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Abstract: Long-term satellite observations have the ability to provide early warnings of harmful
algal blooms (HABs). However, detecting HABs in optically complex coastal waters is somewhat
challenging. In this article, we propose a two-step scheme, combining long short-term memory
(LSTM) with extreme value analysis (EVA), for HAB detection. Essentially, the LSTM network builds
a normal time series model on selected coordinate of long-term multisource satellite data. This model
detects potential HAB dates by utilizing the LSTM predictive errors for an approximated Gaussian
distribution. For each potential HAB date, the EVA approach then extracts the HAB distribution from
the selected coordinate by considering the spatial correlation. A case study in Zhejiang coastal waters
shows that our method exploits the advantages of both LSTM and EVA models, which not only
has the strong prediction capability of LSTM for reducing HAB false alarm rate, but also achieves a
dynamic HAB extraction through the EVA fitting.
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1. Introduction

Harmful algal blooms (HABs), also termed as red tides, are the rapid growth of algae
or cyanobacteria that can cause severe environmental and human health problems together
with associated economic impacts [1]. In recent decades, HABs have increased in frequency
and spatial extent worldwide [2]. To minimize the negative effects related to HABs, an
accurate and near-real-time technique is required to provide early warnings, potentially
relying on satellite remote sensing observations [3].

Satellite-derived HAB detection is an active research topic. Currently, methods for
HAB detection can be divided into two categories: chlorophyll-a concentration (CHL-a)-
based and spectral/fluorescence-characteristics-based approaches, which both have their
own respective advantages and limitations. As all algal blooms contain a high CHL-a
concentration, satellite-derived CHL-a has been successfully used for routine detection
of Karenia brevis blooms in the Gulf of Mexico [4,5]. However, in coastal areas dominated
by optically complex Case-2 waters, the CHL-a-based approach for algal bloom detection
is somewhat challenging as the satellite estimation of CHL-a is often less accurate due to
uncertainties in the atmospheric correction and interference of other color components [6–9].
Spectral/fluorescence-characteristics-based techniques, such as the red tide index [10] and
phytoplankton fluorescence line height [11], were developed to overcome this difficulty.
Although these methods have some advantages over traditional CHL-a approaches in
identifying blooms from normal waters, they are prone to false positives in local areas
from an a priori perspective because spectral/fluorescence characteristics do not maintain
spatial continuity.

HAB events are implicitly spatially and temporally dependent, extending from a few
square kilometers to thousands of square kilometers and persisting from a couple of weeks
to a couple of months [12–14]. For a more effective detection, a combined spatial and
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temporal analysis is required. Currently, studies of spatiotemporal HAB detection account
for a small part of satellite-derived HAB detection. For instance, Gokaraju et al. [15,16]
proposed a machine-learning-based spatiotemporal data mining approach to detect HAB
events in the Gulf of Mexico. Their approach significantly improved performance by
reducing the false alarm rate, demonstrating how a spatiotemporal data analysis could
provide new opportunities to improve HAB detection by reducing the uncertainty of spatial
models. Hill et al. [17] developed multimodal spatiotemporal datacube data structures and
associated novel machine learning methods to give a unique architecture for the automatic
detection of environmental events. However, for remote-sensing-based HAB detection,
the effects of clouds and aerosols reduce the effective amount of observation data for the
overall spatiotemporal model. Existing solely data-driven detection methods do not fully
integrate spatial concepts, such as spatial continuity and data sparsity. Thus, only using
data-driven methods with incomplete samples for inferential statistical analysis results in
impractical models. Including the domain expertise component is therefore essential [18],
though for HAB detection, it remains challenging to integrate critical oceanographic and
engineering knowledge.

In this study, we adopt a factorized spatiotemporal modeling to condition incomplete
data samples for HAB detection, while integrating domain knowledge by assessing spatial
correlations and temporal trend information. Specifically, we devise a long short-term
memory (LSTM; [19]) network to build a normal time series model on selected coordinate of
long-term CHL-a satellite data in combination with HAB-related factors. This model detects
potential HAB dates by approximating the Gaussian distribution of the LSTM prediction
errors. With these potential HAB dates, an extreme value analysis (EVA; [20]) method
is then used to examine and extract the HAB distribution from the selected coordinates
with consideration of the spatial correlations. To the best of our knowledge, this is the first
attempt to use a combined LSTM–EVA model to solve HAB detection problems.

Our contributions are summarized as follows: (1) proposing a novel two-step scheme
that combines LSTM with EVA for HAB detection from incomplete and inexact marine
remote sensing data; (2) exploiting the advantages of LSTM’s good prediction performance
and the long-term multisource historical satellite information, which is well-integrated to
reduce the false alarm rate; and (3) demonstrating the viability of EVA for HAB extraction
while addressing challenges involving the dynamics, complexity, and spatial dependence
that are inherent to HAB detection scenarios. The rest of the paper is organized as fol-
lows: Section 2 describes the study area and long-term multisource satellite data; Section 3
presents the proposed LSTM–EVA-based two-step scheme for HAB detection; the exper-
imental results and a thorough discussion are given in Section 4; and finally, Section 5
concludes the paper and gives a future outlook.

2. Study Area and Data
2.1. Study Area

Although HABs are a worldwide problem, they appear particularly severe in China [21],
and have been reported in the East China Sea every year in the last decade [22], with the
coastal waters of Zhejiang Province suffering the most [23]. From 2014 to 2018, the HAB
frequency in the coastal waters of Zhejiang accounted for 41.06% of the total in national
waters, and the cumulative area accounted for 36.66% of the national total area [22].

2.2. Long-Term Multisource Satellite Data

As a complex ecological anomaly, HAB results from the combined action of multiple
factors. The use of multisource datasets and their analysis with statistical methods is a
prerequisite to fully understanding HABs’ onset mechanisms and dynamics [24].

In this study, the data used were divided into two categories: (1) CHL-a, for directly
characterizing HABs; and (2) photosynthetically active radiation (PAR) and sea surface
temperature (SST) combined to provide a more complete assessment of the underlying
factors. As shown in Table 1, the CHL-a data included the Geostationary Ocean Color
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Imager (GOCI) 500 m hourly CHL-a from the Korea Ocean Satellite Center (KOSC) and
4 km daily CHL-a from the Ocean Colour Climate Change Initiative (OCCCI), where the
KOSC GOCI CHL-a data were retrieved from the remote sensing reflectance data (produced
by GDPS 2.0.0 beta version with default settings) by the OC3G algorithm and the OCCCI
CHL-a data were daily composites of merged sensor products. The PAR is defined as the
quantum energy flux from the Sun in the 400–700 nm range. For ocean color applications,
the PAR is a common input for modeling marine primary productivity. The PAR values
used in this research were the daily averages of the L3B data from the Moderate Resolution
Imaging Spectroradiometer (Modis). The SST data used were the Global 1 km SST (G1SST)
data, which combine satellite data from several different sensors and in situ data from
drifting and moored buoys, maintaining the fine spatial and temporal resolution needed by
SST inputs for a variety of oceanic and atmospheric applications. Considering the launch
date of GOCI, the GOCI CHL-a, MODIS PAR, and NOAA G1SST data were unified from 1
April 2011 to 31 August 2019. The OCCCI CHL-a data ranged from 6 September 1997 to 31
August 2019, as the 20-year averaged (climatology) data to fill in missing GOCI CHL-a data.

Table 1. List of the long-term multi-source satellite data.

Parameters Source Temporal Temporal Spatial
Range Resolution Resolution

CHL-a KOSC GOCI Hourly 500 m

PAR NASA MODIS 1 April 2011–31 August 2019 4 km

G1SST NOAA Multi-Sensor Daily 1 km

CHL-a OCCCI Multi-Sensor 6 September 1997–6 September 2017 4 km

3. LSTM–EVA-Based Two-Step Detection Scheme

Although GOCI has a higher time resolution as a geostationary satellite and can
therefore obtain more effective data than polar orbiting satellites, it is still affected by
clouds and aerosols, resulting in a poor data availability rate. As shown in Figure 1,
from 1 April 2011 to 31 August 2019, effective GOCI observations of CHL-a in the coastal
waters of Zhejiang accounted for up to 22.22% of the total observations, but they dropped
to only 11.67% in sea areas close to land. It is extremely difficult to directly perform a
spatiotemporal analysis with such incomplete and inexact satellite data.

Figure 1. Effective GOCI observations of CHL-a in the coastal waters of Zhejiang from 1 April 2011
to 31 August 2019.
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To address this, an LSTM–EVA-based two-step detection scheme was proposed. In
this scheme, LSTMs were trained for each selected coordinate to find potential HAB dates
by analyzing the anomalous differences between the predicted and actual values using
historical observations. For each potential HAB date, an HAB spatial extraction was then
performed based on the selected coordinate using the EVA approach.

3.1. LSTM-Based Temporal Detection

As a variation of the recurrent neural network (RNN), LSTM represents a significant
leap forward for efficiently processing and prioritizing historical information to make
accurate predictions. Compared with deep neural networks and early RNNs, LSTM has
an improved ability to maintain the memory of long-term dependencies because of the
introduction of a weighted self-loop, conditioned on context, that allows it to forget past
information in addition to accumulating new information [25–27]. The inherent properties
of LSTM make it an ideal candidate for anomaly detection tasks involving nonlinear time-
series streams of data, driving the increasing use of LSTM networks in this field, with
LSTM models fitted on nominal data and the models’ predictions compared with actual
data stream values using a set of anomaly detection rules [26,28–32].

In this study, based on LSTM, for the newly observed satellite data at time t + 1, a
sequence of a certain length lb can be constructed from the historical observations for the
selected coordinate, that is, from time t− lb + 1 to time t, to predict a value ŷt+1 at time
t + 1, and the prediction error et+1 can be expressed as the absolute difference between
ŷt+1 and the observed value yt+1. By sliding the time window one step ahead and using
the same pattern, a prediction error series for each day was obtained:

E = {et+1, . . . , et+l f +1} (1)

where l f is the length of the prediction error sequence. To then evaluate whether newly
observed values are significant, we set a threshold for the prediction errors, and values
corresponding to prediction errors above the threshold were classified as anomalies. To
determine the threshold, a common method is to make Gaussian assumptions of the error
distribution and set the threshold at a fixed multiple of the standard deviation σ(E) from
the mean µ(E). The probability curve based on the Gaussian distribution has the following
characteristics: the value within the range of µ± σ covers 68.27% of the data; the value
within the range of µ± 2σ covers 95.45% of the data; and the value within the value range
of µ± 3σ covers 99.73% of the data. However, the above probability assumption is only
valid when the sample strictly follows the Gaussian distribution. For highly complex ocean
systems that change continuously, this method is likely to lead to false positives.

Hundman et al. [33] proposed a complementary unsupervised anomaly thresholding
approach to offer false-positive mitigation strategies. The threshold was still set at multiples
of σ from µ, but the multiple value was determined by the sample. However, their approach
was best suited to postprocessing. Inspired by their strategy, we propose an improved
approach, where, as in Hundman et al., for the prediction error series E, a new sequence
U = {ũk} of length k is obtained by

ũk = µ(E) + rkσ(E) (2)

where rk is a monotonically increasing positive sequence such as {1, 2, 3, . . .}, and the
sequence U is called the candidate threshold sequence; however, the difference is that, for
each element ũk in U, the threshold is judged by the following criteria

sk =
∆µ(Ek)

µ(E)
+

∆σ(Ek)

σ(E)
(3)

where ∆µ(Ek) = µ(E)− µ({ei ∈ E|ei < ũk}) and ∆σ(Ek) = σ(E)− σ({ei ∈ E|ei < ũk}). If
et+l f +1 is an anomalous value, as rk increases, ∆µ and ∆σ will increase more significantly,
until when ũk > et+l f +1, sk is equal to 0 and remains unchanged; if et+l f +1 is not an
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anomalous value, sk will not change significantly with the increase of rk. Therefore, the ũk
corresponding to the largest sk is selected as the threshold for determining whether et+l f +1

is anomalous.

3.2. EVA-Based Spatial Extraction

LSTM-based HAB temporal detection cannot reveal the spatial distribution of HABs,
and the probability of a pixel-led misjudgment of the incomplete and inexact satellite image
is far greater than that of a spatial misjudgment. Therefore, we regarded the abnormal
date determined in the previous section as a potential HAB date, and further examined the
spatial anomaly distribution. Specifically, we adopted EVA theory to test the fit of HAB
areas.

3.2.1. EVA Theory

EVA is a branch of statistics dealing with extreme deviations from the median of
probability distributions. This type of research has wide applicability in fields such as
climatology, anomaly detection, and financial analysis [34–36]. Rather than estimating the
cumulative distribution function (CDF) of a variable, the EVA approach estimates directly
the CDF of the extreme events that happened for the variable. In this paper, we applied
the peaks-over-threshold (POT) method to estimate the distribution of the extreme events.
Details about this method can be found in Appendix A or in [37].

It has been proved in [38] that, by applying the POT method, if the threshold u (that
determines how extreme the event is) is chosen large enough, the distribution of the extreme
events can be approximated by a generalized Pareto distribution (GPD) (see Appendix A
for details), Gξ,β(x), with scale parameter β > 0 and shape parameter ξ defined as follows:

Gξ,β(x) =

1− (1 + ξ x
β )
− 1

ξ , if ξ 6= 0

1− e−
x
β , if ξ = 0.

(4)

However, how to select the threshold u is still an open question. Essentially, u should
be chosen to be as large as possible, so the GPD gives a better approximation of the distri-
bution of extreme events. However, if u is too large there will not be enough observations,
which could cause overfitting of the GPD function. These factors result in a bias–variance
tradeoff for the choice of u.

3.2.2. Dynamic Thresholds

For a selected coordinate, the CHL-a value c at a certain date can be judged by the
LSTM-based HAB temporal detection method as a potential abnormality. Considering their
spatial correlation, some c̃ adjacent to c can be regarded as the threshold for the extraction
of the HAB range (adopting the marching squares algorithm [39]), and V = {vi|vi ≥ c̃}
provides the CHL-a values of all pixels in this range. A new sequence C = {c̃m} is obtained
by c̃m = c± 0.25k, where k = {0, 1, 2, 3, . . .}, and the sequence C is called the candidate
HAB extraction threshold sequence. For each c̃m, a corresponding Vm can be determined.
Then, a GPD is estimated based on the observations of Vm. Similarly, the optimal threshold
c̃ is chosen based on the following unsupervised criteria

pm =
ξ

∆ξ

∆β

β
(5)

where ∆ξ and ∆β denote the difference of the estimate of ξ and β, respectively, between
two threshold candidates c̃m and c̃m+1, and pm represents the change rate of the CDF.

The threshold determines the starting point of the CDF on the x-axis, and its change
should affect the distribution’s tail behavior less. As shown in Figure 2, for the same rate
variation, the GPD shape is more sensitive to the value of β than to the value of ξ. When
the candidate threshold is close to the optimal threshold, the shape of the CDF changes
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the most. In order to maintain the heavy tail behavior, the change rate of β is greater than
that of ξ, and thus maximizes the value of pm, that is, the corresponding c̃m is the optimal
threshold. In particular, when ∆ξ = 0, we set pm = ∆β

β because the GPD’s tail behavior is
uniquely determined by ∆β.

Figure 2. Shapes of GPDs under different values of ξ and β.

4. Experiment and Discussion
4.1. Representative Sites

The selection of representative sites was based on the following considerations:
(1) there were recorded HAB events at the selected sites, and also valid GOCI observation
on HAB days, (2) the selected sites needed to have a relatively large number of valid GOCI
observations for more a accurate time series analysis, (3) the LSTM model was required to
be trained separately on each site, so we used the time series data of 2011 to 2016 for model
training, and based on the consideration (1) and (2), representative sites were selected from
HAB events during 2017–2018, meanwhile 2019 was used as an HAB unknown reference.
We selected two representative sites in Zhejiang coastal waters as our study coordinates
for LSTM detection, denoted L1 and L2, as shown in Figure 3. L1 (122.205°E, 28.9567°N) is
located in the Yushan waters of Ningbo, where a large-scale HAB event of up to 420 square
kilometers occurred from June to July 2017. L2 (122.5136°E, 29.6144°N) is located in the sea
near Liuheng Island, Zhoushan, where another HAB event of up to 50 square kilometers
occurred in May 2017.

4.2. Data Preprocessing

Before feeding the historical observations into LSTM for training, the CHL-a time
series of each selected coordinate was preprocessed by spatiotemporal interpolation to
obtain a more continuous sequence, and then deseasonalized for more accurate predictions.
Combining the proposed LSTM model, historical observations meant the interpolated
CHL-a sequence, which were obtained by spatiotemporal interpolation of the GOCI and
OCCCI data. Since we were predicting CHL-a, the prediction error could be obtained
by subtracting the predicted CHL-a sequence from the historical CHL-a sequence. We
assumed that the prediction error followed a Gaussian-like distribution, and any prediction
error value that did not fit this distribution was marked as an anomaly, that is, a potential
HAB date.



Remote Sens. 2022, 14, 3918 7 of 22

Figure 3. Representative sites.

4.2.1. Time Series Extraction

Considering the inconsistent temporal resolution of GOCI CHL-a, MODIS PAR, and
NOAA G1SST data and the lower accuracy and quality of ocean color remote sensing under
low light conditions [40], we adopted the middle three sets of the eight GOCI observations
and averaged them to form a unified temporal resolution. The daily CHL-aat L1 and L2
from 1 April 2011 to 31 August 2019 are shown in Figure 4.

(a)

(b)

Figure 4. Original CHL-a time series at (a) L1 and (b) L2.

4.2.2. Interpolation of the GOCI CHL-a Time Series

When adopting the LSTM network for predictions, the original GOCI CHL-a time
series was divided into multiple subsequences through a sliding window as feature vector
inputs; thus, the short-term continuity of the sliding window needed to be guaranteed,
otherwise the lack of samples and features would lead to underfitting during predictions.
Therefore, the missing GOCI CHL-a time series needed to be interpolated, for which we
adopted the following two methods.
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First, a spatial interpolation was adopted. Larger spatial sampling windows reduce the
credibility of the data, whereas smaller spatial sampling windows may lead to insufficient
effective data. Therefore, we adopted a floating distance strategy, gradually increasing
the search range from one pixel until a valid pixel value was found, up to a maximum
search range.

The interpolated data were not an accurate expression of the target parameters at the
original coordinates, so for all pixel values obtained by interpolation there were correspond-
ing spatial weight coefficients used for abnormality discrimination, defined as

w =
n√

kd (6)

where k ∈ (0, 1) is the custom adjustment coefficient, n is the number of effective pixels for
sampling, and d is the spatial distance.

Second, we sampled from historical data. The 20-year historical OCCCI CHL-a daily
average from 1997 to 2017 accounted for the missing GOCI CHL-a data in the original
sequence. To avoid affecting the normal training of the LSTM network by sampling single
climatological data multiple times, we randomly distributed the climatological data and
sampled them only once.

However, there were inevitable differences between the CHL-a values retrieved by
GOCI and OCCCI due to the differences in their sensor performance (e.g., bands and
calibration accuracy) and retrieval algorithms (e.g., atmospheric correction and CHL-a
algorithms) [41]. To remove these systematic differences, we compared the annual mean
CHL-a for each of the pixels derived from GOCI with those derived from OCCCI during
their overlapping periods (2011 to 2019), as shown in Figure 5. Thus, we normalized the
OCCCI CHL-a by the GOCI CHL-a data according to a linear regression on the logarithmic
scale, based on the data in Figure 5 as

log(OCCCI) = 1.0901 log(GOCI)− 0.0323 (7)

and R = 0.9657 was the correlation coefficient.

Figure 5. Comparison of annual mean OCCCI CHL-a and GOCI CHL-a from 2011 to 2019. The red
line is the linear regression on the logarithmic scale.

Additionally, the as for the spatially interpolated data, a corresponding weight coeffi-
cient (fixed at 0) was set for the abnormality discrimination, i.e., values that could not be
judged as abnormal. The CHL interpolation sequences at L1 and L2 obtained according to
the above method are shown in Figure 6.
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(a)

(b)

Figure 6. Interpolated CHL-a time series at (a) L1 and (b) L2.

4.2.3. Deseasonalization

Deseasonalization, also known as seasonal adjustment, helps to explore the true trend
of the time series. In previous studies, when there was seasonality in the time series,
forecasts from neural networks estimated on deseasonalized data were significantly more
accurate than those based on unadjusted data [42]. To deseasonalize the CHL-a time series,
we modeled the seasonality by a combination of sine and cosine [43] as

S(t) =
N

∑
n=1

(an cos(
2πnt

P
) + bn sin(

2πnt
P

)) (8)

whose parameters can be expressed as a column vector

β = (a1, b1, . . . , aN , bN)
> (9)

where we have
S(t) = Y(t)β (10)

The initialization of β was represented as β∼Normal(0, σ2) and the seasonal effect was
controlled by the value of σ, with larger values representing more obvious seasonal effects.

4.2.4. Model Input and Parameters

To fully consider the spatiotemporal correlation of the original image, we also fed the
CHL-a values from around L1 and L2 as spatial features, together with PAR and G1SST
series, into the LSTM network, and output the CHL-a prediction sequence. The network
parameters are listed in Table 2. Specifically, the model only had two hidden layers, where
the first hidden layer had 36 units and the second had 12 units. We set the time window of
the input sequence to 35 to provide a balance between performance and training times. The
prediction length was set to 7, with the assumption that forcing the model to predict further
into the future would encourage better predictions in the short term (one step ahead in
this case) because the loss would be calculated for all seven predictions and be used for
training. Combining the above factors, the neural network design is shown as Figure 7.
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Table 2. Model Parameters.

Description Value

Hidden layers 2
Units in hidden layers 36,12

Sequence length 35
Prediction length 7

Dropout 0.3
Optimizer Adam

Figure 7. Architecture of the proposed LSTM neural network model for CHL-a prediction. XSi are
the spatial features, XFi are the underlying factors features (PAT and SST in this paper), and yde-norm

is the deseasonalized CHL-a.

4.3. HAB Temporal Detection Results and Discussion

Once the predictions were generated, a time window of 30 days was set to determine
whether these predictions represented potential HAB dates by comparing the prediction
errors using the method detailed in Section 3.1. Furthermore, the potential HAB dates
detected at L1 and L2 in 2017 are shown in Figure 8. We employed MAE = 1

m ∑m
t=1 |ŷt − yt|

to evaluate the quantitative accuracy of the LSTM prediction and we obtained the result that
MAEL1 = 0.1462, MAEL2 = 0.1363 (after normalization). Since the sequence had under-
gone the interpolation and deseasonalization preprocessing, the results of Figure 8 are the
prediction errors of the actual values, which have been multiplied by their corresponding
interpolation weight coefficients.

Specifically, a large-scale HAB occurred near L1 from 16 June to 6 July 2017, and
another large-scale HAB occurred near L2 from 10 to 19 May 2017. Among the effective
remote sensing observation days, 3 and 4 July 2017 at L1, and 14 and 18 May 2017 at L2
were determined as potential HAB dates.

However, as shown by the red dashed line, L1 on 15 and 27 April 2017, and L2 on
19 February 2017 were all identified as potential HAB dates, but no HABs were recorded
on those days. Valid remote sensing data also existed on 29 June, 30 June, and 1 July 2017
at L1, with relatively low CHL-a values of 4.45 mg/m3, 4.64 mg/m3 and 4.93 mg/m3,
respectively, but these were not identified as potential HAB dates.

The above potentially correct identifications and misjudgments all required a further
analysis through the EVA-based HAB spatial extraction method. However, first we com-
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pared our results with a traditional spectral-characteristics-based HAB detection approach
to illustrate the importance and advancement of our two-step detection scheme. Specifically,
we used the HAB extraction index RrcH proposed by [44], defined as:

RrcH =(Rrc(555)− Rrc(443))(
490− 443
555− 443

)

+ Rrc(443)− Rrc(490)
(11)

where Rrc is the Rayleigh-corrected reflectance.

(a)

(b)

Figure 8. Prediction error and CHL-a values at (a) L1 and (b) L2 during 2017. The black broken line
represents the prediction error, the green scattered dots represent the actual CHL-a value, the red
dashed line represents potential HAB dates misjudgments, and the green dashed line represents
potential HAB dates’ correct identification according to the HAB records.

They found that the RrcH index identified significant differences between different
types of water. For instance, turbid water bodies had values lower than 0; clean water had
both positive and negative values, fluctuating around 0; and HABs had values higher than
0. We thereby constructed the RrcH scatter plots at L1 and L2 for 2017, as shown in Figure 9
(the RrcH indices are expanded by 1000 times).
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(a)

(b)

Figure 9. RrcH scatter plot at (a) L1 and (b) L2 during 2017. The green and blue points are correctly
identified points, which, respectively, represent HAB occurrences with RrcH > 0 and no recorded
HABs with RrcH < 0. The yellow and red points are misjudged points, which, respectively, represent
no recorded HABs with RrcH > 0 and HAB occurrences with RrcH < 0.

Compared with the LSTM-based HAB temporal detection method, the RrcH index
produced more misjudgments, mainly identifying HAB occurrences when none were
recorded. Therefore, if the RrcH index alone were used for the HAB detection, then a large
number of false alarms could be generated. However, if some coordinates were selected
in advance for the HAB temporal detection, the false alarm rate could be greatly reduced,
as proved by the effectiveness of the LSTM-based HAB temporal detection method in
experiments at L1 and L2.

4.4. HAB Spatial Extraction Results and Discussion

In this section, we analyzed the three cases at L1 in the previous section in which
recorded HABs were correctly identified as potential HAB dates, unrecorded HABs were
identified as potential HAB dates, and recorded HABs were not identified as potential
HAB dates. Specifically, based on the coordinates of selected sites and potential HAB dates,
the EVA model could be further used to examine the spatial distribution of HABs. That is,
according to the coordinate and a certain CHL-a threshold, a certain range was screened,
and all CHL-a values in this range were considered to follow a GPD distribution. Notably,
when we unified the time resolution of GOCI with the other remote sensing data, we used
a daily average of GOCI data, but in practical applications the hourly GOCI data provide
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critical additional ability to understand the short-term HAB dynamics in highly dynamic
environments. Therefore, the following EVA-based HAB spatial extraction was performed
on the hourly GOCI data.

4.4.1. Recorded HAB Correctly Identified as Potential HAB Date

First, we considered the scenario in which recorded HABs were correctly identified as
potential HAB dates. As previously mentioned, potential HAB dates at L1 were identified as
3 and 4 July 2017. The GOCI CHL-a images at 12:00 on these days are shown in Figure 10a,b.
The effective data coverage of the CHL-a near L1 on 4 July was higher than on 3 July, so for
this section, we analyzed 4 July 2017 as an example.

(a) (b)

(c) (d)

Figure 10. CHL-a at (a) 12:00 on 3 July, (b) 12:00 on 4 July, (c) 10:00 on 4 July, and (d) 11:00 on 4 July,
in 2017.

The GOCI CHL-a at 10:00 and 11:00 on 4 July 2017 are shown in Figure 10c,d. Then,
the CHL-a values at L1 at 10:00, 11:00, and 12:00 on 4 July were used as the initial thresholds
to approach the optimal thresholds, and the EVA-based HAB spatial extraction method was
used to analyze the respective HAB spatial distributions. The threshold criteria identified
at different thresholds for these three times are shown in Tables 3–5, the optimal threshold
is marked in bold.
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Table 3. GPD fitting results at different thresholds at 10:00 on 4 July 2017.

Thresholds 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75

pm 1.6826 0 2.2630 0 2.2776 0 0 1.6782

Thresholds 10.00 10.25 10.50 10.75 11.00 11.25 11.50

pm 2.4888 0 2.7136 2.4728 1.7894 1.5337 1.7710

Table 4. GPD fitting results under different thresholds at 11:00 on 4 July 2017.

Thresholds 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75

pm 0 1.9275 1.9948 1.5791 1.6360 1.8384 1.9096 1.5605 1.9004 1.5200

Thresholds 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 15.00

pm 1.8892 1.4713 2.6471 1.7540 0 0.7941 0.3407 0 0.0550

Table 5. GPD fitting results under different thresholds at 12:00 on 4 July 2017.

Thresholds 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75

pm 1.5126 2.1054 1.5384 2.1111 2.0556 2.1176 2.0588 2.1250 1.9250

Thresholds 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75

pm 2.1239 2.2038 1.9898 0.4226 0.3581 0.1899 0.1114 0.0461

Referring to the above results, we set the HAB extraction thresholds near L1 of the three
images from 10:00 to 12:00 on 4 July 2017, as 10.5 mg/m3, 13.5 mg/m3, and 13.25 mg/m3,
respectively. The GPD fit results and the HAB spatial ranges extracted at these thresholds
are shown in Figure 11.

(a) (b)

Figure 11. Cont.
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(c) (d)

(e) (f)

Figure 11. GPD fit results and HAB spatial distribution at L1 at (a,b) 10:00 with 10.5 mg/m3,
(c,d) 11:00 with 13.5 mg/m3, and (e,f) 12:00 with 13.25 mg/m3 as the extraction threshold, on 4
July 2017.

Overall, the CDF of the HAB area extracted by the selected threshold at these three
times was close to the GPD, although the fitting result at 10:00 on 4 July 2017 was inferior
to the latter two. Furthermore, the HAB spatial range extracted by the above method was
compared with the Red tide Detection Index (RDI) distributions proposed by [9], defined
as:

RDI = (
1

Rrc(660)
− 1

Rrc(555)
)Rrc(745) (12)

Furthermore, the RDI results are shown in Figure 12. The HAB spatial range extracted
by our EVA-based method was similar to the high RDI range, giving our method some
credibility.
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(a) (b)

(c)

Figure 12. RDI at (a) 10:00, (b) 11:00, and (c) 12:00, on 4 July in 2017.

4.4.2. Unrecorded HAB Identified as Potential HAB Date

Second, we considered the scenario in which unrecorded HABs were identified as
potential HAB dates. As previously mentioned, potential HAB dates at L1 were identified
as 15 and 27 April 2017, but there were no records of HABs on these two days. The GOCI
CHL-a images with valid data on these days are shown in Figure 13.

From these images, the anomaly at L1 on 27 April was identified at 11:00. Clearly, this
was a single point anomaly that could be eliminated by the marching squares algorithm.
By comparison, the anomaly at L1 on 15 April came from the value at 10:00, which affected
a wider area, so only this potential anomaly was analyzed.

Adopting the same process as in the previous subsection, the results were as follows:
in Table 6, the number in bold represents the initial threshold at L1 at 10:00 on 15 April
set at 27.79 mg/m3, and the GPD fit result for the CHL-a HAB and RID distributions are
shown in Figure 14.
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(a) (b)

(c)

Figure 13. CHL-a at (a) 10:00 on 15 April, (b) 11:00 on 27 April, and (c) 12:00 on 27 April, in 2017.

(a) (b)

Figure 14. Cont.
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(c)

Figure 14. Results at L1 at 10:00 on 15 April 2017. (a,b) GPD fits and HAB spatial distribution with
13.75 mg/m3 as the extraction threshold, (c) RDI result.

Table 6. GPD fitting results under different thresholds at 10:00 on 15 April 2017.

Thresholds 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00

pm 4.5000 6.0000 6.6667 6.3333 4.6667 5.8000 6.0000 5.4000 3.6667

Thresholds 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25

pm 4.3846 6.0000 5.0000 4.2500 5.8000 5.4000 4.3750 2.0000 5.4444

Thresholds 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50

pm 6.3333 4.8889 4.2500 5.8571 3.8333 14.0000 6.8889 4.4000 4.1000

As shown in Figure 14, the CDF of the HAB area extracted by the selected optimal
threshold at 10:00 on 15 April 2017 was close to the GPD. The CDF was not as smooth as
those at the three times of day on 4 July 2017 because of its smaller sample size (36 samples),
but this did not affect the determination of the optimal threshold. The HAB spatial range
extracted by our proposed EVA-based approach was similar to the results of the RDI index
analysis. Therefore, there may have been an unrecorded HAB on 15 April 2017, detected by
the potential abnormality identified by our method. The unrecorded reason may be that
the HAB area was so small (about 9 km2) that it was not detected.

4.4.3. Recorded HAB Not Identified as Potential HAB Date

Third, we considered the scenario in which recorded HABs were not identified as
potential HAB dates. As previously mentioned, our method did not identify the recorded
HABs on 29 June, 30 June, and 1 July, 2017 at L1 as potential HAB dates. The valid observed
GOCI CHL-a images on these days are shown in Figure 15.

Although there were valid observations at L1 on these three days, the CHL-a values
were generally low, which was the main reason they were not identified as potential HAB
dates. We assumed that the coordinates of L1 were the positions where the HAB was
originally discovered and reported. However, considering that HABs move with ocean
currents, there were no HABs to observe at L1 on these three days.
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(a) (b)

(c)

Figure 15. CHL-a at (a) 11:00 on 29 June, (b) 11:00 on 30 June, and (c) 11:00 on 1 July, in 2017.

5. Conclusions

In this paper, a two-step scheme combining LSTM with EVA for HAB detection was
designed to handle incomplete and inexact marine remote sensing data. The LSTM network
built a normal time series model for a selected coordinate by long-term multisource satellite
data. This model detected potential HAB dates by utilizing the LSTM predictive error for
an approximated Gaussian distribution. For each potential HAB date, the EVA approach
then extracted the HAB distribution from the selected coordinate with consideration of the
spatial correlations. The case study in Zhejiang coastal waters showed that our method
combined the advantages of both LSTM and EVA models. It not only exploited LSTM’s
good prediction performance, well learned with long-term multisource historical satellite
information to reduce the false alarm rate, but also achieved a dynamic HAB extraction
through the EVA fitting.

However, this proposed approach has some shortcomings that will require improve-
ment. First, the prediction model constructed by PAR and SST was insufficiently compre-
hensive to fully demonstrate the causes of HABs. This was mainly limited by the existing
data coverage and acquisition capabilities. However, as detection hardware and data pro-
cessing technology mature, a more complete ocean dynamics model could be considered.
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Second, the case study was only verified for two coordinates with corresponding HAB
records, which could not fully demonstrate the accuracy of the LSTM–EVA model. As more
data are accumulated and HABs are recorded, a more comprehensive verification could be
performed. Third, for the necessity of the LSTM–EVA model, there was no strong coupling
relationship between LSTM and EVA, and only a sequential method was proposed for the
high quantity of missing GOCI data. If the spatiotemporal data are complete, it is more
appropriate to use ConvLSTM or multivariate EVA for direct spatiotemporal modeling.
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Appendix A. Extreme Value Analysis

In this section, we explain in detail the extreme value analysis (EVA). Suppose
X1, X2, . . . , Xn is a sequence of independent and identically distributed random variables
with a cumulative distribution function (CDF) F and Mn = max{X1, X2, . . . , Xn} denotes
the maximum of these variables. Then, the principle of EVA is to determine the distribution
of Mn when n→ ∞. For n variables, the distribution of Mn has the following representation,

P(Mn ≤ x) = P(X1 ≤ x, X2 ≤ x, . . . , Xn ≤ x)

= F(x)n (A1)

However, the distribution F is basically unknown and estimating it based on the
outside observations is difficult. Moreover, the estimation error for the distribution F will
be amplified in the estimation of P(Mn ≤ x). Therefore, EVA considers directly estimating
an asymptotic distribution of P(Mn ≤ x) rather than through F.

We used the peaks-over-threshold method to get the asymptotic distribution. For a
threshold u < xF where xF = inf{x ∈ R; F(x) ≥ 1}, the excess distribution over threshold
u is defined as

Fu(x) = P(X− u ≤ x|X > u)

= 1− F̄(u + x)
F̄(u)

, x ∈ [0, xF − u)
(A2)

where F̄(x) = 1− F(x) denotes the survival function of F.
According to the Pickands–Balkema–de Haan theorem [38,45], Fu(x) can be approxi-

mated by the generalized Pareto distribution (GPD) with a large enough u, which is written
as,

lim
u↑xF

sup
0≤x≤xF−u

|Fu(x)− Gξ,β(x)| = 0 (A3)

https://podaac.jpl.nasa.gov/
https://podaac.jpl.nasa.gov/
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https://oceancolor.gsfc.nasa.gov/
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http://www.esa-oceancolour-cci.org/
http://www.esa-oceancolour-cci.org/
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https://www.satco2.com
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