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Abstract: For emergency rescue and damage assessment after an earthquake, quick detection of 

seismic landslides in the affected areas is crucial. The purpose of this study is to quickly determine 

the extent and size of post-earthquake seismic landslides using a small amount of post-earthquake 

seismic landslide imagery data. This information will serve as a foundation for emergency rescue 

efforts, disaster estimation, and other actions. In this study, Wenchuan County, Sichuan Province, 

China’s 2008 post-quake Unmanned Air Vehicle (UAV) remote sensing images are used as the data 

source. ResNet-50, ResNet-101, and Swin Transformer are used as the backbone networks of Mask 

R-CNN to train and identify seismic landslides in post-quake UAV images. The training samples 

are then augmented by data augmentation methods, and transfer learning methods are used to re-

duce the training time required and enhance the generalization of the model. Finally, transfer learn-

ing was used to apply the model to seismic landslide imagery from Haiti after the earthquake that 

was not calibrated. With Precision and F1 scores of 0.9328 and 0.9025, respectively, the results 

demonstrate that Swin Transformer performs better as a backbone network than the original Mask 

R-CNN, YOLOv5, and Faster R-CNN. In Haiti’s post-earthquake images, the improved model per-

forms significantly better than the original model in terms of accuracy and recognition. The model 

for identifying post-earthquake seismic landslides developed in this paper has good generalizabil-

ity and transferability as well as good application potential in emergency responses to earthquake 

disasters, which can offer strong support for post-earthquake emergency rescue and disaster assess-

ment. 
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1. Introduction 

Landslides are one of the most common natural disasters in mountainous areas, fre-

quently resulting in significant property damage and casualties, particularly the thou-

sands of landslide disasters caused by major earthquakes, which are more severe [1,2]. In 

Wenchuan County, Sichuan Province, China, on 12 May 2008, a powerful 8.0 magnitude 

earthquake devastated Yingxiu town. The epicenter of this strong earthquake was situ-

ated in the middle and high mountains of the western Sichuan basin, where the geological 

environment is quite fragile, resulting in the occurrence of numerous geological hazards, 

such as seismic landslides, mudslides, and hillside collapses [1]. A large number of land-

slides were caused by the Wenchuan earthquake, and these landslides directly caused the 

deaths of nearly 20,000 people [3]. Because of the serious threat posed by seismic land-

slides to people’s lives and properties, as well as public safety, the rapid and automatic 

extraction of sudden landslides has become a hot topic in landslide research around the 

world [4–6]. The area, scale, and distribution of seismic landslides are determined by an-

alyzing the morphology and characteristics of seismic landslide areas. It is crucial for dis-

aster relief, mitigation, planning, and construction in the affected areas to quickly and 
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accurately identify the location information of seismic landslides and implement targeted 

relevant measures in order to effectively reduce the damage caused by seismic landslides. 

In early research, the majority of landslide detection and boundary extraction relied 

on the manual interpretation method [7–9], which has high accuracy. However, when the 

treated area is large or the disaster is urgent, the manual interpretation of landslides has 

issues such as a large workload, a long time to complete, and low efficiency, which is not 

conducive to the rapid extraction of large-scale landslide hazards after the disaster [10]. 

Additionally, because test results are subject to individual subjectivity, they will not be of 

the same standard if different persons interpret different areas [11]. 

Numerous automatic picture recognition approaches have been used to automati-

cally detect landslides in the context of the quick development of information extraction 

technology. Many researchers have begun to use machine learning and deep learning al-

gorithms for landslide detection due to the rapid development of these techniques. These 

algorithms include support vector machines (SVM), random forests (RF), artificial neural 

networks (ANN), decision trees (DT), convolutional neural networks (CNN), region-CNN 

(R-CNN), faster R-CNN, and others [12–15]. Gaelle Danneels et al. [16] used maximum 

likelihood classification and ANN classification methods to detect landslides from ASTER 

imagery automatically. Omid Ghorbanzadeh et al. [17] combined the ResU-Net model 

and the Object-Based Image Analysis (OBIA) method for landslide detection and com-

pared the classification results with ResU-Net alone, and the proposed method improved 

the average intersection-bonding of maps obtained by ResU-Net by more than 22%. Faster 

R-CNN and the U-Net algorithm were employed by HuajinLi et al. [18] to locate land-

slides in large-scale satellite pictures, and they demonstrated that the suggested frame-

work provided more precise segmentation of loess landslides than frameworks like Fully 

Convolutional Networks (FCN) and U-Net. ANN, SVM, RF, and CNN were utilized by 

Omid Ghorbanzadeh et al. [19] to perform landslide detection using optical data from the 

Rapid Eye satellite, and the results of these algorithms were assessed. 

Deep learning applied to landslide detection has the advantages of fast detection, 

high automation, and low cost [20,21]. However, this kind of technology needs a lot of 

image data, and obtaining high-resolution data for natural hazard studies is costly and 

inconvenient, which makes it difficult to detect earthquakes quickly after their occurrence 

[15]. Transfer learning can help the learning process in new domains by using the 

“knowledge” gained from earlier tasks, such as data features and model parameters, 

which lowers the cost of gathering training data and boosts the effectiveness of model 

applications [22]. 

In conclusion, this study employs an improved Mask R-CNN algorithm, transfer 

learning for model training, and approaches for data augmentation to increase the sample 

size and automatically detect landslides from a small sample of post-earthquake UAV 

footage. Then, using transfer learning, the trained model is used to identify the landslide 

caused by the Haiti earthquake. 

The main objectives of this paper are as follows: 

1. Develop an earthquake landslide remote sensing recognition model with some gen-

eralizability; 

2. To test the generalizability of the model, the trained model is used to extract data on 

seismic landslide hazards in untrained areas. 

The following are this paper’s significant innovations and contributions: 

1. The Mask R-CNN technique is improved to increase model generalization on post-

earthquake photos as well as the precision of landslide recognition; 

2. The training model finished on Wenchuan UAV images is applied to seismic land-

slide recognition on post-earthquake satellite imagery of Haiti using transfer learn-

ing. 

The remaining portions of the paper are structured as follows: Section 2 provides 

details on the experimental process, the improved Mask R-CNN model’s framework, the 
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experimental parameter settings, and the accuracy metrics. Section 3 describes the exper-

imental results, comparing and analyzing the recognition results, performance and trans-

ferability of the different models. Section 4 compares the paper’s major works and inno-

vations to other researchers’ discoveries. Finally, Section 5 summarizes the work and main 

results of the study, analyses the shortcomings of the study, and provides an outlook for 

future work. 

2. Methods 

2.1. Data 

2.1.1. Study Area 

Because the Wenchuan earthquake caused a huge number of landslides, and we now 

have the results of the manual interpretation of the seismic landslides. The data sample is 

also rich and simple to collect. We chose UAV images of Wenchuan County taken after 

the 12 May 2008 Wenchuan earthquake to evaluate the efficacy of the proposed approach. 

These images include a large number of seismic landslides with a data resolution of 0.25 

m. The location of the study area is shown in Figure 1. 

 

Figure 1. (A) the location of Aba Tibetan and Qiang Autonomous Prefecture in Sichuan, (B) the 

location of Wenchuan in Aba Tibetan and Qiang Autonomous Prefecture, and (C) the distribution 

of landslides in Wenchuan. 

The study area has a total area of 4084 km2 and is situated in Wenchuan County, Aba 

Tibetan and Qiang Autonomous Prefecture, Sichuan Province. It is located within 
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102°51′E~103°44′E and 30°45′N~31°43′N. This study area is situated in a valley between 

high and low mountains, with an overall undulating topography and an elevation trend 

that is high in the north and low in the south, as well as high in the west and low in the 

east, in which the highest elevation in the study area is 6100 m while the lowest elevation 

is only 786 m. The study area’s stratigraphic lithology is primarily composed of granite, 

syenite, and amphibolite. The environment and seismic hazards have an impact on the 

surface rocks, causing the structure to break down and a large number of collapses and 

landslides to occur one after another. This results in the formation of a lot of loose solid 

material in the study area, which creates an ideal environment for the development of 

geological hazards such as landslides. With an average annual rainfall of 826 mm to 1049 

mm, the study area’s temperate monsoon climate and abundant rainfall during the rainy 

season create ideal conditions for the emergence of landslides and other geological haz-

ards. Meanwhile, this region is situated in the Beichuan to Yingxiu fault zone, which has 

been proven to be the seismogenic fault of the Wenchuan earthquake, which is part of the 

Longmenshan active fault zone. The Wenchuan earthquake was caused by the sudden 

release of the accumulated energy in the Beichuan to Yingxiu zone of the Longmenshan 

thrust tectonic zone, which was brought on by the continuous Northeast compression of 

the Indian plate, the long-term accumulation of tectonic stresses on the eastern edge of the 

Tibetan Plateau, the East compression along the Longmenshan tectonic zone, and the 

blockage of the Sichuan Basin [23]. 

2.1.2. Dataset Production 

This study used data from an SF-300 UAV equipped with a Canon EOS 5D Mark II 

camera that was flown over Wenchuan County in Sichuan Province, China, on August 15 

2010 at an average altitude of 2000 m, three RGB channels, a spatial resolution of 0.25 m, 

and an image size of 5616 × 3744 pixels. 

This study pre-processed the training data and developed a dataset of UAV seismic 

landslide photos in COCO format. First, to ensure that the training dataset is roughly bal-

anced, images are filtered based on image sharpness and the number of landslides on the 

graph. Since there were not many images, they were chosen by hand. We made an effort 

to choose images that had a good balance of pixels from landslides and non-landslides 

(foreground and background), with an average pixel ratio of roughly 55:45. There were 

two more pre-processing stages carried out after the selection of the photographs: 

(1) Resizing the image to reduce complexity: the resized image is 512 × 512 pixels; 

(2) Data annotation: this paper uses the Labelme annotator (from the Python library) to 

define the seismic landslides in the image and add textual descriptions to these seis-

mic landslides, as shown in Figure 2. 

 

Figure 2. Image annotation. 
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2.1.3. Dataset Augmentation 

Due to the short number of image samples used in this experiment, image data aug-

mentation was necessary to increase the number of training photos, avoid overfitting by 

changing the tiny dataset to include features from large data, and optimize the deep learn-

ing algorithm’s training adaption [24]. For image data augmentation in this study, image 

rotation and image flip are used (as shown in Figure 3). The three basic rotational pro-

cessing techniques for images are 90, 180, and 270 degrees, whereas image flip involves 

flipping the images horizontally and up and down. 

 

Figure 3. Image data augmentation. 

After data augmentation, 852 landslide-containing images were obtained and split 

into three sets: a training set, a validation set, and a test set, with the ratio being 7:2:1. The 

training set is used to train the model, the validation set is used to validate the model 

during training, and the test set is used to assess the model. The specific values of the 

dataset division are shown in Table 1. 

Table 1. Dataset division situation. 

 Number of Images Number of Landslides Included in the Image 

training set 596 3560 

validation set 170 898 

testing set 86 476 

2.2. Methodology Flow 

In this study, we employ transfer learning to enhance the generalization and robust-

ness of the Mask R-CNN model, which is the principal model for landslide identification 

based on seismic landslide photos captured by UAVs. 

The following steps are primarily involved in the seismic landslide detection process: 

data gathering and processing, dataset production and augmentation, landslide detection, 

and accuracy evaluation. In Figure 4, the methodology flow is displayed. 
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Figure 4. Methodology Flow. 

2.3. Transfer Learning 

Both landslide identification and landslide prediction have been successful when us-

ing deep learning. However, gathering the necessary training data is frequently challeng-

ing in real-world situations, and insufficient datasets frequently cause experimental re-

sults to be overfitting. The amount of training data required in such circumstances can be 

decreased by using transfer learning. 

When there is a lack of training data for the target task, transfer learning approaches 

can transfer information from some prior tasks to the target task [25]. As illustrated in 

Figure 5, the primary goal of employing transfer learning in this research is to increase 

experiment accuracy by transferring information from the Microsoft Common Objects in 

Context (MS COCO) dataset [26], which has a vast quantity of data, to a smaller landslide 

dataset. The model files for this experiment were pre-trained with the MSCOCO dataset 

and can be downloaded at this URL https://github.com/facebookresearch/de-

tectron2/blob/main/MODEL_ZOO.md (accessed on 4 July 2022) to further reduce training 

time. 
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Figure 5. Model-based transfer learning. 

2.4. ResNet 

Kaiming He et al. [27] from Microsoft Research introduced ResNet (Residual Neural 

Network), successfully training a 152-layer neural network by using the ResNet Unit and 

taking first place in the ILSVRC 2015 competition despite using fewer parameters than 

VGGNet [28].  

ResNet is made up of a residual structure, the basic concept of which is to expand the 

network by adding directly connected channels, or the Highway Network concept [29]. 

The performance input was transformed nonlinearly in the prior network structure, 

whereas the Highway Network permitted some of the output from the earlier network 

layers to be kept. 

ResNet can be built using a variety of layer counts; the most popular ones are 50, 101, 

and 152 layers. All of these layer counts are achieved by stacking the aforementioned re-

sidual modules together. For this experiment, ResNet50 and ResNet101 were employed. 

Convolutional neural networks in ResNet50 and ResNet101 feature 50 and 101 layers, re-

spectively. 

2.5. Swin Transformer 

Han Hu et al. from Microsoft Research made the Swin Transformer network proposal 

in 2021 [30], and their research got the best paper award at the 2021 ICCV. The Swin Trans-

former network has supplanted the traditional CNN architecture as the standard back-

bone in computer vision, outperforming backbone networks such as DeiT [31], ViT [32], 

and EfficientNet [33]. Based on the concept of the ViT model, the Swin Transformer in-

geniously offers a sliding window technique that enables the model to learn data across 

windows. The model can handle super-resolution images thanks to the down-sampling 

layer, which also reduces computing work and frees it up to concentrate on global and 

local information. A hierarchical feature structure and linear computational complexity to 

image size are two characteristics of the Swin Transformer. Due to these characteristics, 

the model can be applied to a wide range of vision tasks. In vision tasks including target 

detection and picture segmentation, the Swin Transformer has achieved SOTA (state-of-

the-art) results. 

2.6. Mask R-CNN 

The Mask R-CNN [34] framework consists of two stages: the first stage scans the im-

age and produces proposals (regions that are likely to contain a target), and the second 

stage categorizes the proposals and produces bounding boxes and masks. The Mask R-

CNN is expanded by the Faster R-CNN. The target detection framework Faster R-CNN is 
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widely used [35], and Mask R-CNN expands it to include instance segmentation. The 

Mask R-CNN network structure is shown in Figure 6. 

 

Figure 6. Mask R-CNN network structure. 

The Mask R-CNN extends the Faster R-CNN by adding a parallel branch to the ex-

isting boundary box recognition to predict the target’s mask. Using the FCN to combine 

segmentation and classification undermines the effectiveness of instance segmentation, 

according to the original Mask R-CNN paper. Therefore, Mask R-CNN uses the FCN to 

predict a Concrete Boundary for each category independently and relies on a different 

branch of the network to obtain the category and Boundary Box, as opposed to deriving 

the Boundary Box from the Concrete Boundary. 

2.7. The Landslide Detection Method Used in This Paper 

In this experiment, ResNet50, ResNet101, and Swin Transformer were employed as 

the backbone networks to extract image features, while Mask R-CNN was used as the 

primary landslide recognition model. Faster R-CNN with the semantic segmentation al-

gorithm FCN [36] makes up the Mask R-CNN algorithm. The main network structure is 

shown in Figure 7. 

 

Figure 7. Network organization in this research. 

Following the input of the seismic landslide picture into the network, the backbone 

first extracts the associated feature map, and then an ROI is set at each place in this feature 

map, yielding numerous candidate ROIs. After that, these candidate ROIs are sent into 

the Region Proposal Network (RPN) for regression and binary classification (slippery 

slope or non-slippery slope), with some of the non-slippery slope ROIs being passed off. 

For each anchor, RPN produces two outputs: a border accuracy to better fit the target and 
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an anchor category to differentiate between landslides and background. The anchor that 

best contains the target can be chosen using RPN’s predictions, and its size and position 

can be adjusted. If numerous anchors overlap each other, the anchor with the greatest 

score is kept by non-maximal suppression. The ROI Align procedure is then applied to 

these remaining ROIs, which first maps the original picture to the pixel of the feature map 

before mapping the feature map to the fixed feature. Finally, classification, Bounding box 

regression, and mask generation (FCN operation in each ROI) are applied to these ROIs. 

The network’s primary modules are made up of and operate as follows. 

(1) RPN 

Mask R-CNN does away with the conventional sliding window in favor of directly 

using RPN to create detection frames. Figure 8 depicts the precise organization of the 

RPN. 

 

Figure 8. RPN architecture. 

The original image is downsampled to produce feature maps. The final layer of the 

feature map is directly used by the general network because it has strong semantics. How-

ever, the last layer’s feature map’s positioning and resolution are quite poor, making it 

simple to miss relatively small objects. The backbone used in this paper uses multiple fea-

ture maps from the bottom to the top level for fusion, fully utilizing the extracted features 

at each stage in order to achieve better feature integration. Simply put, the higher-level 

features are transmitted to the lower-level semantics to complement them, resulting in 

high-resolution, strongly semantic features that make it easier to detect small targets. 

With the use of sliding windows, the RPN, a lightweight neural network, scans the 

image and locates areas with targets. The anchors are the rectangular areas that the RPN 

scans, and they overlap one another to cover as much of the image as they can. The sliding 

window is implemented by the convolution process of RPN, which allows all regions to 

be scanned in parallel using the graphics processing unit (GPU). Furthermore, RPN does 

not scan the image directly; instead, it uses the backbone feature map, which enables RPN 

to utilize the extracted features effectively and prevent double counting. RPN generates 

two outputs for each anchor: an anchor class to distinguish foreground from background 

and a border to better fit the target. By using RPN’s predictions, the anchor that best con-

tains the target can be selected and its position and size fine-tuned, and if multiple anchors 

are overlapping each other, the anchor with the highest foreground score is retained 

through non-maximal suppression.  

The 1 × 1 convolutional layer is used to output a specified number of channels of 

feature maps. Proposals are areas where the algorithm finds possible objects after scan-

ning the image through a sliding window. The top 1000 proposal boxes are kept after the 

Proposals Layer sorts the resulting proposal boxes in descending order of score. Four co-

ordinates are contained in each box, resulting in the final matrix, which has the dimen-

sions 1 × 1000 × 4. The 1 × 1000 × 4 dimension represents the 1000 areas of the image where 

the target is likely to be located. Here in the Proposals Layer, the network completes its 

equivalent of targeting. 
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(2) ROI Align 

Mask R-CNN proposes the ROI Align approach in place of ROI Pooling to address 

the issue of region mismatch (misalignment) brought on by two quantization processes in 

Faster R-CNN. The ROI Align operation is shown in Figure 9, with the dashed part rep-

resenting the feature map and the solid line representing the ROI, where the ROI is sliced 

into 2 × 2 cells. If there are four points to be sampled, first, each cell is divided into four 

small squares (represented by red lines), with the center of each serving as the sampling 

point. The values of these sampled pixel points are then determined because the coordi-

nates of these sample points are typically floating-point numbers, necessitating a bilinear 

interpolation of the sampled pixel (as indicated by the four arrows). The last step is to max 

pool the four sampled points inside each cell, which results in the ROI Align result. The 

purpose of ROI Align is to pool the corresponding areas in the feature map to a fixed size 

based on the position coordinates of the proposed boxes obtained from RPN for subse-

quent classification and boundary box regression operations. 

 

Figure 9. ROI Align sampling and pooling implementation process. 

(3) Fully Convolution Nets 

The FCN convolves and pools the image, decreasing its feature map, then performs 

a deconvolution operation, which means an interpolation operation to increase its feature 

map, and finally classifies each pixel value. To generate the mask of the identified target 

in the input image, that is, the boundary of the identified target, the FCN operation is 

applied to each ROI of the image. 

2.8. Experimental Setup 

For our trials in this study, we employed an RTX3090 graphics processor, an Intel i9-

10900k processor, and 64 GB of RAM. For the model software environment, both the orig-

inal and improved Mask R-CNN models are implemented in PyTorch, the python version 

of Torch, a neural network framework open-sourced by Facebook, specifically for GPU-

accelerated neural network programming. Torch is a traditional tensor library that is pop-

ular in machine learning and other applications that need a lot of arithmetic. It is used to 

manipulate multidimensional matrix data. 

The AdamW algorithm [37] was selected as the gradient decent optimizer algorithm 

for setting model parameters because it uses less memory, trains more quickly, converges 
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more quickly, and reduces computational costs. The remaining hyperparameters are all 

those that perform better on the validation set after multiple iterations. The batch size was 

set to 8, the number of threads was set to 4, and the learning rate was set to 10−3 as the 

model parameter settings. After that, 50 epochs of training were performed on all three 

models. 

The network structure code used in the article can be downloaded at these two URLs: 

https://github.com/open-mmlab/mmdetection (accessed on 4 July 2022) and 

https://github.com/SwinTransformer/Swin-Transformer-Object-Detection (accessed on 4 

July). 

2.9. Indicators for Accuracy Evaluation 

In this experiment, the performance of the three seismic landslide detection models 

was quantitatively assessed using Precision, Recall, F1 score, Accuracy, and intersection 

over union (IoU) metrics [38]. Precision numbers primarily show how accurately land-

slides were detected on the image. The number of landslides in the image that have been 

successfully recognized is represented by the Recall metric. The F1 score is used to calcu-

late the equilibrium between accuracy and recall. The F1 score is a combined indicator of 

the model’s accuracy and is the harmonic mean of precision and recall. The accuracy rate 

represents the proportion of accurately predicted data among all data. The confusion ma-

trix in Table 2 includes True-Positive (TP), False-Positive (FP), and False-Negative (FN), 

where TP is the number of samples that were correctly identified as landslides, FP is the 

number of samples that were incorrectly identified as non-landslides, and FN is the num-

ber of samples that were not identified as landslides. If the IoU is more than or equal to 

0.5, a prediction for a landslide is deemed to be true, and if it is less than 0.5, it is deemed 

to be false. 

Table 2. Confusion matrix of predicted result and ground truth. 

Ground Truth 
Predicted Result 

Landslide Non-Landslide 

Landslide TP (True-Positive) FN (False-Negative) 

Non-landslide FP (False-Positive) TN (True-Negative) 

False negatives play a crucial role in managing the risk of landslides. The small num-

ber of FNs guarantees that the model misses fewer landslides and identifies all affected 

structures and settlements, allowing for an accurate assessment of the extent and severity 

of damage to the landslide hazard area and prompt action to be taken to prevent and 

mitigate the disaster in the affected area. 

IoU is a metric used to assess how accurately corresponding object boundaries are 

found in a set of data. IoU is a straightforward calculation criterion that may be applied 

to any task that produces an output with a predicted range (bounding boxes). The corre-

lation between the true and predicted values is calculated by using this criterion, and the 

stronger the correlation, the higher the value. The IoU value measures how closely the 

system’s anticipated box and the image’s ground truth box overlap. The accuracy of a 

single detection is represented by the intersection of the detection result and the ground 

truth over their concatenation. 

For this experiment, the test set was also labeled. After the test set’s images were 

recognized, the program counted and filtered the IoU for each identified landslide. A TP 

is defined as an IoU value greater than 0.5, and the total number of TP is calculated in this 

way. The number of FPs is equal to the number of detected landslides less the number of 

TP, whereas the number of FN is equal to the number of true landslides in the tag minus 

the number of TP. 
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3. Results 

The three models in this experiment were trained using the same landslide dataset, 

and since all three models were fitted before the 30th epoch, only the first 30 epochs were 

chosen for illustration. Figure 10 displays, following 30 training epochs, the overall vali-

dation loss curves generated by the various models. The three models’ loss curves gener-

ally follow a similar trend, with faster learning and a notable decline in loss values during 

the initial phases of training. The model gradually converges in the middle and later 

phases of training, with smaller changes in loss values and a sluggish rate of decrease. The 

accuracy of the model’s landslide detection keeps improving as the total loss value drops, 

and in this study, the epoch with the lowest total loss value is chosen for identification on 

the test set. 

 

Figure 10. Validation Loss Curve. 

The same landslide dataset was also used to train the YOLOv5, Faster R-CNN. Fol-

lowing training, the three models’ recognition accuracies were compared to those of the 

classic YOLOv5 and Faster R-CNN models on the test set. The primary architect of the 

original YOLOv5 project methodology was Glenn Jocher of Ultralytics. YOLOv5 is a one-

stage detection model that, after a single inspection, generates the class probability and 

position coordinate values of the object directly, without the aid of a region proposals 

stage. While being slower but typically more accurate, Mask R-CNN is a two-stage detec-

tion model. The results are given in Table 3. 

Table 3. Comparison of network accuracy. 

Model Precision (%) Recall (%) F1 Score (%) Accuracy (%) 

Mask R-CNN+Swin Trans-

former 
93.28 87.41 90.25 82.2 

Mask R-CNN+ResNet101 89.55 83.92 86.64 76.43 

Mask R-CNN+ResNet50 86.15 80.32 83.13 73.91 

YOLOv5 88.64 83.78 86.16 75.94 

Faster R-CNN 84.47 78.36 81.30 69.13 
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Table 3 shows that the model with the Swin Transformer performs well on the test 

set, with Precision values of 0.9328, Recall values of 0.8741, F1 scores of 0.9025, and Accu-

racy values of 0.822. The improved algorithm outperformed the previous algorithms in 

all indexes when compared to the original Mask R-CNN, YOLOv5, and Faster R-CNN. 

According to a study of the test results, the method described in this work for detecting 

seismic landslides has a greater detection accuracy than the original Mask R-CNN algo-

rithm. Figure 11 displays the outcomes of the UAV image recognition in the test set. In the 

diagram, the blue box represents the landslide boundary box determined by the model, 

and the red area represents the landslide boundary determined by model identification. 

 

Figure 11. Results of UAV image recognition in the test set ((a,e,i,m,q) are ground truth images; 

(b,f,j,n,r) are recognition images of Resnet 50 for the backbone; (c,g,k,o,s) are recognition images 

of Resnet 101 for the backbone and (d,h,l,p,t) are recognition images of Swin Trasnformer for the 

backbone). 
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As seen in Figure 11a–h, the improved model is capable of correctly identifying indi-

vidual landslides when there is a significant area of individual landslides on the image. 

The resulting landslide boundaries are also more precise than those produced by Res-

Net50 and ResNet101. 

While the recognition results of ResNet50 and ResNet101 suffer from serious under-

detection when the natural environment is complex, as shown in Figure 11i–p, the im-

proved model can accurately detect them even if there are two or more landslides on the 

image at the same time. Although the landslide area below the image is only partially 

visible in the UAV image, the model correctly identifies it, demonstrating the improved 

model’s increased robustness. In this way, the model can maintain high recognition accu-

racy even in landslide regions on the image that is partially or completely hidden by sur-

face structures, such as buildings or forests. 

As seen in Figure 11q–t, there is a river on the right side of the landslide area, and the 

visual characteristics of the river are very similar to those of the landslide. ResNet50 ex-

hibits the phenomenon of mistaking the river for a landslide, but the improved model 

correctly ignores these occurrences and detects the landslide area on the left side, demon-

strating its anti-interference ability. 

The recognition results, however, demonstrate that the improved model continues to 

miss and misidentify locations on the map. The exposed rock above is mistakenly identi-

fied by the improved model in Figure 11p as a landslide area due to the visual similarities 

between the two. Figure 11t demonstrates how the improved model overlooked a minor 

landslide below. This suggests that there is still room for improvement in the improved 

model’s capacity to identify landslides in challenging environments, especially when it 

comes to distinguishing them from exposed rock and exposed soil. In the future, steps 

could be taken to lessen the influence of bare rock and bare soil on the model, such as 

increasing the number of landslide samples and adding satellite and drone imagery of 

various resolutions to the dataset. 

This study put the seismic landslide photos from Haiti into three trained models for 

identification to examine the generalizability and transferability of the models. After im-

age correction, fusion, and other pre-processing, the Haiti seismic landslide image, which 

is segmented into 512 × 512 pixels size for identification in this paper, is created with a 1 

m resolution true-color image of the Haiti post-earthquake GF-2 satellite image from 2021. 

Figure 12 depicts the outcomes of the identification of the Haiti satellite imagery, with the 

Ground Truth being the landslide boundary determined by the geohazard interpreters 

based on the outcomes of surface changes between the Haiti satellite images taken prior 

to the earthquake and those taken following it. In the diagram, the blue box represents the 

landslide boundary box determined by the model, and the red area represents the land-

slide boundary determined by model identification. 



Remote Sens. 2022, 14, 3928 15 of 20 
 

 

 

Figure 12. Comparison of Haiti’s satellite image identification outcomes ((a,e,i,m,q) are ground 

truth images; (b,f,j,n,r) are recognition images of Resnet 50 for the backbone; (c,g,k,o,s) are recog-

nition images of Resnet 101 for the backbone and (d,h,l,p,t) are recognition images of Swin Trasn-

former for the backbone). 
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Figure 12a–d and q–t demonstrate the improved model’s superior feature extraction 

capabilities for seismic landslides. ResNet50 and ResNet101 exhibit missed and false de-

tections when identifying landslides, while the improved model can still recognize land-

slides that are untrained and have different colors. The improved model performs well in 

identifying small landslides, even when they are small, as shown in Figure 12e–h. 

ResNet50 and ResNet101 could only identify the larger, more noticeable landslides 

among them, and the detection results are shown in Figure 12i–l and m–p. Despite the 

large number of landslides present on the image at the same time, the improved model 

was still able to identify the vast majority of them. 

In conclusion, both ResNet-50 and ResNet-101 performed poorly in their recognition 

of the Haiti images, but the improved model’s detection results on those same images still 

maintained high accuracy, demonstrating the improved model’s superior robustness and 

transferability. 

4. Discussion 

In recent years, deep learning has been employed by many academics to identify 

landslides. A DLWC model for landslide detection in Hue–Saturation–Intensity (HSI) 

data was proposed by C. Ye et al. [39] DLWC combines the extracted features and suscep-

tibility factors for landslide detection after using deep confidence networks to extract spa-

tial features and spectral characteristics of landslides at high levels on hyperspectral im-

ages. To determine if it was a landslide, a logistic regression classifier with constraints was 

finally employed. The experimental outcomes demonstrate that the detection accuracy of 

landslides on remote sensing images reaches 97.91 percent, which is more accurate than 

the conventional hyperspectral image classification method. Utilizing contour data and 

the vegetation index, Bo Yu et al. [40] developed an end-to-end deep learning framework 

for landslide detection. The framework is divided into two sections: one for identifying 

areas at risk of landslides using vegetation indices and DEM and the other for accurately 

identifying those areas through the use of a semantic segmentation deep learning model. 

With a recall of 65% and an accuracy of 55.35%, the proposed methodology performed 44 

percent more accurately than comparable published works when used to identify land-

slides in Nepal on images from Landsat 2015. In order to detect and map earthquake-

induced landslides in single RapidEye satellite images, Yi Y et al. [41] proposed a new 

end-to-end deep learning network, LandsNet, to learn various features of landslides. To 

address the lack of training samples, specific training samples were first generated and a 

data augmentation strategy was put into place. A cascaded end-to-end deep learning net-

work called LandsNet was subsequently built. By using morphological processing, the 

identified landslide maps have finally been further optimized. In two spatially distinct 

earthquake-affected areas, LandsNet achieved the best F1 value of about 86.89 percent, 

which is almost 7 and 8 percentage points higher than those of ResUNet and DeepUNet, 

respectively. An improved U-Net model for seismically generated landslide extraction 

was developed by Liu, P. et al. [42] using post-earthquake aerial remote sensing imagery 

to annotate a landslide dataset. The article increases the amount of feature parameters for 

the training samples by first adding three new bands with spatial information to the three 

RGB bands: DSM, slope, and aspect. In order to rebuild the U-Net model structure, a re-

sidual learning unit was then added to the conventional U-Net model. Finally, the new 

technique was used to identify seismic landslides in Jiuzhaigou County, Sichuan Prov-

ince, China. According to the findings, the new method’s accuracy is 91.3 percent, which 

is 13.8 percent greater than that of the conventional U-Net model. 

All of the aforementioned studies have produced positive results, but there are clear 

drawbacks in the quick identification of post-earthquake seismic landslides, such as the 

challenge of quickly obtaining hyperspectral image data after an earthquake, the low iden-

tification accuracy, and the poor transferability. Automatic seismic landslide extraction’s 

main goal is to take all necessary measures to meet seismic emergency needs and to offer 

technical assistance for disaster mitigation and relief efforts such as opening up lifelines 
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and life rescue. The issue of applying a trained model to landslides in untrained areas has 

received less attention in recent research on landslide identification. The algorithm used 

in this paper can extract corresponding patterns using multi-layer learning in a neural 

network using spatial and spectral features of seismic landslides from remote sensing im-

agery. In the early stages of the study, numerous sets of labelled data are used as samples 

to train landslide identification models, which can be used to quickly extract data about 

disasters such as seismic landslides in the post-disaster period. In this study, data from 

the 2008 Wenchuan earthquake were used to train a recognition model with some gener-

alizability to seismic landslides, and seismic landslide data from Haiti were used to vali-

date the model. The method used in this study produced comparable F1 values and accu-

racy to the studies by Yi Y et al. [41] and Liu, P et al. [42], but the model can be used for 

identification immediately after an earthquake without collecting data, improving time 

efficiency, indicating that the model has better potential for use in emergency response to 

earthquake disasters. 

With good results and an accuracy of 0.9328 and an F1 score of 0.9025, Resnet-50, 

Resnet-101, and Swin Transformer were utilized in this study as the backbone networks 

of Mask R-CNN for the extraction of seismic landslides in Wenchuan. On untrained post-

earthquake satellite photos of Haiti, the improved model continues to produce good 

recognition results, and its accuracy and transferability have both increased. Compared 

to earlier examined methods, the one used in this study is more automated and necessi-

tates fewer data. 

This study employs some techniques to improve model accuracy and avoid overfit-

ting while working with tiny samples of data. To obtain a larger dataset, data augmenta-

tion is first applied to the photos, rotating and flipping each image. Second, transfer learn-

ing is utilized to shorten the training time, improve the generalizability of the model, and 

reduce the amount of data gathering needed. Ultimately, the Swin Transformer was em-

ployed as the model’s backbone network to improve its adaptability and accuracy. 

The findings of this study demonstrate that seismic landslides can be successfully 

identified in UAV imagery by using deep learning techniques. It is anticipated that satel-

lite and UAV imagery data of various resolutions will be added to the dataset for the 

study’s next phase to increase data diversity and boost the precision of landslide identifi-

cation. Other data, such as Digital Elevation Model (DEM) data, can also be incorporated 

into the model, in addition to remotely sensed imagery. 

5. Conclusions 

In this study, we created a seismic landslide sample dataset by labeling the landslides 

that appeared on post-quake UAV images from Wenchuan County, Sichuan Province, in 

2008. To identify landslides in post-earthquake drone images of Wenchuan, this study 

used ResNet-50, ResNet-101, and Swin Transformer as the backbone networks. Data aug-

mentation and transfer learning methods were also used, and the generalizability and 

transferability of the models were compared using seismic landslide images of Haiti. The 

results demonstrate that the Swin Transformer outperforms ResNet-101 and ResNet-50, 

obtaining a Precision value of 0.9328 and an F1 score of 0.9025 on the dataset and having 

greater robustness and generalization for landslide detection. In this study, a remote sens-

ing model for identifying seismic landslides with some degree of universality was devel-

oped and successfully used to identify seismic landslides in Haiti. This indicates the accu-

racy of using the improved Mask R-CNN algorithm to detect landslides in post-earth-

quake UAV imagery. The landslide identification model developed in this paper has 

made some advances in terms of generalizability and transferability, and it can deliver 

accurate landslide data for post-earthquake emergency rescue and disaster assessment. 

This study still has a few flaws in it. The next step will be to streamline the model in order 

to reduce training time because the model parameters used in this study are numerous 

and demand high computer performance. In order to improve the model’s accuracy and 
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dependability, the dataset will be expanded in the future to include satellite imagery and 

drone imagery at various resolutions. 
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Abbreviations 

UAV unmanned air vehicle 

COCO common objects in context 

SVM support vector machines 

RF random forests 

ANN artificial neural networks 

DT decision trees 

CNN convolutional neural networks 

R-CNN region-CNN 

OBIA object-based image analysis 

MS COCO Microsoft common objects in context 

ROI region of interest 

FCN fully convolutional networks 

RPN region proposal network 

GPU graphics processing unit 

IoU intersection over union 

TP true-positive 

FP false-positive 

FN false-negative 

DEM digital elevation model 
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