, respectively. The trends of CO2 (0.718%
(8-day)−1 decade−1) and GDD (0.631% (8-day)−1 decade−1) were the primary drivers of
the increasing RVGreg trend. However, the VPD trend (−0.765% (8-day)−1 decade−1)
strongly counteracted the positive RVGreg trend. The RVGreg trend in the GRL biome
(Figure 4g) was 0.428% (8-day)−1 decade−1, slightly overestimating the RVG trend (0.424%
(8-day)−1 decade−1) by 1%. The GDD trend (0.282% (8-day)−1 decade−1) and CO2 trend
(0.271% (8-day)−1 decade−1) were the key drivers of the positive RVGreg trend, but the
trends of VPD (−0.113% (8-day)−1 decade−1) and the trends of interactions between RD
and SM (−0.043% (8-day)−1 decade−1) partly counteracted the positive RVGreg trend.
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4. Discussion
4.1. The Non-Negligible Effects of Interactions between Variables

Previous researchers primarily highlighted the individual effects of variables on the
greening rate [2,13,14]. However, vegetation leaf area changes result from the individual
effects of variables or the interactions between variables [17]. The influence of environ-
mental variables, such as temperature and CO2 may be exaggerated, potentially because
interactions between variables also significantly affect vegetation growth [40]. Thus, a mul-
tivariable regression considering interactions between variables (MRCI), which is suited to
analyze the long-term RVG trends, was employed in this study (Figure S1). Our findings
showed that the relative importance of interactive effects (RIIAE) was approximately 30% at
both the pixel scale and the biome scale (Figure 3), that is, the relative influence of variable
interactions held constant and scarcely varied with scales.

There was a clear latitudinal difference in the relative contribution of interactive effects
to the RVG trends. The RIIAE progressively increased from 30◦N to 50◦N and peaked at
around 50◦N, after which it began to fall (Figure 3b). At low or high latitudes, a single
climatic variable may be responsible for limiting plant growth or leaf development, rather
than interactions between factors. For example, heat or nutrition requirements can directly
determine plant growth and dispersal in high-latitude tundra ecosystems [41].

Despite the relatively strong interaction effects, our analysis indicated that IAE
(Figure 3) only had dominant contributions (RIIAE > 50%) to the vegetation greening rate
trends in 11.71% of pixels over the northern extratropics. The contribution values of dif-
ferent variable interactions to RVG trends at the biome scale can be positive or negative
(Figure 4), so the cumulative results may offset the part of the influence of interactions.
For example, the interactions between temperature and water availability have different
effects for plants. If warming enhances the drought risk of the ecosystem, the increasing
evaporation will enhance soil water consumption and exacerbate drought conditions for
plants [21]. When light conditions are sufficient and not a limiting factor, temperature and
VPD will jointly affect the rate of photosynthesis, that is, suitable warming and slightly
increased VPD are beneficial for plant growth [42]. Nonetheless, the negative effect of
interactions between CA and VPD in the deciduous broadleaf forest was comparable with
that of VPD, and the interaction between RD and SM in grasslands was approximately half
of the role of VPD. The contributions of interactive items were negative in most biomes,
indicating that variable interactions can regulate vegetation greening rate acceleration in
those biomes.

4.2. Elevated CO2, Enhanced VPD, and Warming Strongly Affect the RVG Trends

Whether at the pixel scale or across distinct biomes, rising CO2, enhanced VPD, and
warming were the common and primary drivers affecting the RVG trends. Our analyses
showed that rising CO2 was the first contributor to RVG trends in 50.98% pixels over the
northern extratropics. The rising CO2 strongly influenced RVG trends in all vegetation
types, especially deciduous needleleaf forests and woody savannas. Generally, rising CO2
concentrations can increase branching and promote leaf development [36].

Previous studies reported that the rising CO2 explained 70% of the LAI greening trend
at the global scale [17], and was the highest contributer (59.5 ± 26.6%) to the increasing
trends of vegetation productivity [22]. Because RVG was derived from LAI, the strong CO2
effect from the findings of this study appears to be consistent with these reports. However,
the effects of CO2 fertilization on vegetation greening rate differ from that of LAI and
vegetation productivity, and the current literature on free-air CO2 enrichment (FACE) has
not identified plausible links between CO2 and the spring greening rate. As a result, the
effects of CO2 on RVG should be explored further using FACE experiments or multi-source
remote sensing and site observation data.

Remarkably, although CO2 was found to play a key role in the long-term RVG trends,
we must be cautious in identifying this influence because CO2 concentration has been
continuously increasing for several decades. It can be a result of misinterpretation due
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to the common linear trends in the RVG and CO2 concentration. Here, we added partial
correlations between the RVG and four independent variables (Figure 5) to show the
interannual relationships of those variables. After removing the linear trend, the partial
correlation coefficient between CO2 and RVG reduced significantly, especially in DBF, WSN
and SVN biomes. That is, the influence of CO2 on RVG trends was overestimated in this
study; however, CO2 remains particularly important in GRL and DNF biomes.
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(WSN), savannas (SVN), and grasslands (GRL) for the period from 1981 to 2018.

According to our findings, the relative importance of atmospheric drought (VPD)
ranked in the top three driving factors in each pixel, affecting 18.41%, 27.24%, and 18.83%
of pixels, respectively (Figure 3). The RVG trends were strongly influenced by increased
VPD in arid and semi-arid climatic zones, especially in the water-limited ecosystems, such
as woody savannas, savannas, and grasslands (Figure 4). That is, the enhanced VPD
could play a crucial role in alleviating RVG acceleration that is caused by warming and
rising atmospheric CO2 concentrations. Thus, the RVG trends would not constantly rise
with warming and rising CO2 concentrations because enhanced VPD could cause higher
evaporative demand of plants, and extremely high VPD would trigger stomatal closure,
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resulting in an inefficient photosynthesis rate and restrained leaf development [21,43],
especially in a water-limited ecosystem.

As one of the top three variables in each pixel, the GDD trend (warming) affected
11.79%, 25.19%, and 23.80% of pixels over the northern extratropics, respectively. Warming
was also the main driver in most biomes, especially in deciduous broadleaf forests, shrub-
lands, and grasslands (Figure 4), which is consistent with the high correlation between
accelerating RVG and warming reported in previous studies [2,44]. Temperature-dependent
enzymatic catalytic reactions can accelerate plant growth and foliage development under
warming [20,45], thus foliar development is highly affected by rising temperature in the
form of rapid leaf expansion [46].

In the deciduous needleleaf forests, the decreased solar radiation and enhanced VPD
partly offset the influences of the sharp rise of CO2 concentrations, suggesting that the
accelerating greening rate in high-latitude ecosystems is restrained by the trends of radiation
and moisture. Zhang et al. [47] indicated that radiation restriction will become increasingly
important both in spring and autumn for vegetation growth, particularly in high latitude
regions. The enhanced VPD partly offset the influence of rising CO2 concentrations and
warming on the RVG deceleration in shrublands, which contradicts prior findings that
RVG acceleration was linked to warming and elevated CO2. We found that the RVG in
shrublands was negatively correlated with temperature and CO2, and positively correlated
with VPD (Figure 5). This may be related to the fact that we merged open shrublands
and closed shrublands into shrublands, and thus the partial correlation analysis wrongly
described the relationship between RVG and climate variables. The driving mechanism in
the mixed forests was a mystery, since this result indicated that enhanced VPD contributed
to the RVG acceleration. However, plants are usually constrained by water availability, and
VPD has a detrimental influence on leaf development [48]. The positive effect of VPD in
this study may be attributed to the incorrect relationship between the greening rate and
VPD caused by the mixed vegetation types.

4.3. Limitations and Future Work

We investigated the effects of environmental variables and variable interactions on
RVG trends, however only the product of two variables was included in the interactions.
Given the intricacy of the interactions, our model may not fully reveal the complex interac-
tions among multiple environmental factors, and may have underestimated the influence of
interactions to the vegetation greening rate trends. In addition, previous studies suggested
that the limitation of nitrogen and phosphorus availability shifted northern vegetation
changes [26,49]. Human land management also plays a considerable role in the vegetation
greening rate [22]. Therefore, future works should comprehensively consider anthro-
pogenic influence and nutrient availability, and effectively distinguish the individual and
interactive effects of various factors on vegetation phenology.

5. Conclusions

We investigated the rate of vegetation green-up trends over the northern extratropics
in this study. We discovered a non-negligible influence of interactions between variables
on the RVG trends (approximately 30%) at both the pixel scale and the biome scale using a
multivariable regression considering interactions between variables. Our findings suggest
that in addition to warming, elevated CO2 and enhanced VPD also significantly affect
RVG trends. Additionally, the increasing atmospheric aridity in the majority of biomes
could alleviate the RVG acceleration. Quantifying the effects of variable interactions and
clarifying the underlying mechanisms causing the changes in RVG trends across different
biomes will help us to better understand vegetation spring green-up under global changes.
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