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Abstract: Detecting objects from images captured by Unmanned Aerial Vehicles (UAVs) is a highly
demanding task. It is also considered a very challenging task due to the typically cluttered background
and diverse dimensions of the foreground targets, especially small object areas that contain only
very limited information. Multi-scale representation learning presents a remarkable approach to
recognizing small objects. However, this strategy ignores the combination of the sub-parts in an
object and also suffers from the background interference in the feature fusion process. To this
end, we propose a Fine-grained Target Focusing Network (FiFoNet) which can effectively select a
combination of multi-scale features for an object and block background interference, which further
revitalizes the differentiability of the multi-scale feature representation. Furthermore, we propose
a Global–Local Context Collector (GLCC) to extract global and local contextual information and
enhance low-quality representations of small objects. We evaluate the performance of the proposed
FiFoNet on the challenging task of object detection in UAV images. A comparison of the experiment
results on three datasets, namely VisDrone2019, UAVDT, and our VisDrone_Foggy, demonstrates
the effectiveness of FiFoNet, which outperforms the ten baseline and state-of-the-art models with
remarkable performance improvements. When deployed on an edge device NVIDIA JETSON
XAVIER NX, our FiFoNet only takes about 80 milliseconds to process an drone-captured image.

Keywords: object detection; Unmanned Aerial Vehicles; deep learning

1. Introduction

Unmanned Aerial Vehicles (UAVs) equipped with cameras have received a lot of
attention in recent years [1–3]. UAVs can be deployed rapidly with a wide range of
new applications, including aerial photography and video surveillance, at a relatively
low cost. Therefore, automatic understanding of visual data captured by UAVs is highly
demanding, bringing computer vision and UAVs together more and more closely. In
the field of computer vision, significant progress has been achieved in object detection.
Existing detectors such as the YOLO family [4,5] and Faster RCNN [6] can achieve satisfying
performance on natural images. The targets to be recognized in natural scenes generally
consist of a large number of pixels. These detectors usually demand a huge amount of
computing resources to ensure their capability and performance. However, the existing
detectors perform poorly in situ because UAV images contain quite small objects with
very limited numbers of pixels, and the UAVs’ airborne computational resources are very
limited [7–9].

The difficulty of UAV object detection lies in building robust features to distin-
guish foreground targets with limited pixels from background clutter [10–12]. Exist-
ing methods can be roughly grouped into three major streams, i.e., super-resolution-
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based (SR-based) methods, context-based methods and multi-scale representation-based
(MR-based) methods.

(1) The SR-based methods attempt to super-resolve the whole image or the Regions
of Interest (RoIs) [9,13,14], and then, they perform object detection with a general-purpose
object detector [6,15]. The newly generated details of RoIs can boost the detector’s perfor-
mance to a higher degree. Efficiently selecting regions to be reconstructed is critical to the
efficiency of the algorithm. While foreground reconstruction can effectively improve the
detection accuracy, background reconstruction just increases the calculation burden of the
algorithm [13]. However, it is difficult to locate foreground regions containing objects of
interest while excluding any background.

(2) The context-based methods leverage the relationship between the object and its
surrounding environment to infer the original region of the small object [16–18]. However,
due to the complexity and diversity of UAV background scenes, it is often difficult to build
such contextual relationships. SR-based and context-based methods generally explicitly
design a module specifically used for super-resolving RoIs or encoding context informa-
tion, respectively, which can significantly increase the computation cost. Therefore, these
algorithms are difficult to be deployed on UAVs.

(3) The MR-based methods first use different level features to represent objects [19–21]
and then recognize these objects in separate feature levels. Specifically, a high-level feature
with a low resolution treats an object as a whole, and a low-level feature with a high
resolution focuses on the object’s parts, such as its boundaries, as shown in Figure 1a. These
methods build the coarse-grained features, which treat each object as a whole region and
process them separately. However, this strategy neglects the fine-grained features in an
object (as shown in Figure 1b), which has been demonstrated to improve object detection
performance [22,23]. Furthermore, there is severe background interference in the combi-
nation of low-level and high-level features. In Figure 2a, for example, the red area covers
parts of the background in the original image but misses the small targets in the far distance.
In Figure 2b, the feature map focuses more accurately on the small objects. The background
interference, in turn, adversely affects the learning in the subsequent layers, resulting in
misclassifications in the final predictions, especially for recognizing small objects.

In this paper, we propose a Fine-grained Target Focusing Network (FiFoNet) to im-
prove the performance of object detection in UAV images through aggregating fine-grained
objects’ sub-parts with a special focus on foreground target areas. Compared with existing
detectors, FiFoNet is distinctive in two significant aspects: (1) FiFoNet aggregates sub-part
features in an object from different levels of features to provide a finer-grained object
representation. (2) The fine-grained object representation can focus more on the foreground
targets by blocking background interference with an object mask under the guidance of
the object position label. We design a Global-Local Context Collector (GLCC) to further
improve the accuracy of small object detection. Our GLCC module utilizes several convo-
lution filters with different kernel sizes to collect both global and local context information
surrounding the objects.

In summary, our main contributions are as follows:
First, we propose a novel conceptual feature representation, called Fine-grained Target

Focusing (FiFo) Representation, which aggregates sub-regions from multi-scale features
and blocks background interference.

Second, we propose FiFoNet, which effectively detects objects in UAVs’ images with
our proposed FiFo representation.

Third, we propose GLCC, which utilizes a Global Average Pooling operation to
encode global context information and dilated convolutional layers to extract local context
information to enhance the low-quality representations of small objects.
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Figure 1. Comparisons between the conventional coarse-grained representation (a) and our fine-
grained representation (b).

（a） （b）

Figure 2. The heatmap visualization of the high-level (a) and low-level (b) features. The features
visualized in (a) appear to be noisy, covering more background but missing the small targets (the
cars) in the far distance region. The features visualized in (b) focus more accurately on the objects,
especially on small targets.

Extensive experiments, including overall and ablation studies, are conducted on two
widely used datasets VisDrone2019 [8] and UAVDT [24], as well as our VisDrone_Foggy
dataset. Ablation studies show that with the proposed FiFA, TFB and GLCC modules,
our FiFoNet unleashes the ability of multi-scale feature representations and has improved
the detection accuracy by 1.1%, 1.0%, and 0.9%, respectively, on the VisDrone2019 dataset.
Moreover, we compare our FiFoNet with ten state-of-the-art (SOTA) and baseline detectors
to verify its effectiveness. On the VisDrone2019 dataset, the AP50 result of FiFoNet is 63.80%,
which outperforms the SOTA detector SAIC-FPN [25] by 0.83%. On the UAVDT dataset,
our FiFoNet’s AP50 result is 36.80%, outperforming the SOTA detector GLSAN [9] by 6.30%.
Last but not least, we deployed the proposed FiFoNet on an embedded computing board,
NVIDIA Jetson Xavier NX, and tested it on the VisDrone2019 dataset. We have achieved
an AP50 of 57.5% and an average processing speed of 79.5 milliseconds per image on the
edge device.
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2. Related Work

Images captured by UAVs represent a special object detection scene. UAV images
usually contain a large number of small targets. Small objects, whose feature representations
usually are low quality, are the main reason for the poor detection performance. Some
high-performing algorithms for small object detection have expanded the application field
of UAVs. We will review three research directions for UAV object detection. The related
work of the three research directions is summarized in Table 1.

Table 1. Summary of the advantages and drawbacks of object detectors for drone-captured images.

Methods Advantages Drawbacks

SR-based methods [26–28] Reconstructed the information of RoIs; can
effectively recognize small objects.

Difficult to locate RoIs accurately at places
with cluttered backgrounds where it is hard
to reconstruct the ROIs.

Context-based methods [17,29,30] Can effectively detect small targets with a
fixed background (e.g., cars in roads).

Difficult to build such contextual relation-
ships due to the diversity of UAV back-
ground scenes.

MR-based methods [15,31,32] Can effectively detect multi-scale objects, in-
cluding small, middle and large size objects. Suffer from the feature-level imbalance issue.

2.1. SR-Based UAV Object Detection

SR-based UAV object detection methods [9,13,26–28,33,34] have attempted to adopt
super-resolution techniques to reconstruct the low-quality RoIs or their corresponding
features into high-quality counterparts. Hu et al. [34] utilized a simple bilinear interpolation
for better target localization. However, super-resolving the whole image is inefficient be-
cause the processed background can be irrelevant to the detection task, and this can increase
the inference time substantially. Instead of super-resolving whole images, Bai et al. [33]
firstly obtained RoIs by using a high-recall detector and then super-resolved those RoIs only.
On the other hand, since image features contain rich contextual information, Noh et al. [13]
and Li et al. [28] reconstructed the features, instead of the image patches, of RoIs to further
improve detection performance. However, it is difficult to accurately estimate the positions
of RoIs or the corresponding RoIs’ features prior to object detection, which is a chicken-
and-egg problem. The above-mentioned methods all ignored the uneven distribution
of objects with various dimensions in UAV images. Critical crowded regions should be
examined by a detector in fine detail even if it requires a heavy computational burden,
whereas sparse regions should be given less attention or even ignored. Following this idea,
Deng et al. [9] and Yang et al. [27] firstly zoomed in the crowded regions that contained a
large number of objects and then super-resolved the proposed regions for final detection.
Aiming at real-world applications, Mukhiddinov [35] developed a smart glass system for
blind and visually impaired (BVI) people. The system can recognize objects in low-quality
images and help BVI people navigate in dark–light or foggy environments. However, these
methods generally consist of three stages, namely crowded region proposal, low-quality
image enhancement and object detection, which are inefficient and cannot be trained in an
end-to-end fashion.

2.2. Context-Based UAV Object Detection

Context-based UAV object detection methods [16,17,29,30,36–38] have attempted to
embed the relationship between an object and its surrounding environments into its orig-
inal RoI’s features. Bell et al. [29] adopted a spatial recurrent neural network to capture
the contextual information outside the RoIs. Tang et al. [17] proposed the Pyramidbox to
learn features from contextual parts around small targets and leveraged the joint fusion of
high-level and low-level features. A hierarchical contextual information extracting mod-
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ule [30] was proposed to integrate segmentation features into object detection features.
Peng et al. [16] provided context information in high-level layers to supply low-level fea-
tures to improve their semantic discriminativity. However, due to the complexity and
diversity of the UAV images’ backgrounds, it is difficult to build such contextual relation-
ships. Integrating contextual information can also lead to increase background noise, which
may result in degraded performance.

2.3. MR-Based UAV Object Detection

Most of the early object detectors [15,31,32,39–41] failed to detect small objects. We
argue the main reason is that features used for recognizing objects are typically extracted in
the last layer, and when image feature maps are down-sampled with pooling operations in
the feature extraction process, repeated down-sampling operations can degrade the quality
of the small objects’ features. Specifically, the hierarchical structure of neural networks
allows them to extract feature maps with different spatial resolutions. Features extracted
by convolutional filers with large kernel sizes in high-level layers contain much semantic
information but lose detailed information due to their low resolution. Whereas features
extracted in lower-level layers with convolutional filters of smaller kernels are in a higher
resolution but lack semantic information. Therefore, MR techniques are introduced to
aggregation to improve small object detection accuracy.

MR-based UAV object detection methods [42–46] use a strategy of combining the
rich semantic information in high-level features for target classification and the detailed
spatial information in low-level features for determining targets’ positions. PANet [43]
proposed adding a bottom–up path to supply the object spatial information in low-level
features to the high-level features, which shortens the information path between the lower-
layer and topmost-layer features. A Balanced Feature Pyramid [42] was proposed, which
consisted of four stages, i.e., rescaling, integrating, refining and strengthening. The same
deeply integrated balanced semantic features were used to enhance the multi-scale features.
NAS [44] provided a new exploration direction for vision tasks. NAS-FPN [46] and Bi-
FPN [45] utilized neural architecture searches to search Feature Pyramid Networks (FPN)
and Path Aggregation Feature Pyramid Networks, respectively, for a better cross-scale
feature network topology. However, the search processes required a huge amount of GPU
resources and computation time.

In our work, we build a fine-grained object representation from different layers and
introduce object position information and context information into the process of feature
fusion to obtain multi-scale features with more expressive ability.

3. Methodology
3.1. Overview

The overview of the pipeline of FiFoNet is illustrated in Figure 3. It consists of four
modules: (1) A CNN-based backbone for feature extraction; (2) A top–down pathway ex-
tracting multi-scale feature representations via capturing the detailed position information
and semantic information; (3) A fine-grained target-focusing module for further refining
the multi-scale feature representations extracted by the second module; (4) A head for
estimating the position and classification score of the resultant bounding box.

Our key idea is to build a fine-grained target focusing representation to further unleash
the ability of the multi-scale feature representations. Toward this end, a fine-grained feature
aggregation (FiFA) block is proposed to select a combination of sub-regions from multi-
scale features. Moreover, a Target-Focusing Block (TFB) is proposed to focus the attention
on the RoIs so as to suppress background noise.
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Figure 3. The pipeline of the proposed FiFoNet, which consists of four modules. The first module
is a backbone for feature extraction. The second module, which includes our proposed GLCC, is
a top–down pathway for extracting multi-scale features. The third module is the newly proposed
fine-grained target-focusing module for fine-grained feature aggregation and background noise
suppression at the feature level. The last module is a head for predicting classification scores and
bounding box positions. These four modules are merged into a unified network for an end-to-
end training.

3.2. Fine-Grained Feature Aggregation (FiFA)

The MR-based detectors lay more emphasis on object-level coarse-grained approaches
and consider each object as a whole or a large part. However, the coarse-grained features
tend to miss those fine details critical for detecting small objects and hence leave small
objects in a disadvantaged situation. Different from the coarse-grained approaches, our
FiFA is performed on the adaptive combination of multi-scale features to obtain fine-grained
object representation for both large and small objects without significantly increasing the
computational complexity.

Figure 4 illustrates the details of FiFA. We utilize the feature activation output from
each stage’s last residual block. The outputs of these last residual blocks are defined as
C = {C2, C3, C4, C5} for outputs of Conv2, Conv3, Conv4, and Conv5. We do not use Conv1
in the pyramid due to its large memory footprint. The input of FiFA is C, and its output is
R. The detailed fusion process is described as follows.

3×3 Conv

C5

C4

C3

C2

R
eshape Con

1×1 Conv 3×3 Conv Sigmoid

R
CP C2

'
C3

'
C4

'
C5

'
K2'

K3'
K4'

K5'

Figure 4. The proposed fine-grained feature aggregation (FiFA) Block.

Firstly, we resize the features {C3, C4, C5} to the size of C2 to integrate multi-level
features. A 1× 1 convolution layer is used to reduce the number of channel dimensions
of {C3, C4, C5}, and we then perform bilinear interpolation on the three feature maps to
up-sample them. After the above operations, we obtain the reshaped features with the same
size as C2. Secondly, we concatenate the reshaped features to obtain the integrated feature
CP. A 3× 3 convolution layer is used to extract local context information. Then, a 1× 1
convolution layer is used to transform the channel dimension to the number of elements in
{C2, C3, C4, C5}. A 3× 3 convolution layer is adopted to further extract local information,
and we use a sigmoid activation function to generate a weight map K= {K2, K3, K4, K5},
where Ki is the i-th weight map for the shape Ci, the value of elements in Ki ranges in [0, 1].
The i-th weight map K

′
i is obtained by a broadcasting operation in which the original i-th
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weight map Ki is stretched to become an array of same shape as C
′
i . Finally, the weight map

K′={K′2, K
′
3, K

′
4, K

′
5} is multiplied with the features {C′2, C

′
3, C

′
4, C

′
5} to obtain R as follows:

R =
5

∑
i=2

K
′
i × C

′
i (1)

The pseudo-code for aggregating the fine-grained features with our FiFA module is
illustrated in Algorithm 1.

Algorithm 1 The pseudo-code for aggregating fine-grained features with our FiFA module.

Input: Features extracted from different convolution layers {C2, C3, C4, C5}, Ci ∈ Rwi×hi×ci .
Output: Features aggregated by our FiFA module R ∈ Rw2×h2×c2 .
1: Reshape {C3, C4, C5}, Ci ∈ Rwi×hi×ci → {C′3, C

′
4, C

′
5}, C

′

i ∈ Rw2×h2×c2

2: Concatenate {C2, C
′
3, C

′
4, C

′
5} → CP ∈ Rw2×h2×4c2

3: Conv(CP)→ K={K2, K3, K4, K5}, Ki ∈ Rw2×h2×1

4: Broadcast(K)→ K′ = {K′2, K
′
3, K

′
4, K

′
5}, K

′

i ∈ Rw2×h2×c2

5: Aggregate R with Equation (1).

3.3. Target Focusing Block (TFB)

As shown in Figure 2, the fine-grained object representation generated by our FiFA
block tends to contain some background noise, instead of focusing on the targets. We
propose a Target-Focusing Block (TFB) to focus the fine features more on the target area
and less on the background area. Then, representation learning is performed under the
constraint of the object position.

Figure 5 presents the details of our TFB. The input of TFB is the feature R, whose out-
put is denoted as {P2, P3, P4, P5}. We design a mask-guided mechanism to refine the fused
feature R to suppress background noise and highlight the foreground objects. Specifically,
R first passes through a 3× 3 convolutional layer to encode the local context information,
which then goes through a 1× 1 convolution layer to learn a one-channel feature map.
The value of the one-channel feature map indicates the likelihood of a pixel in the fore-
ground or background. Finally, a new enhanced feature map is obtained by multiplying
the fused feature R and the one-channel feature map passing through a sigmoid function.

R PositionR

3×3C
onv 

1×1C
onv 

R
eshape

P5

P4

P3

P2

Object Position Attention Loss

Object  
Position

Sigm
oid

C5
C4

C3
C2

Figure 5. The Target-Focusing Block (TFB).

For supervised training, the cross-entropy loss between the one-channel feature map
and the binary mask is utilized to compute the object position attention loss. Due to the
lack of mask annotation for high-precision object positions in UAV images, we assign the
value of 1 to all the pixels inside the ground-truth bounding box and 0 for all other pixels to
obtain the object position mask, as shown in Figure 5. Regardless of annotations for objects’
categories, all the value of the pixels inside the ground-truth bounding boxes in an image
have the value of 1 to highlight the foreground regions.
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Thus, the refined feature map PositionR is defined as:

M = σ(φ(R)) (2)

and
PositionR = R + M× R, (3)

where φ represents convolutional layers, σ denotes a sigmoid function, and M is the object
mask map.

We use PositionR to improve the original multi-scale representations. PositionR’s
shape is the same as C2, which is different from C3, C4, and C5. We first reshape it to the
size of Ci and then add PositionR to the corresponding Ci to obtain the final enhanced
multi-scale representations P= {P2, P3, P4, P5} for final detection, which is expressed as:

Pi = ψ(PositionR) + Ci. (4)

Here, ψ denotes the operation of convolutional layers and up-sampling layers to
reshape PositionR to the size of Ci.

The pseudo-code of refining features with our TFB module is summarized in Algorithm 2.

Algorithm 2 The pseudo-code for refining features with the proposed Target-Focusing Block (TFB).

Input: Features aggregated by FiFA R ∈ Rw2×h2×c2 ;
the ground truth of objects’ position GTObjectPosi.

Output: The final enhanced multi-scale features P = {P2, P3, P4, P5}, Pi ∈ Rwi×hi×ci ,
the object position loss lossAT .

1: Estimate an object mask map, σ(φ(R))→ M ∈ Rw2×h2×1

2: Compute object position attention loss, lossAT(M, GTObjectPosi)

3: Obtain the refined feature map, R + M
′ ∗ R→ PositionR

4: Resize PositionRi → PositionR
′

i ∈ Rwi×hi×ci

5: Output the final P:
6: P2 = PositionR

′
2 + C2

7: P3 = PositionR
′
3 + C3

8: P4 = PositionR
′
4 + C4

9: P5 = PositionR
′
5 + C5

3.4. Global-Local Context Collector

As shown in Figure 3, the lateral connection Fi(Ci) in the original top–down pathway
is a 1× 1 convolutional kernel, which is utilized to reduce or increase the number of the
feature channel. The features extracted with the 1× 1 convolutional kernel generally lack
contextual information due to the small and fixed size of the convolutional kernel. We
propose to collect both global and local contextual information in our proposed detector so
as to improve small object detection performance.

Our proposed Global–Local Context Collector, denoted as GLCC , consists of three
components, i.e., a global average pooling layer followed by a 1× 1 convolutional layer,
several dilated convolutions with different 3× 3 kernels and atrous rates and a 1× 1 con-
volutional layer. The global average pooling layer is used to collect the global context
information, and several dilated convolutions are used to collect the local context informa-
tion. Figure 6 illustrates the details of GLCC. In the top branch, a 1× 1 convolutional layer
ψi is used to embed the input feature Ci. In the bottom branch, a global average pooling
layer φi is adopted to collect the global contextual information at the image level. In the
middle branch, several 3× 3 convolution filters υd

i with the atrous rate d = (1, 2, ..., N) are
utilized to encode local context information. Finally, these features extracted through the
above three branches are concatenated together. In particular, we formulate this procedure
as follows:

Fi(Ci) = ∑
k=1,2,...,N

Con(υd
i (Ci), ψi(Ci), φi(Ci)) (5)
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AvgPool

Rate = 2

Rate = N

Rate = 1

......
Con

Up-sampling

Figure 6. The details of the proposed Global–Local Context Collector.

The proposed GLCC mainly consists of several convolution filters with different
kernel sizes. Our GLCC captures contextual information surrounding targets to improve
the expressive power of target representations. Especially, this strategy is very effective for
enhancing small objects’ representations.

4. Experiments

In order to demonstrate that our FiFoNet method can effectively recognize small
objects in UAV images, we conducted experiments on the UAV benchmark datasets Vis-
Drone2019 [7], UAVDT [24], and our synthetic VisDrone_Foggy. In the following sub-
sections, we first describe the three datasets and then use them to verify the effectiveness of
our FiFoNet for UAV object detection.

4.1. Datasets and Models

In this work, VisDrone2019 [7] and UAVDT [24] are used to verify the effectiveness of
our FiFoNet because these two datasets contain a large number of small size objects. We
will give the details of the datasets and models as follows.

(1) VisDrone2019 [7]: The VisDrone2019 benchmark includes 6471 images for training,
548 images for validation, and 3190 testing images captured by UAVs. The captured images’
resolution is about 2000× 1500 pixels. These images are labeled with bounding boxes and
ten categories: bicycle, awning-tricycle, tricycle, van, bus, truck, motor, pedestrian, person
and car.

(2) VisDrone_Foggy: Our synthetic VisDrone_Foggy dataset is built upon the Vis-
Drone2019 benchmark dataset. According to the atmospheric scattering model [47], we
transform images in the VisDrone2019 dataset to foggy images for our VisDrone_Foggy.
We generate images with thin, medium thick, and thick fog by setting different parameters
of the atmospheric scattering model, as shown in Figure 7. Our VisDrone_Foggy adopts
the same annotations in the original VisDrone2019.
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（a）Clean （b）Depth

（c）Thin （d）Medium Thick （e）Thick

Figure 7. Examples of images from our Visdrone_Foggy dataset. (a) The original image; (b) The
estimated depth map; (c) The image with thin fog; (d) The image with medium thick fog; (e) The
image with thick fog.

Specifically, the formation of foggy images can be formulated as follows:

I(x) = J(x)t(x) + A(1− t(x)) (6)

where I(x) is the observed foggy image, J(x) is the corresponding clean images, A is the
global atmospheric light, and t is the transmission describing the portion of the light.

The transmission t can be described as follows:

t(x) = e−βd(x) (7)

where β is the scattering coefficient of the atmosphere, and d(x) is the depth map. We use
ViTDepthNet [48] for image depth estimation.

(3) UAVDT [24]: The UAVDT benchmark includes 23,258 images for training and
15,069 images for testing. The captured images’ resolution is about 1080 × 540 pixels.
These images are labeled with bounding boxes and three predefined categories: bus, truck
and car.

(4) Models: We have implemented several object detection models as the baselines,
including SSD [49], FPN [50], YOLO [5], and FRCNN [6]. We also compare our method with
the state-of-the-art (SOTA) methods, such as mSODANet [51], DSHNet [52], CRENET [53],
GLSAN [9], ClustDet [27], SAIC-FPN [25], and HRDNet [54], which are designed specifi-
cally for UAV object detection.

4.2. Implementation and Evaluation Metrics

(1) Implementation: We implement our FiFoNet with PyTorch 1.8.1. The proposed model
is run on a server with an NVIDIA RTX3090 GPU and an edge device with a NVIDIA
JETSON XAVIER NX. During the training stage, we use part of the pre-trained model
YOLOv5 (https://github.com/ultralytics/yolov5, accessed on 1 August 2022), which saves
a lot of training time. We use the Adam optimizer for training and use 3× 10−4 as the initial
learning rate with the cosine learning rate schedule. The learning rate of the last epoch
decays to 0.12 of the initial learning rate. The size of the input image of our model is very
large, with the long side of the image being 1536 pixels, which is the same configuration as
in TPH-YOLOv5 [55].

(2) Evaluation Metrics: The same evaluation metrics as in PASCAL VOC [56] are
adopted to evaluate the detection performance of our FiFoNet. The metrics are defined as
follows, including mean Average Precision (mAP) and Average Precision (AP):

AP =
∫ 1

0
P(R)dR. (8)

https://github.com/ultralytics/yolov5,
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Here, P stands for Precision, measuring how accurate the prediction is, i.e., the frac-
tion of correct positive instances among all the positive instances. R represents Recall,
measuring how good the classifier estimates the positives, i.e., the fraction of true posi-
tive instances among all the positive instances. P(R) is the curve composed of P and R.
Then, mAP = 1

N ∑N
i=1 APi, where N is the number of categories. AP is averaged on ten

Intersection over Union (IoU) values of [0.50 : 0.05 : 0.95], AP50 and AP75 are computed at
the single IoU of 0.5 and 0.75, respectively. P and R are defined as:

P =
TP

TP + FP
(9)

and
R =

TP
TP + FN

, (10)

where FN, FP and TP indicate the number of false negative predictions, false positive
predictions and true positive predictions.

4.3. Ablation Studies

In order to analyze the impact of our method and validate the contributions of each
component of our approach, we conducted seven experiments on the VisDrone2019 dataset.
YOLOv5 [57] is used as the baseline for the ablation studies.

(1) The Effectiveness of FiFA: We evaluate three methods to fuse the information of
low-level features with high-level features. The three methods are Element-wise Sum
and Average, Concatenation, and our FiFA. To compare their effectiveness, we apply
different strategies on the same baseline. Table 2 presents that the detection accuracy of
FiFA outperforms that of the Sum-and-Average approach by 1.1%. The result matches
the intuition that the fine-grain feature fusion strategy of our FiFA module can release
the advantages of the multi-scale feature representations more effectively. Therefore, we
performed the remaining experiments with our FiFA module.

Table 2. Comparison of Average Precision obtained with different fusion strategies on VisDrone2019.

Method Sum and Average Concatenation FiFA

AP50 33.5 33.8 34.6

(2) The effectiveness of TFB: The TFB is used to make the network suppress background
noise and focus on foreground objects. Table 3 shows that the TFB obtain a 1.00% improve-
ment compared with the baseline model.

We verify the effectiveness of the generated objects’ mask for future refinement with
the supervised information of object location. Specifically, the input feature map (Figure 8a)
passes through a 3 × 3 convolutional layer and then a 1 × 1 convolution operation to
estimate a one-channel mask (as shown in Figure 8d). The mask indicates the likelihood of
the background and foreground. Finally, a new refined feature map is obtained, as shown
in Figure 8c.

The comparison between the estimated attention mask (Figure 8d) and object position
generated by ground truth without categories (Figure 8e) indicates that our TFB module
can effectively estimate the target objects’ positions and scales. We compare the original
feature maps (Figure 8b) and feature maps generated by TFB (Figure 8c). The comparison
suggests that the proposed TFB module can suppress the interference of background
noise effectively.
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Table 3. Comparison of Average Precision obtained with our method with/without each module for small object detection on VisDrone2019-Val.

Method Train Imgz Test Imgz mAP @.5 Speed (ms) Ped People Bicycle Car Van Truck Tricycle Awning-Tricycle Bus Motor

Baseline 640 640 33.5 7.0 39.3 32.0 11.9 73.8 36.2 31.2 20.3 12.2 39.7 38.0

Baseline + FiFA 640 640 34.6 7.0 40.9 32.9 11.4 74.5 37.5 31.3 20.5 10.9 46.8 38.8

Baseline + TFB 640 640 34.5 7.0 39.8 33.1 11.0 74.5 37 31.7 18.6 11.2 48.7 39.0

Baseline + tinyHead 640 640 37.2 7.0 45.1 35.4 12.8 79.1 40.0 34.3 22.0 12.1 48.8 42.6

Baseline 640 1996 35.8 7.0 52.6 34.8 14.5 81.0 39.2 21.2 22.2 10.6 40.8 42.7

Baseline 1536 640 34.0 7.0 34.8 30.3 14.4 73.4 36.3 32.5 22.0 11.7 48.0 36.8

Baseline 1536 1996 55.6 15.6 69.2 54.9 36.2 89.1 55.6 49.4 44.7 24.8 69.6 62.6

Baseline + tinyHead 1536 1996 56.1 15.6 70.4 55.4 37.6 89.7 57.7 48.9 42.8 24.2 68.7 65.3

Baseline + largeModel 1536 1996 61.4 15.6 74.6 60.8 46.4 90.8 60.5 55.0 50.2 30.2 76.6 69.0
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(a)

(b)

(c)

(e)

(f)

(d)

Figure 8. Visualization of the results obtained with our TFB module. (a) The feature map input to
TFB. (b) The output feature map without TFB. (c) The output features to TFB. (d) The object mask
generated by BFR. (e) The ground-truth object position without their category. (f) The original images.

(3) The Effectiveness of GLCC: Table 4 presents that GLCC can significantly improve the
detection performance by collecting contextual information. As we gradually aggregate
more features from different convolutional layers, the detection performance of the algo-
rithm continues to improve. Firstly, we follow the architecture of FPN and demonstrate
its performance in the setting of k = 1, d = 1, where k is the kernel size and d denotes the
dilation rate. We add a 3× 3 convolution in each lateral connection, which leads to 0.2, 0.4,
and 0.3 gain in AP, AP50, and AP75.

Furthermore, we add more convolutions with different dilation rates to collect more
contextual information. It can be observed that the addition of convolutions with a dilation
rate of 2, 3, 4 and 5 improves the detection accuracy. The method in the last row benefits
from all kinds of convolutions and achieves the best results, which leads to a 0.6, 0.9,
and 0.8 gain in AP, AP50, and AP75. To this end, the convolutional layers in our GLCC
module finally adopt the following configuration: kernel size = [1, 3, 3, 3, 3, 3], dilation rate
= [1, 1, 2, 3, 4, 5]. We denote GLCC with this configuration as GLCCk6d6.

We further visualize some features generated by GLCCk6d6 as shown in Figure 9. The
first and second columns are the input images and their feature maps are generated by
the feature extractor of the baseline. The last column is the feature maps enhanced by
our GLCCk6d6. It can be observed that the enhanced feature maps are better than the
originally extracted feature maps, especially in the red-circled area. The visualization result
demonstrates that our GLCC can effectively collect contextual information by convolutional
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filters with different dilation rates and thus generate high-quality representations for final
object detection.

Table 4. Ablation study of GLCC.

k = 1 k = 3 k = 3 k = 3 k = 3 k = 3 AP[%] AP50[%] AP75[%]d = 1 d = 1 d = 2 d = 3 d = 4 d = 5

X 21.4 33.5 20.2
X X 21.6 33.9 20.5
X X X 21.8 34.2 20.7
X X X X 21.9 34.3 20.9
X X X X X 22.0 34.3 20.9
X X X X X X 22.0 34.4 21.0

(a)                                                           (b)                                                                (c)

Figure 9. Visualization of the feature maps obtained with GLCC. (a) The input image. (b) Features
obtained without GLCC. (c) Features obtained with GLCC.

(4) Complexity Comparison: Table 5 compares the model complexity of our FiFoNet
with that of the baseline. The evaluation metrics of the experiment include FLOPs (Floating
Point Operations, the calculation amount of a model), Parameters (the number of model
parameters), and Times (in milliseconds) on a server and edge device. The evaluation metric
Times is calculated by the average of processing all of the images from the validation set.
The total time includes the image pre-processing time, inference time and post-processing
time. Table 5 shows that the AP50 of the model with our modules has increased by 1∼2%,
while the number of model parameters and processing time only increase slightly.

(5) Visual Comparison of the Detection Results: We also visually compare the detection
results obtained with and without the proposed components in Figure 10. Comparing
Figure 10b with Figure 10d, it can be seen that smaller objects can be well detected by our
method. This is because our method converts the position-semantic inconsistency issue
into one that makes the RoIs’ (located by tiny objects) multi-scale feature simultaneously
contain detailed spatial information and strong semantic information.

(6) Effect of the low-level representation: We also conducted experiments to verify the
effectiveness of low-level feature maps for UAV object detection. Table 3 shows that the
tinyHead modification has boosted the performance by 3.7%. The tinyHead represents
the baseline model with a lower-level representation extracted from the Backbone module.
Figure 11 shows the comparison between the heatmaps of the last and second last layers.
The red areas in the right column are darker and smaller than those in the middle column.
The results show that the feature maps in the right column focus more accurately on the
object spatial locations, indicating that our tinyHead can help make the network focus
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more precisely on objects. This is because the lower-level features are generated by the
convolutional filter with a smaller kernel size, which is beneficial for extracting small
objects’ features.

Table 5. Comparison of model complexity between our model and the baseline.

Model Input Size AP0.5 FLOPs Params (M)
Time (ms)

Server Edge Device

Baseline
Small 55.6 15.9 7.0 18.4 69.8

Large 61.4 204.2 86.2 79.7 480.9

Baseline + FiFA
Small 56.7 16.6 7.2 19.1 74.5

Large 62.9 209.0 87.7 82.2 497.8

Baseline + TFB
Small 56.8 18.5 7.4 19.5 75.3

Large 63.1 220.8 88.6 82.4 501.2

Baseline + FiFA + TFB
Small 57.5 18.9 7.5 19.7 79.5

Large 63.8 225.9 89.8 82.8 509.8

Figure 10. Visualization of the detection performance of our method. (a) Baseline detection results.
(b) Zoomed-in baseline detection results on the sub-area. (c) Our detection results. (d) Our detection
results on the corresponding sub-area.

Figure 11. Heatmap comparison between our newly added head for lower-level features. The raw
image (left), heatmap from the last second layer (middle), heatmap from the last layer (right).
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(7) Detection Results of Our FiFoNet on VisDrone_Foggy: We evaluate our FiFoNet on
the VisDrone_Foggy dataset. We synthesize thin, medium thick and thick fog with the
parameters β = 1.0, 2.0, 3.0 in Equation (7). Table 6 shows the AP50 results. FiFoNet
improves the baseline by 3.90%, 2.59%, and 1.84% on the thin foggy, medium thick foggy,
and thick foggy images, respectively. Figure 12 shows FiFoNet’s detection results on the
VisDrone_Foggy dataset. It can be observed that most of the objects are correctly recognized,
in spite of a small number of false positive and false negative samples as the fog grows.
The detection results demonstrates its effectiveness in object detection in foggy scene.

Table 6. Detection results of our FiFoNet with synthetic images on our VisDrone_Foggy dataset.

Method
AP50(%)

Thin Fog Medium Thick Fog Thick Fog

Baseline 54.25 53.72 51.01

FiFoNet 58.15 56.31 52.85

（a） （b）

（c） （d）

Figure 12. Visualization of the results obtained with our FiFoNet on the clean image (a), the thin (b),
medium thick (c), and thick (d) fog scenes.

4.4. Comparison with State-of-the-Art Methods

We compare our proposed FiFoNet with the SOTA algorithms on two datasets.
(1) Detection Results on VisDrone2019 Dataset: We compare the detection results with

representative detectors’ results on VisDrone2019 in Table 7, including two-stage detectors,
i.e., FRCNN [6], FPN [50], and one-stage detectors, i.e., SSD [49] and YOLOv5 [57]. We
achieve an AP of 36.5%, AP50 of 63.8% and AP75 of 36.1%. The performance comparison
with the SOTA methods, namely mSODANet [51], DSHNet [52], CRENet [53], GLSAN [9],
ClustDet [27] SAIC-FPN [25], and HRDNet [54], is also summarized in Table 7. Compared
to the SOTA drone-view detector (SAIC-FPN), the AP is increased by 1.22% and AP50 is
increased by 0.83%, suggesting that our FiFoNet outperforms these SOTA methods. To
make a fair comparison, we do not use overlays of various tricks, oversized backbones,
or model ensembles, which are often used in existing methods dealing with UAV data.
Figure 13 shows the object detection results on aerial images of large or low-light scenes. It
is worthy mentioning that FiFoNet can detect people in night-time images.

(2) Detection Results on UAVDT Dataset: The performance comparison of our Fi-
FoNet and SOTA detectors on the VisDrone dataset including FRCNN [6], ClusDet [27],
GLSAN [9], and YOLOv5 [5] is presented in Table 7. It can be seen from the table that
the proposed approach achieves an AP of 21.3%, an AP50 of 36.8% and an AP75 of 22.5%,
outperforming the SOTA methods.
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Figure 13. Visualization of the results obtained with our FiFoNet on large or low-light scenes. Note
the zoomed-in views of the crowded areas highlighted in green boxes.
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Table 7. Comparison of our method with the baseline and SOTAs on VisDrone2019-Val and UAVDT.
’-’ means that the statistics are not available. The top two results are highlighted in red and green fonts.

Method
VisDrone2019 UAVDT

AP(%) AP50(%) AP75(%) AP(%) AP50(%) AP75(%)

SSD [49] (ECCV 16) - 15.20 - 9.30 21.40 6.70
FRCNN [6] + FPN [50] 21.80 41.80 20.10 11.00 23.40 8.40

YOLOv5 [57] (Github 21) 24.90 42.40 25.10 19.10 33.90 19.60

DSHNet [52] (WACV 21) 30.30 51.80 30.90 17.80 30.40 19.70
CRENet [53] (ECCV 20) 33.70 54.30 33.50 - - -

GLSAN [9] (TIP 20) 30.70 55.60 29.90 19.00 30.50 21.70
ClustDet [27] (ICCV 19) 32.40 56.20 31.60 13.70 26.50 12.50

SAIC-FPN [25] (Nerocomputing 19) 35.69 62.97 35.08 - - -
HRDNet [54] (ICME 21) 35.50 62.00 35.10 - - -
mSODANet [51] (PR 22) 36.89 55.92 37.41 - - -

FiFoNet (Ours) 36.91 63.80 36.11 21.30 36.80 22.50

5. Limitation and Discussion

In addition to the above success, our FiFoNet has certain limitations. FiFoNet trained
on high-quality drone-captured images would fail to obtain satisfactory detection perfor-
mance under adverse weather conditions, including foggy or raining scenarios. The main
reason for the poor detection performance of FiFoNet is considerable inconsistency in data
distribution between high-quality images under sunny weather and low-quality images
under adverse weather. Therefore, one of the main limitations of FiFoNet is poor detection
performance under adverse weather.

Our VisDrone_Foggy dataset is synthetic and not collected from the real world, while
we have achieved preliminary detection results under foggy weather conditions. There is
still a significant difference between synthetic and real-world data. The degradation process
of the real-world dataset is very complicated. We need to comprehensively collect real-
world fog drone-captured images to verify the effectiveness of FiFoNet in adverse weather.

6. Conclusions

In this paper, we have proposed our FiFoNet to effectively detect objects in UAV
images. The proposed FiFoNet first builds a FiFo representation, which contains strong
semantic information and detailed spatial positions. Then, the FiFoNet refines the multi-
scale features to focus them on the foreground against the noisy background. Finally, the
GLCC collects the global and local context information surrounding small objects to further
improve object detection accuracy. Extensive experiments on benchmark datasets have
shown the effectiveness of our proposed method in terms of both quantitative and visual
results. Our core components, FiFA, TFB and GLCC, can be easily plugged into existing
MR-based detectors. Our FiFoNet has been deployed on an embedded computing board
running on a real drone.
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