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Abstract: Hydrological modeling for water management in large watersheds requires accurate
spatially-distributed rainfall time series. In case of low coverage density of ground-based measure-
ments, gridded precipitation products (GPPs) from merged satellite-/gauge-/model-based rainfall
products constitute an attractive alternative. The quality of which must, nevertheless, be verified.
The objective of this study was to evaluate, at different time scales, the reliability of 6 GPPs against a
2-year record from a network of 14 rainfall gauges located in the Ankavia catchment (Madagascar).
The GPPs considered in this study are the African Rainfall Estimate Climatology (ARC2), the Climate
Hazards Group Infrared Precipitation with Station data (CHIRPS), the European Centre Medium-
Range Weather Forecasts ECMWF Reanalysis on global land surface (ERA5-Land), the Integrated
Multi-satellitE Retrievals for Global Precipitation Measurement V06 Final (IMERG), the Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification
System (PERSIANN-CCS), and the African Rainfall Estimation (RFEv2) products. The results suggest
that IMERG (R2 = 0.63, slope of linear regression a = 0.96, root mean square error RMSE = 12 mm/day,
mean absolute error MAE = 5.5 mm/day) outperforms other GPPs at the daily scale, followed by
RFEv2 (R2 = 0.41, a = 0.94, RMSE = 15 mm/day, MAE = 6 mm/day) and ARC2 (R2 = 0.30, a = 0.88,
RMSE = 16 mm/day, MAE = 6.7 mm/day). All GPPs, with the exception of the ERA5, overestimate
the ‘no rain’ class (0–0.2 mm/day). ARC2, IMERG, PERSIANN, and RFEv2 all underestimate rainfall
occurrence in the 0.2–150 mm/day rainfall range, whilst CHIRPS and ERA5 overestimate it. Only
CHIRPS and PERSIANN could estimate extreme rainfall (>150 mm/day) satisfactorily. According
to the Critical Success Index (CSI) categorical statistical measure, IMERG performs quite well in
detecting rain events in the range of 2–100 mm/day, whereas PERSIANN outperforms IMERG
for rain events larger than 150 mm/day. Because it performs best at daily scale, only IMERG was
evaluated for time scales other than daily. At the yearly and monthly time scales, the performance
is good with R2 = 0.97 and 0.87, respectively. At the event time scale, the probability distribution
function PDF of rain gauge values and IMERG data show good agreement. However, at an hourly
time scale, the correlation between ground-based measurements and IMERG data becomes poor
(R2 = 0.20). Overall, the IMERG product can be regarded as the most reliable gridded precipitation
source at monthly, daily, and event time scales for hydrological applications in the study area, but the
poor agreement at hourly time scale and the inability to detect extreme rainfall >100 mm/day may,
nevertheless, restrict its use.

Keywords: Madagascar; GIRE SAVA; Ankavia; gridded precipitation products; IMERG

1. Introduction

Accurate precipitation data are essential for numerous theoretical and practical appli-
cations, be it for water balance calculations, flood warnings, drought monitoring, or water
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resource management [1–3]. When properly installed and maintained, rain gauge obser-
vations provide accurate point-based precipitation measurements [4,5]. However, in the
case of low coverage density, they are poorly adapted to deal with the high spatiotemporal
heterogeneity in precipitation. The latter can result in large errors when rain gauge data are
interpolated to larger scales, particularly in mountainous areas with complex terrain [6,7].
Furthermore, the spatial distribution of rain gauges is often highly uneven in practice, with
few gauges in remote areas, in less developed regions, in areas with complicated terrain,
or in forested areas [8]. As a result, in situ rain gauge data seldom matches the needs of
applications that require precipitation data with high spatiotemporal resolution [8,9]. This
is particularly true across vast swaths of the African continent [10].

As opposed to rain gauges, gridded precipitation products (GPPs) from merged
satellite-/gauge-/model-based rainfall products have the advantage of offering wide spa-
tial coverage [1,11]. There are currently a number of GPPs available, including ARC2
(African Rainfall Estimate Climatology version 2), CHIRPS (Climate Hazards Group In-
frared Precipitation with Station Data), ERA5 (European Centre Medium-Range Weather
Forecasts Reanalysis), IMERG v06 Final (Integrated Multi-satellitE Retrievals for Global
Precipitation Measurement), PERSIANN-CCS (Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks Cloud Classification System), and
RFEv2 (African Rainfall Estimation version 2), among others [1]. Recent GPPs also provide
adequate spatial (≤0.1 × 0.1◦) and temporal (daily to sub-hourly, depending on the prod-
uct) resolution, allowing for credible precipitation estimates in data-scarce environments or
at ungauged locations [1,12,13]. They have been used in a variety of applications, including
hydrological modeling, extreme event analysis, infrastructure design (based on rainfall
frequency analysis), and water resource management [8,14,15].

Since GPPs are based on indirect rainfall estimation methods, the results will be
subject to uncertainty due to measurement errors, sampling, retrieval methods, and bias
correction processes [16,17]. The errors depend on the number and type of sensors taking
measurements across a certain location at a given time, as well as the strategies used to
assimilate the available data into a coherent gridded dataset [18,19]. Furthermore, the error
characteristics differ based on the type of storm system, location, topography, and cloud
properties [19]. Therefore, the accuracy of GPPs must be thoroughly explored both in time
and space [20,21], and quantitative statistical evaluations are useful tools for assessing
GPP precision [20,22]. Whereas some researchers assess GPPs based on the accuracy
of streamflow rate predictions within hydrological modeling frameworks [22,23], most
studies evaluate GPPs against gauge data or against estimates from ground-based weather
radars [9,24].

Various studies have been undertaken to assess GPP performance at the global, conti-
nental, and regional levels during the last few decades. TRMM Multi-Satellite Precipitation
Analysis (TMPA) products, for example, have been assessed in various parts of Africa,
and the results revealed that TMPA products provide effective data in most regions [6,25].
In [16], the authors found that TMPA was the best product at a daily time scale over dif-
ferent parts of Central Africa. Following that success, ref. [20] proved that the Integrated
Multi-satellite Retrievals for GPM (Global Precipitation Measurement), which integrates
observations from many satellites of the GPM satellite constellation, improves the quality
and spatiotemporal resolution of precipitation data. Other investigations in eastern Africa
(Zimbabwe) show that ARC2 and RFEv2 estimate the precipitation gauge data better than
other GPPs [17]. In addition, an evaluation conducted by [25] in equatorial and eastern
Africa showed that IMERG performed better for daily scales, while CHIRPS outperformed
other products at monthly and annual scales. Overall, the reliability of GPPs appears to be
governed by a number of factors, including the study scale, location, time scale, and, most
significantly, the availability of ground-based data used for calibration [17,20].

Despite the significant efforts undertaken so far to evaluate GPPs, those products
continue to require extensive validation against ground observations in order to assess their
quality and quantify the appropriate level of confidence in their use for various hydrological
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applications [1]. Furthermore, ref. [26] highlights that the choice of GPP has a significant
impact on runoff estimation and underlines the need for rigorous assessment with in situ
observations to improve their confident application in water cycle research. As a result,
temporal aspects and spatial distributions must be quantitatively analyzed. Nonetheless,
the scale discrepancy problem persists when rain gauge data is used for validation. So far,
the majority of existing GPP validation efforts in Africa have been conducted at large scales
(country level or greater), with rain gauges separated by very large distances [8,17,27],
and they were often performed on public datasets or GPCP-1DD (Global Precipitation
Climatology Project One-Degree Daily Precipitation) data [28]. Since numerous water
management issues are dealt with at smaller scales, it is therefore of high interest to also
evaluate the ability of GPPs to capture rainfall variations across short distances (5–10 km)
for applications in medium to large watersheds (i.e., ~103 km2) [29].

The aim of this study was, therefore, to evaluate, at different time scales (hourly to
yearly), the reliability of six major GPPs (ARC2, CHIRPS, ERA5-Land (hereafter ERA5),
IMERG v06 Final (hereafter IMERG), RFEv2, and PERSIANN-CCS (hereafter PERSIANN))
for water management applications in medium-size watersheds in Africa. More specifically,
GPP data were evaluated against a network of rain gauges installed in the Ankavia water-
shed (1116 km2) in northeastern Madagascar. Water-related issues abound in Madagascar,
strongly impacting economic development and environmental conservation [30,31]. In-
deed, northeastern Madagascar is characterized by heavy rainfall (1500 to 2500 mm/year),
caused by southeasterly exchanges that start in the Indian Ocean anticyclone and reach
the highlands of the east [32]. This, along with deforestation from slash and burn, logging,
and firewood harvesting, contributes to some of the world’s greatest levels of erosion and
catastrophic flooding [33,34]. Furthermore, as a result of climate change, more powerful cy-
clones and increasing sea levels directly threaten coastal settlements and exacerbate floods
and erosion in coastal areas [35]. In contrast, during the dry season, some rivers in the north
tend to dry up, and alternative groundwater sources are not always available [32]. Previous
research has shown that pressure on water resources in Madagascar is increasing [36,37].
Hydrometeorological data are scarce and not always routinely collected, which impedes
decision-making for integrated water resources management (IWRM), particularly at the
basin scale [38,39]. Hence the use of reliable GPP seems unavoidable for hydrological
modeling, drought monitoring, and water resources management.

2. Materials and Methods
2.1. Study Area

This study focuses on the Ankavia watershed, located between 14◦50′–15◦20′S and
49◦50′–50◦20′E in the SAVA region in northeast Madagascar (Figure 1). At a regional scale,
the climate is governed by the southeasterly trade winds that originate from the Indian
Ocean anticyclone, a zone of high atmospheric pressure that seasonally changes its position
over the ocean [38]. The northeastern coast of Madagascar is most directly exposed to
the trade winds and has the highest rainfall in the country [40]. Furthermore, the region
is regularly affected by tropical storms and cyclones [31]. The area has a subequatorial
climate with two main seasons; the hot, rainy season extends from November to April
(approximately 70% of total annual precipitation), and the cooler, drier season from May to
October. Temperatures range from 18 ◦C to 31 ◦C [41].

The hydrographic network in the SAVA region is dense and highly branched [42]. The
majority of the rivers originate in mountainous massifs and flow eastward into the Indian
Ocean. These rivers are heavily fed throughout the year, with low flows in October and
November. Floods are common during the rainy season and are often exacerbated in the
coastal zone by sediment accumulation [43]. For the last 60 years, the climatic data for the
region have been provided solely by the Antalaha weather station located close to the coast
(Figure 1).
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The Ankavia watershed covers an area of 1116 km2, i.e., roughly 5% of the total area of
the SAVA region (Figure 1). It was chosen for this study due to its natural and social context,
both exerting a strain on water resources. In particular, the Ankavia river provides water to
the city of Antalaha (150,000 people in 2017). Altitude in the catchment varies from 14 m
a.m.s.l. near the outlet in the east (hilly topography) to 1469 m a.m.s.l. in the southwest
(mountainous topography). The western part of the Ankavia watershed is mainly occupied
by primary forests, whereas the east is composed mostly of mosaic vegetation, including
shrubs and herbaceous cover [44]. The vast majority of inhabited and cultivated areas are
clustered around the major rivers [41].

2.2. Ground-Based Precipitation Data

Fourteen rain gauges and one meteorological station were established in the Ankavia
catchment as part of the GIRE SAVA project (Gestion Integrée des Ressources en Eau in the
SAVA region) (Figure 1). The rain gauge at the Marofinaritra climate station is a Campbell
Scientific® ARG100, whereas the other 13 rain gauges scattered within the basin are HOBO®

RG3-M instruments. These gauges are not part of the Global Telecommunications System
(GTS) network. They are set with a recording interval of one hour. The stations are
positioned 1.5 m above the ground, and their elevation ranges from 25 m to 663 m a.m.s.l.,
with the majority of the stations located along the rivers at low and mid altitudes and 90% of
the rain gauges located below 300 m (Figure 1). Because of the remoteness, dense vegetation,
and lack of roads, as well as the difficulty of ensuring routine maintenance, no rain gauge
could be installed in the high-elevation mountainous region (>1000 m a.m.s.l). The rainfall
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data used in the current study were collected for a two-year period, from September 2018
to August 2020, thanks to regular monthly maintenance and data collection.

2.3. Gridded Precipitation Products

Six GPPs were used in this study to compare with observed rain gauge data (Table 1).
These products were chosen based on the availability of recent time series (from 2018
onwards), spatial (≤0.1◦) and temporal (≤daily) resolutions that make them suitable for
hydrological applications at the scale of the Ankavia watershed, near-real-time availability,
public domain, and their coverage of Africa.

2.3.1. ARC2

ARC2 was developed by the National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC), which offers daily rainfall data for Africa [1].
It uses inputs from two sources: (i) 3-hourly geostationary infrared (IR) data centered
over Africa from the European Organization for the Exploitation of Meteorological Satel-
lites (EUMETSAT), and (ii) quality-controlled GTS gauge observations reporting 24 h
rainfall accumulations across Africa [45]. ARC2 has a spatial resolution of 0.1◦ over
Africa (40◦N–40◦S, 20◦W–55◦E) with daily temporal resolution and can be downloaded
at: https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Africa/
.DAILY/.ARC2/.daily/ (accessed on 3 June 2021).

2.3.2. CHIRPS

Since 1981, the CHIRPS product has provided daily precipitation data with a spatial
resolution of 0.05◦ for a quasi-global coverage of 50◦N–50◦S [12]. The most recent product is
Version 2.0, which was released in February 2015. The CHIRPS product and associated data
can be found at: https://climateserv.servirglobal.net (accessed on 3 June 2021). The main
datasets used for the construction of the CHIRPS product are the monthly precipitation
climatology (CHPclim) information based on thermal infrared data archived from CPC
and NOAA National Climate Data Center (NCDC), the Version 7 TRMM 3B42 data, the
Version 2 atmospheric model rainfall field from the NOAA Climate Forecast System (CFS),
and rain gauge stations [46]. First, the cold cloud duration (CCD) data are calibrated
with TRMM 3B42 to generate 5-day CCD-based precipitation estimates, which are then
converted to fractions of long-term mean precipitation estimates [46,47]. The fractions are
then multiplied by CHPclim data to remove systematic bias, and the resulting product is
known as the CHIRP product [28]. Finally, the CHIRP product is combined with data from
rain gauge stations using a modified inverse distance weighting algorithm to generate the
CHIRPS [46]. All of the preceding processing is carried out on a 5-daily basis. Using a
simple redistribution method, the CCD and CFS data are finally used to disaggregate the
5-daily products to daily precipitation estimates [47].

2.3.3. ERA5

ERA5 is the most recent edition of the global atmospheric reanalysis of the ECMWF
from 1979 [48]. ERA5-Land was created by rerunning the land component of the ERA5
climate reanalysis and spans the same time period as ERA5, from January 1950 to near
real-time (NRT) [49]. ERA5-Land is generated in a single simulation that is not coupled to
the atmospheric module of the ECMWF’s Integrated Forecast System. Observations have
an indirect effect on the simulation due to the atmospheric forcing of ERA5 [48,50]. This
forcing is used to drive the single ERA5-Land simulation and was obtained by integrating
observations using a 4D-Var data assimilation system and a Simplified Extended Kalman
Filter [51]. The fields are overlain for all oceans and have an hourly resolution. The
Climate Data Store (CDS) Climate Copernicus website was used to download hourly total
precipitation for the study period with a spatial resolution of approximately 0.1 × 0.1◦

(available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?
tab=overview) (accessed on 3 June 2021).

https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Africa/.DAILY/.ARC2/.daily/
https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Africa/.DAILY/.ARC2/.daily/
https://climateserv.servirglobal.net
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
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2.3.4. IMERG

IMERG is available at https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on
3 June 2021). The GPM project, a collaboration between the National Aeronautics and
Space Administration (NASA) of the United States and the Japan Aerospace Exploration
Agency (JAXA), began in 2014 to provide half-hourly global precipitation data with a
spatial resolution of 0.1◦ [52]. The GPM satellite is equipped with two major sensors:
the GPM Microwave Imager (GMI), which measures precipitation intensity, depth, and
duration, and the Dual-frequency Precipitation Radar (DPR), which observes storm internal
structure within and beneath clouds [53]. The GPM Constellation provides three levels of
data processing (IMERG products), but the most commonly used are the gridded products
that combine GMI and DPR rainfall averages or rainfall estimates combined from data
of all active and passive microwave instruments in the GPM Constellation [52,54]. There
are three daily IMERG products: IMERG Early Run (near real-time with a latency of 4 h),
IMERG Late Run (reprocessed near real-time with a latency of 14 h), and IMERG Final Run
(gauged-adjusted with a 4-month latency) [54]. In this study, we selected the IMERG-v06
Final Run half-hourly products [53].

2.3.5. PERSIANN

The PERSIANN provides hourly precipitation estimates at the spatial resolution of
0.04◦ for the quasi-global coverage of 60◦N–60◦S from 2003 to the present [55]. PERSIANN,
developed at the University of Arizona and now operated by the Center for Hydrom-
eteorology and Remote Sensing (CHRS) at the University of California Irvine (UCI), is
based on an adaptive Artificial Neural Network (ANN) model that estimates fine-scale
precipitation distribution using IR information (10.7 µm) from geostationary satellites in
analyzing local and regional cloud properties [56]. The PERSIANN-CCS algorithm converts
rain rates from satellite cloud images in several steps, which consist of: (i) separating cloud
images into recognizable cloud patches, (ii) extracting cloud properties based on their
shape, texture, and coldness, (iii) clustering cloud patches into orderly subgroups, and
(iv) calibrating cloud-top temperature and rainfall (Tb-R) correlations for the various cloud
categories using gauge-corrected radar hourly rainfall data [55]. The product is available
at: http://chrsdata.eng.uci.edu/ (accessed on 3 June 2021).

Table 1. Selected gridded precipitation products.

Dataset Full Name Spatial
Resolution

Timescale (Highest
Resolution)

Period of
Availability Reference

ARC2 African Rainfall Climatology version 2 0.10◦ Daily 1983–Present [45]

CHIRPS Climate Hazards Group Infrared
Precipitation with station data 0.05◦ Daily 1981–Present [47]

ERA5 ECMWF Reanalysis version 5
on global land surface 0.10◦ Hourly 1979–Present [50]

IMERG Integrated Multi-satellitE Retrievals
for Global Precipitation Measurement 0.10◦ Half-hourly 2000–Present [53]

PERSIANN

Precipitation Estimation from
Remotely Sensed Information using
Artificial Neural Networks—Cloud

Classification System

0.04◦ Hourly 2003–Present [55]

RFEv2 Climate Prediction Center (CPC)
African Rainfall Estimates version 2 0.10◦ Daily 2001–Present [57]

https://giovanni.gsfc.nasa.gov/giovanni/
http://chrsdata.eng.uci.edu/
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2.3.6. RFEv2

Finally, RFEv2 is produced by the NOAA-CPC. It is primarily designed for the Famine
Early Warning Systems Network to aid in disaster monitoring across Africa [7]. The
product estimates daily precipitation for Africa with a spatial resolution of 0.1◦. RFEv2
receives data from four operational sources: (1) daily GTS rain-gauge data, (2) Advanced
Microwave Sounding Unit (AMSU)-based rainfall estimates, (3) Special Sensor Microwave
Imager/Sounder (SSMIS)-based estimates, and (4) the Geostationary Operational Environ-
mental Satellite (GOES) precipitation index (GPI) calculated from cloud-top infrared (IR)
temperatures on a half-hourly basis [57]. It is available at https://iridl.ldeo.columbia.edu/
SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Africa/.DAILY/.RFEv2// (accessed on 9 June
2021). However, the use of polar-orbiting Passive Microwave (PM) and geostationary IR
data differs between ARC and RFE. ARC uses 3-hourly IR data rather than 30-min data
and does not include PM estimates, whereas RFE does [45,57].

2.4. Data Comparison Methodology
2.4.1. Data Quality Control

Initially, the gridded product data were downloaded in files with half-hourly, hourly,
or daily time steps (depending on availability; Table 1) based on the GMT 0:00 time zone.
Negative values were removed from the gridded datasets. When necessary, daily totals
were generated by summing the half-hourly or hourly files. For the study area (Madagascar
+03H00 GMT), the observed rain gauge time series data were adjusted to the GMT and
aggregated at an hourly or daily scale to be compared with the GPPs.

2.4.2. Data Processing

Because of the scale discrepancy between GPPs and rain gauge data (Figure 2), two ap-
proaches were used to assess the performance of GPPs: (i) point-to-grid, (ii) point-gridded
approach. Point-to-grid compares the precipitation recorded at each rain gauge with the
precipitation from the GPP grid (0.04◦, 0.05◦, and 0.1◦, respectively) that encompasses the
rain gauge (Figure 2a). Because the location of rain gauges most often does not coincide
with GPP grid centroids (Figure 2a), a second strategy was implemented: the point-gridded
approach. In practice, a cell is delineated around each rain gauge (cell size of 0.04, 0.05,
or 0.1◦ depending on the GPP; Table 1). Then, the rainfall value in those new cells was
estimated as the area-weighted mean (max. 4) of the GPP grid cells overlapping with the
new cell (Figure 2b). A third approach could have been to define an ‘area of influence’
(Thiessen polygon) around each rain gauge and calculate area-weighted averages for each
grid to be compared with the gridded data (‘grid-to-grid’ approach). However, such an
approach leads to very different situations from one grid cell to another, some grids being
in the area of influence of a single rain gauge while other grids are in the area of influence
of up to five rain gauges. In addition, because the spatial resolution varies across GPPs,
such an approach may introduce bias in the comparison.

2.4.3. Rainfall Event Definition and Properties

In addition to evaluation at daily and hourly time scales, the most performing GPP was
evaluated at the event time scale. There are numerous methods for identifying individual
rainfall events [58]. In this study, based on a study conducted by [59] over a tropical area
(Brazil), a minimum inter-event time interval of 6 h and a minimum rainfall depth threshold
of 2.5 mm were chosen for the evaluation. In other words, a cumulative rainfall depth
> 2.5 mm is required to be considered as a rainfall event. The temporal resolution used to
define rainfall events is one hour for both rain gauge and GPP data.

https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Africa/.DAILY/.RFEv2//
https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Africa/.DAILY/.RFEv2//
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Figure 2. Data processing with two different approaches: (a) point-to-grid, (b) point-gridded.

2.4.4. Metrics for Accuracy Assessment

Several widely used statistical indices (Table 2) were adopted to quantify the perfor-
mance of the six GPPs against rain gauge observations: Coefficient of determination (R2),
Slope of the linear regression (a), Root Mean Square Error (RMSE), and Mean Absolute
Error (MAE).

Table 2. Statistical metrics used to quantify GPP performance.

Name/Symbol Formula Optimal Value

Coefficient of determination/R2 R2 = (CC)2 =

(
∑n

i=1(0i−0)(Pi−P)√
∑n

i=1(Oi−O)
2

∑n
i=1(Pi−P)

2

)2

1

Slope of linear regression/a Y = aX + b 1

Root Mean Square Error/RMSE RMSE =

√
∑n

i=1(Pi−Oi)2

n
0

Mean Absolute Error/MAE MAE = 1
n ∗

n
∑

i=1
|Oi− Pi| 0

Categorical statistical metrics
Probability of Detection/POD POD = Hits

Hits+Misses 1

False Alarm Ratio/FAR FAR = FalseAlarm
Hits+FalseAlarm 0

Critical Success Index/CSI CSI = Hits
Hits+FalseAlarm+Misses 1

P = Gridded Products value, O = Observed (rain gauge) value, P = average value of P, 0 = average value of
O, n = number of samples, X is the explanatory variable (O), Y is the dependent variable (P). The coefficient of
determination R2 was computed using linear fit. Hits denotes the number of observed precipitation occurrences
correctly detected by the gridded products. Misses represents the number of precipitation occurrences observed
by the rain gauges but not detected by the gridded products. False Alarm indicates the number of precipitation
occurrences not observed by the rain gauges but detected by the gridded products.

In addition, we also evaluated the capability of the GPPs in reproducing the distribu-
tion of observed precipitation intensities using the Probability Distribution Function (PDF)
of daily rainfall intensities. For this purpose, we categorized precipitation into 12 differ-
ent classes: 0–0.2 mm/day, 0.2–0.5 mm/day, 0.5–1 mm/day, 1–2 mm/day, 2–5 mm/day,
5–10 mm/day, 10–20 mm/day, 20–50 mm/day, 50–100 mm/day, 100–150 mm/day,
150–200 mm/day, and >200 mm/day.

Finally, the probability of detection (POD), false alarm ratio (FAR), and critical suc-
cess index (CSI) were calculated to evaluate the precipitation detection ability of the six
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GPPs (Table 2). These indices aim at evaluating whether the estimated daily precipitation
coincides with the precipitation observed on the ground. Specifically, POD represents
the fraction of observed precipitation occurrences correctly detected by a given GPP. FAR
corresponds to the fraction of detected precipitation occurrences that are incorrectly de-
tected by a given GPP, while CSI measures the overall fraction of (detected and observed)
precipitation occurrences correctly detected by a given GPP. The POD, FAR, and CSI values
all range between 0 and 1. POD and CSI have perfect scores of 1, while FAR has a perfect
score of 0. These indices are calculated for the different daily rainfall classes defined above.

3. Results
3.1. Overall GPP Performance at Daily Time-Scale

The comparison between rain gauge measurements and gridded rainfall product
estimates reveals large differences between the six GPPs (Figure 3). However, all statistical
metrics follow a similar pattern. Overall, IMERG data correlate best with the rain gauge
data: highest R2, the slope of the regression closest to 1, lowest RMSE and MAE. ARC2,
PERSIANN, and RFEv2 perform rather similarly, though RFEv2 tends to have a better slope
and MAE and PERSIANN a better R2 than the two other products. ERA5 and, especially,
CHIRPS perform worst.
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Figure 3. Comparison of ground-based precipitation data with 6 GPPs at a daily time scale from
September 2018 to August 2020 based on 4 indicators: (a) Coefficient of determination, (b) Slope
of linear regression, (c) Root Mean Square Error, (d) Mean Absolute Error. Each box plot is based
on 2 years of data from 14 rain gauges in the Ankavia watershed. ‘A’ refers to the point-to-grid
approach (grey boxes and whiskers) and ‘B’ to the point-gridded approach (red boxes and whiskers)
(see Figure 2). Box edges correspond to the 25th (Q1) and 75th (Q3) percentiles. Whiskers extend to
Q1-1.5IQR (lower bound) and Q3+1.5IQR (upper bound), with IQR = Q3–Q1 (Inter-Quartile Range).
Points outside the box are outliers.
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Overall, the statistical indices are generally similar or slightly better using the point-
gridded approach compared to the point-to-grid approach (Figure 3). As a result, the
point-gridded approach was used for the remainder of the analyses.

3.2. GPP Performance at Daily Time Scale across the Watershed

Figure 4 displays the R2, slope, RMSE, and MAE for each rainfall gauge at a daily time
scale across the Ankavia watershed. The greener the circle is, the closer the indicator is to
its optimum value. In contrast, the color red indicates poor performance. Overall, IMERG
shows good and fairly uniform levels of agreement across the entire watershed for all four
indices. The performance of PERSIANN, RFEv2, and ARC2 varies widely from one location
to another. CHIRPS and ERA5 show the poorest performance across the entire watershed.
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Figure 4. Spatial distribution of the statistical evaluation metrics across the Ankavia watershed based
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3.3. Daily Rainfall Probability Distribution Function

PDFs computed from the six GPPs and the rain gauge data over the Ankavia catch-
ment are shown in Figure 5. Overall, all GPPs’ PDFs follow the same general trend as
the rain gauge PDF, except for ERA5 and CHIRPS for specific ranges. ARC2, CHIRPS,
IMERG, PERSIANN, and RFEv2 tend to overestimate the precipitation class between
0–0.2 mm/day. Most GPPs tend to underestimate the precipitation class between 0.5 to
10 mm/day, while ERA5 overestimates frequency in that precipitation range. Furthermore,
most GPPs tend to underestimate the frequencies in precipitation classes > 150 mm/day.
More specifically, ARC2 cannot retrieve precipitation events > 150 mm/day. IMERG can-
not retrieve precipitation events > 200 mm/day, while ERA5 and RFEv2 can retrieve it
but strongly underestimate this class. Only CHIRPS and PERSIANN perform well for
rainfall > 200 mm/day, although they underestimate this rainfall range.
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Figure 5. Probability distribution function (PDF) of daily rainfall intensities based on GPP and rain
gauge data from September 2018 to August 2020. Note logarithmic (Log10) scale for Y axis.

3.4. Precipitation Detection Ability

Figure 6 depicts the rainfall detection ability (POD, FAR, CSI) of the various GPPs.
The results show that the POD values of ERA5 are highest among all products for the
precipitation classes between 0 and 5 mm/day but are among the lowest for rainfall
classes > 20 mm. As a matter of fact, the POD of ERA5 decreases steadily with increas-
ing daily rainfall amount. The POD of ARC2, IMERG, RFEv2, and CHIRPS are similar
(approximately 0.5 to 0.6) for the precipitation classes < 1 mm/day. However, the POD
of IMERG remains rather constant in the range of 0.2–100 mm/day, whereas the PODs
of ARC2 and RFEv2 decrease steadily. The POD of CHIRPS first increases slightly up to
5 mm/day and then decreases thereafter. PERSIANN performs worst of all GPPs for the
lowest precipitation classes, but the POD tends to increase with increasing rainfall. For
precipitation classes > 100 mm/day, only the PERSIANN product has a high POD value,
while the PODs for all other GPPs tend towards 0.

The FARs of all GPPs increase steadily between 0.2 and 20 mm/day. For rainfall
classes ≤ 100 mm/day, IMERG shows similar or better performance than all other prod-
ucts. For daily rainfall > 150 mm, only PERSIANN has a low FAR.

Based on the CSI value, the ERA5 product performs best in detecting precipitation in
the 0.2–2 mm/day precipitation range. IMERG performs best in detecting rainfall in the
range of 2–100 mm/day. Only PERSIANN performs well for rainfall > 150 mm/day. Both
IMERG and PERSIANN show rather constant performance in terms of CSI in the range of
0.2–100 mm, but IMERG outperforms PERSIANN in this range.
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Figure 6. Precipitation detection ability of the six GPPs based on daily rainfall: (a) Probability of
detection (POD), (b) False alarm ratio (FAR), (c) Critical success index (CSI). Ground-based rain
gauge data from September 2018 to August 2020 are used as reference. Note logarithmic (Log10)
scale for X axis.

3.5. Different Time Scales Assessment (Hourly to Yearly)

For the different time scales, only the IMERG product was evaluated, using the point-
gridded approach, given that this product appeared to perform best at the daily time
scale (§ 3.2). Figure 7 depicts the evaluation of IMERG at different time scales (hourly to
yearly) against the gauge data over the Ankavia catchment. The coefficient of determina-
tion increases with increasing aggregation time scales from hourly to yearly. Specifically,
IMERG exhibits good correlation at the yearly time scale (R2 = 0.97; Figure 7a) and at
monthly time scale (R2 = 0.87; Figure 7b), and reasonable correlation at the daily assess-
ment (R2 = 0.65; Figure 7c). The correlation is poor at the hourly time scale (R2 = 0.20;
Figure 7d). Especially at the daily time scale, there is a tendency to underestimate the
events > 150 mm (Figure 7c). IMERG also tends to underestimate yearly and, to a lesser
extent, monthly rainfall. Additionally, it is apparent that the variability in yearly (Figure 7a)
and monthly (Figure 7e) rainfall across the watershed is greater than the variability in
IMERG rainfall data, especially for the high-rainfall months.
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Figure 7. Comparison of ground-based precipitation data with IMERG at different time scales:
(a) yearly, (b) monthly, (c) daily, (d) hourly, (e) barplot of monthly rainfall with standard deviation.
R2 value is determined for regression passing through (0,0).
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3.6. Event Scale Assessment

Figure 8 shows the PDF plots for the rainfall event depths, durations, and intensities
over the 2-year period. Overall, the IMERG precipitation product presents a good agree-
ment with rain gauge data in terms of duration (Figure 8a) and depth (Figure 8b). However,
the rainfall intensities between 0–5 mm/h are underestimated, while the 5–10 mm/h rain-
fall intensity class is largely overestimated (Figure 8c).
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Figure 8. Probability distribution function of (a) rainfall duration, (b) rainfall depth, and (c) rainfall
intensity at event time scale for ground-based rain gauges and IMERG data from September 2018 to
August 2020.

4. Discussion

For the validation of the GPP data using ground-based rain gauges, the point-gridded
approach performs similarly or better than the point-to-grid approach (Figure 3). Since the
grid cell centroids rarely coincide with the rain gauge position, the point-to-grid method
is subject to greater inaccuracy [60,61]. This inaccuracy grows in proportion to the spatial
resolution of the GPP [62]. In contrast, the point-gridded approach reduces this mismatch
problem between gauge data and GPP data while preserving the resolution of the gridded
data. Nevertheless, the point-gridded technique is rarely studied [62].

At the daily time scale, among the six GPPs, IMERG performed best at our study
location (Figure 3). Its overall performance is reasonably good despite the small number
of available rain gauges used for the Global Precipitation Climatology Centre (GPCC)
in Africa, especially in Madagascar [53], resulting in biased precipitation data at rain
gauge and catchment scale. Several previous studies have also underlined that IMERG
outperforms other GPPs in tropical areas [20,63,64]. This has been attributed to the GPM
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Microwave Imager (GMI) and the ability of the Ku/Ka-band Dual-frequency Precipitation
Radar (DPR) to capture precipitation more effectively than the IR sensors and/or direct
PM technologies used by other GPPs [53]. Specifically, the GMI instrument is a conically
scanning, multi-channel microwave radiometer with 13 channels ranging in frequency
from 10 GHz to 183 GHz [53]. The GMI employs a set of frequencies that have been refined
over the last two decades to recover most ranges of precipitation, with the polarization
difference of each channel serving as an indicator of optical thickness, water content,
and precipitation systems [53]. Additionally, RFEv2, ARC2, and PERSIANN all show
satisfactory performance (Figure 3). In contrast, CHIRPS and ERA5 perform poorly in the
daily assessments. Some factors, such as gauge calibration and the sources of products play
significant roles in the performance of GPPs [62]. In general, satellite-based precipitation
products are currently more appropriate for meteorological applications than model-based
products (e.g., ERA5) in tropical areas, especially over regions with extreme precipitation
events. Nevertheless, reanalysis products such as ERA5 could have significant advantages
in temperate regions or for research focusing on occurrence detectability at finer resolutions
over high-latitude areas [49]. Therefore, the fact that some products (ARC2, IMERG,
PERSIANN, RFEv2) are gauge calibrated and satellite-based likely explains their better
performance compared to CHIRPS and ERA5.

Table 3 summarizes the results from various studies that evaluated the performance of
IMERG at a daily time scale in broadly similar climatic environments to the present study
(humid tropical environment). Note that almost all of those studies used a point-to-grid or
grid-to-grid approach; hence, the performance assessments are largely influenced by the
density of the gauge network taken as a reference [63,65,66]. In terms of correlation (CC),
the results from our study are among the highest reported so far, similar to [63]. RMSE
and MAE values in the present study are within the range of those reported previously.
FAR values are also within the range of previously reported values, whereas POD and
CSI are somewhat lower in the present study compared to previous studies. Nevertheless,
IMERG’s fairly high POD, CSI, and low FAR suggest a good detection capability for daily
rainfall, particularly in the range of 0–100 mm/day (Figure 6), even though some rainy days
are still being missed. Precipitation events estimated by the GPP may not be detected by
the gauges as it might rain at other locations within the grid-cell area. Furthermore, given
their spatial resolution, GPPs will be less sensitive to short-range variations in rainfall,
which may explain the somewhat poorer performance of IMERG in the present study, given
that many gauges are separated from each other by less than 10 km (i.e., roughly 0.1◦, the
spatial resolution of an IMERG grid box). Additionally, many factors could influence this
variation of performance across studies, including the density of the rain gauge network
and especially the validation technique [25,63,67].

Table 3. Summary of IMERG assessment studies in tropical environments at a daily time scale.

References/
Study Area

Study Period/
Number of Rain

Gauges for
Validation

Validation
Approach

CC
or
√

R2
RMSE

mm/Day
MAE

mm/Day POD FAR CSI

[25]/East
Africa 2000–2018/36 grid-to-grid 0.41 12.4 7.6 0.88

[66]/East
Africa 2014/37 grid-to-grid 0.53 0.87 0.04

[68]/Singapore 2014–2016/48 grid-to-grid 0.53 11.83 0.78 0.28 0.60
[63]/Philippines 2014–2017/55 grid-to-grid 0.81 5.66 3.74

[64]/Bali 2015–2017/27 point-to-grid 0.32 17.19 0.84 0.54 0.44
[69]/Vietnam 2014–2016 53 grid-to-grid 0.58 0.73 0.22 0.61
[70]/Malaysia 2014–2016/31 point-to-grid 0.54 14.93 0.89 0.20 0.73
[62]/Mexico 2014–2015/99 point-gridded 0.54 7.93 0.2–0.6 0.2–0.6 0.2–0.8

Ankavia 2018–2020/14 point-gridded 0.80 12 5.5 0.5–0.6 0.2–0.4 0.4–0.5
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According to our results, the performance of IMERG is rather uniform across the
watershed, i.e., there is no evidence of a spatial trend of the statistical metrics (Figure 4).
Therefore, the negative effect of the topography, which often alters the performance of
the precipitation satellites, is not apparent in our study area. Nevertheless, our results
are consistent with previous findings for stations located in mid- and low-altitude, with
relatively mild and wet climates [67,71,72]. Indeed, 13 of the 14 rain gauge stations in the
Ankavia catchment are located between 14 and 300 m a.m.s.l.

The PDF analyses underline that most of the GPPs show the same distribution as
the gauges except for the ERA5 data and, to a lesser extent, the CHIRPS data. Overall,
the results reveal an overestimation for the 0–0.2 mm/day precipitation class and an
underestimation of the >0.2 mm/day classes (Figure 5). Other studies have, however,
reported that IMERG slightly overestimated the frequency of rainfall events between
1 and 50 mm/day [64,68,70]. In addition, the findings also indicate that some GPPs
underestimate the precipitation classes >150 mm/day. The poor performance of GPPs at
detecting extreme events was also reported in other assessment studies in tropical river
basins [23,68]. Specifically, since gridded products contain spatially-averaged rainfall
values, larger grid size (0.1 × 0.1◦) products are more likely to smooth out the extreme
rainfall values (>150 mm/day), which are especially associated with short-duration events
with limited spatial extent [69,73]. In contrast, CHIRPS and PERSIANN outperform all other
GPPs in this range (>150 mm/day). Their capacities to better represent very high-intensity
rainfall could be due not only to their smaller grid size (0.05◦ and 0.04◦, respectively) but
also to their ability to categorize cloud-patch features based on height, areal extent, and
variability of texture estimated from satellite imagery [46,55]. These classifications aid in
the assignment of rainfall values to pixels within each cloud based on a predefined curve
that describes the link between rain rate and brightness temperature [55].

With respect to the time scale of integration, the correlation between ground-based
data and IMERG data improves with increasing summing time scales from hourly to yearly,
which is in line with others’ findings [25,64,68,70]. However, the strength of the correlation
at a yearly timescale is constrained by the short duration of the study period (2 years). In
addition, IMERG data have difficulty reproducing the spatial variability of rainfall within
the catchment (Figure 7a,b,e). This may at least partly result from the spatial smoothing
inherent to GPPs, daily extreme events not identified by the satellite (Figure 5), as well as
the small number of rain gauges used as the bias correction for IMERG [53]. At the event
time scale, there is good agreement in terms of PDF of duration and depth (Figure 8), which
is consistent with the results of [59] in Brazil. Finally, the poor performance of IMERG on an
hourly scale has also been reported by other studies [74,75]. This is particularly due to the
inferior performance at locations where the estimate is derived by morphing, which occurs
when no overpasses by any of the passive microwave instruments in the GPM constellation
are available at a specific half-hour [53]. This is also due to the temporal resolution of
inputs (>1 h), cited above (Section 2.3.4), used to calculate the IMERG product [53,74].

In this paper, we only focused on IMERG for the assessment at different time scales
due to its better performance at a daily scale. However, it is important to note that the
poor performance of some products at a finer scale does not necessarily suggest that they
will be bad at longer time scales. As a matter of fact, the accuracy of gridded precipitation
products increases as the time of accumulation increases [25,64,76].

5. Conclusions

In this study, we performed the first assessment of six gridded precipitation products
(ARC2, CHIRPS, ERA5, IMERG, PERSIANN, RFEv2) over the Ankavia watershed in
Madagascar, for a common period from September 2018 to August 2020, with 14 rainfall
gauges taken as reference. The main findings of the study can be summarized as follows:

• The point gridded approach is better suited than the point-to-grid approach in terms
of continuous statistical metrics to evaluate gridded precipitation products against
rain gauge data;
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• At a daily scale, IMERG outperforms all other tested gridded precipitation products,
followed by RFEv2 and ARC2;

• GPPs tend to overestimate the 0–0.2 mm/day rainfall class but underestimate the
>0.2 mm/day ranges. Only GPPs with smaller grid sizes (0.04◦, 0.05◦) accurately
estimate the >150 mm/day precipitation class;

• IMERG is shown to perform well in detecting rain events up to 100 mm/day but is sur-
passed by PERSIANN in detecting rain events larger than 150 mm/day. Nevertheless,
a substantial proportion of rainy days are not correctly estimated by IMERG;

• IMERG shows good performance at monthly, daily, and event time scales in our case
study; nevertheless, its capacity to reproduce spatial variability of rainfall is very
subpar at the catchment scale.

Overall, this GPP assessment study in northeastern Madagascar provides evidence
that the IMERG v06 final precipitation datasets perform satisfactorily when compared to
rain gauge time series using the point-gridded technique at a daily time scale. In addition,
the level of performance is fairly constant across a broad range of daily rainfall values,
except for extreme events. Therefore, IMERG is the most reliable for estimating rainfall
characteristics in this region. However, the product should be used with caution for hazard
and flood assessment, given its limitations for extreme rainfall events.
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