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Abstract: The Gravity Recovery and Climate Experiment (GRACE) gravity mission has become a
leading platform for monitoring temporal changes in the Earth’s global gravity field. However, the
usability of GRACE data is severely limited by 11 months of missing data between the GRACE and
GRACE Follow-on (GRACE-FO) missions. To date, several approaches have been proposed to fill
this data gap in the form of spherical harmonic coefficients (an expression of the Earth’s gravity field,
SHCs). However, systematic analysis to reveal the characteristics and consistency of the datasets
produced by these latest gap-filling techniques is yet to be carried out. Here, three SHC gap-filling
products are systematically analyzed and compared: (1) Combining high–low satellite-to-satellite
tracking with satellite laser ranging (SLR) observations (QuantumFrontiers, QF), (2) SLR-based
recovery incorporating the GRACE empirical orthogonal function decomposition model proposed by
the Institute of Geodesy and Geoinformation at the University of Bonn (hereafter, denoted as IGG),
and (3) applying the singular spectrum analysis approach (SSA). The results show that (1) the SHCs
of the QF, IGG, and SSA data are consistent up to degree 12; (2) the IGG and SSA data give similar
results over the 11 gap months, but the IGG shows a faster increase in the mean ocean water mass
and the SSA appears to better capture the interannual variation in the terrestrial water storage; and
(3) the noise level increases significantly in the high-degree terms (l > 16) of the QF data, so these
data are only applicable for large-scale mass migration research. These results provide a reference for
users to select a gap-filling product. Finally, we propose a new scheme based on the triple collocation
method to derive a weight matrix to fuse these three datasets into a more robust solution.

Keywords: satellite gravity; time variable gravity; time-series analysis; spatial analysis; sea level
change; gap-filling; triple collocation

1. Introduction

The earth’s time-varying gravity field mainly reflects the redistribution of mass in the
global water cycle system and within the earth. Studying the changes in the gravity field
helps us to understand the earth’s internal structure and monitor the global environment
and climate changes. Traditional gravity data are derived from ground-based gravimetry,
satellite altimetry data in ocean areas [1], and satellite orbit data in terms of the expansion
coefficients of the spherical function [2]. However, the limited density, temporal resolution,
and spatial coverage of these data prevent an in-depth exploration of the physics of the
Earth’s interior and the interactions among land water storage, glaciers, and oceans. The
successful launch of the GRACE gravity satellites in 2002, jointly developed by the US
and Germany, made it possible to monitor time-varying changes in the global gravity
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field with unprecedented spatial and temporal resolution [3]. The gravity field products
provided by GRACE gravity satellites have been widely used and greatly contributed to
our understanding of seismic activities, terrestrial water storage, sea level changes, and
polar and mountain ice melt [4–6].

The GRACE gravity satellites provide standard scientific products of Earth’s monthly
mean gravity field in the form of spherical harmonic coefficients (SHCs) resolved up to
degrees 60 or 96. The main GRACE data processing agencies consist of the Center for
Space Research (CSR) at the University of Texas at Austin, the German Research Centre
for Geosciences, and the NASA Jet Propulsion Laboratory. Although the designed lifetime
of the GRACE gravity satellite was only five years, the satellite has fulfilled its scientific
mission, and its service was extended to June 2017. GRACE’s successor satellite, GRACE-
FO (GFO), was launched in May 2018 and began to deliver time-varying gravity products
one month later. GFO continues to carry out the GRACE science mission, but the 11-month
gap between the two missions inevitably limits our ability to systematically analyze and
fully utilize the satellite observations of GRACE and GFO over the past two decades.

The missing one or two months of data during the service life of GRACE are usu-
ally filled by interpolation processes, such as cubic spline interpolation [7,8]. However,
filling the 11-month gap between GRACE and GFO presents a major challenge. Grav-
ity observations from other satellites provide promising solutions. For example, laser
ranging technology (SLR) has been used to track long-term changes in the earth’s grav-
itational field since the 1970s, when the Starlette satellite of the French National Center
for Space Research and the LAGEOS satellite of NASA were deployed [9]. Although SLR
yields lower-resolution gravity fields than GRACE, it has a longer operational lifetime
and continues even when GRACE missions are disrupted, opening up the possibility of
using SLR data to fill in the gaps between GRACE and GFO [10–12]. Unfortunately, this
approach yields only 10-degree gravity field models, which capture only the long-term
variability of the large-scale gravity fields [12]. Furthermore, the long-wave variations
in the time-varying gravity field can also be monitored by high–low satellite-to-satellite
tracking (HLSST) measurements, but this technique provides only the long-wave variations
in the gravity field with an approximate spatial resolution of 2000 km [13]. Similarly, orbit
data from the geomagnetic satellite constellation Swarm is also able to solve the Earth’s
large-scale time-varying gravity field [14], but its data quality is only good at low degrees
(i.e., below degree 12 [15]).

To overcome the low-resolution problems of SLR and HLSST, researchers have pro-
posed various techniques for recovering the time-varying gravity field and filling the
11-month gap between the GRACE and GFO data. Empirical orthogonal decomposition
methods [16], machine learning techniques [17–20], and singular spectrum analysis [21]
essentially maintain the spatial resolution of GRACE. The empirical orthogonal function
(EOF) analysis method is a way of dimensionality reduction of data to obtain the dominant
signal [22]. Except for SLR alone, a time-varying gravity field can be recovered from SLR
data using the GRACE EOF decomposition model [16]. Machine learning is a popular
branch of artificial intelligence, which is now widely used for solving engineering and
science problems. However, machine learning is usually designed for regional gridded
observations of hydrological signals, rather than for global and generic SHCs. Singular
spectrum analysis methods, which have recently emerged for studying non-linear time se-
ries data, promise the availability of simple and generous models with less-computationally
intensive solutions and high operability. This approach decomposes a time series into its
trend, periodic components, and noise [23,24], and it opens up an effective way to fill the
gaps between GRACE and GFO. The first attempt to fill data gaps with SSA data [25] was
targeted at regional terrestrial water storage anomalies in China and was not generaliz-
able to other research fields (i.e., oceanography and solid Earth physics). Yi and Sneeuw
(2021) [21] and Wang et al. (2021) [26] improved the existing work by devising new schemes
to fill the data gaps with the highly applicable form of SHCs.
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In general, there are three types of SHC gap-filling datasets: Purely derived from
other observations but with limited resolution, fully data-driven approaches that inherit
information from GRACE/GFO observations, and hybrid approaches integrating SLR or
other data with GRACE. Here, we choose each instance of these three types for comparison:
(1) Time-varying gravity field models recovered from a combination of HLSST and SLR
(QF, Weigelt 2019 [27]), (2) interpolations of GRACE observations using the SSA approach
(Yi and Sneeuw 2021 [21]), and (3) a hybrid modelling that using EOFs from the GRACE
solutions as the base functions to recover time-varying gravity field models from SLR
observations (IGG, Löcher & Kusche 2021 [16]). In this paper, we will scrutinize these three
datasets in the spectral and spatial domains, evaluate their consistency, and explore their
applicable scenarios.

2. Materials and Methods
2.1. GRACE Products and Water Storage Estimates

In this study, we investigated three GRACE gap-filling products (SSA, IGG, and QF)
in the form of SHCs. Table 1 lists the satellites from which these data were derived. The
SSA data were based on the GSM RL06 level-2 product from CSR truncated to degree 60,
and the time span is from January 2003 to December 2020 [21]. The degree-1 terms were
supplemented using the method of Sun et al. (2016) [28], and the C20 term was replaced by
the result of SLR [29].

Table 1. The HLSST LEO satellites, SLR, and low-low satellite-to-satellite tracking (LLSST) satellites
used for obtaining the SSA, IGG, and QF data.

Data Style Satellite Satellite Type

SSA GRACE, GRACE-FO Gravity

IGG Lageos 1⁄2, AJISAI, Starlette, Stella Geodetic SLR
GRACE, GRACE-FO Gravity

QF

Champ, GRACE A/B, GOCE Gravity
Swarm A, B, C Geomagnetic

TanDEM-X, TerraSAR-X, Kompsat5, Sentinel 1A, 1B, 2A, 3A SAR

SAC-C, CNOFS Environmental
monitoring

Cosmic 1-6, MetOpA, MetOpB Weather
Jason 1-3 Altimetry

Lageos 1⁄2, LARES, Starlette, Stella, Larets, AJISAI, Beacon-C,
Blits Geodetic SLR

The IGG data are truncated to degree 60 and the data time span is from January 2003 to
June 2020 [16]. It was solved from SLR observations using empirical orthogonal functions
(EOFs) from the GRACE solutions as the base functions. The time-varying gravity field
of ITSG-Grace2018 (155 months, April 2002–August 2016 [30]) was used as a source of
EOFs after replacing C20 by the result of SLR [29]. To mitigate the truncation effect of EOFs
and ensure the stationarity of the signals outside the GRACE time frame, the high-degree
and low-degree terms of the SHCs are estimated separately: The high-degree terms are
estimated based on the leading modes in the EOF decomposition of the GRACE solutions,
while the low-degree terms are inverted from the SLR observations [16]. Considering the
different maximum degrees of SLR solutions estimated in IGG, Löcher and Kusche (2021)
provided six combinations of time-varying gravity field models [16]. The first five of these
models are listed in Table 2, and the sixth model is their weighted average (EnsMean). As
mentioned in Löcher and Kusche (2021), whether focusing on the global or on regions with
spatially homogeneous signals, EnsMean is a good compromise of the first five models,
except for some limitations in Greenland [16]. Therefore, we adopt EnsMean hereafter.
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Table 2. Solution types of the IGG data [16].

Types SLR Degrees Estimated GRACE EOFs Applied GRACE Degrees Used in EOFs

S0+6E None 6 2–60
S2+6E 2 6 3–60
S3+6E 2–3 6 4–60
S4+6E 2–4 6 5–60
S5+4E 2–5 4 6–60

The QF data constitute a series of monthly gravity field models with SHCs up to degree-
and-order (d/o) 60. The data are based on HLSST tracking and SLR data provided by the
International Centre for Global Earth Models. Nine SLR geodetic satellites and 27 low-earth
orbiting (LEO) satellites are utilized in the computation, including four dedicated gravity
satellites: CHAMP, GOCE, and GRACE A/B [27]. Details of these satellites are given in
Table 1. The SLR and HLSST data are combined at the normal equation level using Variance
Component Estimation, and their spatial resolution is approximately 1000–2000 km [13,31].
The v2-Kalman filtered QF data, provided by Weigelt (2019) [27], was used in this study,
and the data time span is from January 2003 to December 2018.

As the SHCs of the IGG and QF data do not contain degree-1 terms, we supplement
the degree-1 terms of IGG and QF with these from Sun et al. (2016) (same as SSA data) [28].
In addition, we first filtered these SHCs using the DDK5 method [32], and then expressed
them in the form of equivalent water height (EWH) [33]:

∆h =
aρe

3ρw

60

∑
l=0

l

∑
m=0

2l + 1
1 + kl

Plm(cos θ)(∆Clm cos mλ + ∆Slm sin mλ) (1)

where ∆h is the variation of EWH, ρe and a are the mean density and radius of the Earth,
respectively, ρw is the water density, θ and λ are the geocentric colatitude and geocentric
longitude, respectively, l and m represent the degree and order of the SHCs, respectively, kl
is the load Love number at degree l [34], Plm is the fully normalized Legendre function of
degree l and order m, and ∆Clm and ∆Slm are the anomalies of the fully normalized SHCs.

2.2. Assessment Indicators

The consistency of the time series was evaluated using the root mean square (RMS)
and relative RMS (rRMS) values. The RMS evaluates the variability of a time series of
N samples, which represents signal strength, whereas the rRMS assesses the agreement
between two series. The smaller the rRMS value between the two series, the higher the
consistency. When rRMS = 0, the data are identical; when rRMS = 1, it means that the
residual variance has not changed, that is, the complexity of the data has not been reduced,
indicating the data are uncorrelated. We also calculated the correlation between the two
series. In general, when two independent time series are affected by complex and variable
factors, they can be considered strongly correlated if their correlation coefficient exceeds
0.5 subject to the premised significance [35]. Therefore, in the comparative analysis of the
SSA, IGG, and QF data, a good correlation between two sets of time series was assumed
if the correlation coefficient was over 0.5. The RMS, rRMS, and correlation coefficient are,
respectively, calculated as

RMS(x) =

√
1
N ∑N

i=1 x2
i (2)

rRMS(x, y) = RMS(x − y)/RMS(y) (3)

ρxy =

N
∑

i=1
(xi − x)(yi − y)√

N
∑

i=1
(xi − x)2 ·

N
∑

i=1
(yi − y)2

(4)
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where x and y represent two series, N represents the number of samples, and x and y are
the sample averages of x and y, respectively.

2.3. Fusion Method Based on Triple-Collocation

SSA, IGG, and QF all have the ability to fill in the missing data of GRACE, but we
cannot treat any of them as a genuine observation of the “truth” due to the uncertainties in
their data processing methods. In the absence of significant coarse errors in observations,
the weighted average result can be considered the optimal estimate of the missing GRACE
data. Here we introduced a triple configuration (TC) approach to fuse these three gap-filling
data. The TC method was firstly proposed by Stoffelen to correct for scattermeter-driven
ocean wind speed and estimate its error [36]. It has been widely used for estimating random
error variances and uncertainties in remote sensing data, such as soil moisture [37,38], leaf
area index [39], sea surface salinity [40], and ocean winds [36,41].

The key to the fusion of SSA, IGG, and QF data is the determination of the weights,
which are closely related to the variance of the observations. The TC method can be
a promising candidate for estimating the error variance of SHCs of SSA, IGG, and QF.
Assuming that the errors of these data are independent of each other, a linear regression
model is constructed:

Xi = αi + βit + εi (5)

where Xi (i = 1, 2, 3) represents the SHCs series of the SSA, QF, and IGG, respectively.
t represents the true underlying value. εi represents the error of SHCs of SSA, QF, and IGG,
respectively. αi and βi are the intercept and slope, respectively.

Assuming that the error expectations for these three data sources are zero and un-
correlated with each other and with t, we can obtain the TC estimation equation for
error variances:  σ2

ε1

σ2
ε2

σ2
ε3

 =


Q11 −

Q12Q13

Q23

Q22 −
Q12Q23

Q13

Q33 −
Q13Q23

Q12

 (6)

where Q11, Q12, Q13, Q22, Q23, and Q33 are the covariances. σ2
ε1

, σ2
ε2

, and σ2
ε3

are the error
variances of SSA, QF, and IGG, respectively. A detailed derivation process could refer to
McColl et al. (2014) [42].

Then we can use Equation (7) to incorporate these three data.

Y = v1X1 + v2X2 + v3X3 (7)

where Y is the result after fusion, and ωi represents weight calculated from


v1

v2

v3

 =



δ2
ε2

δ2
ε3

δ2
ε1

δ2
ε2
+ δ2

ε2
δ2

ε3
+ δ2

ε3
δ2

ε1

δ2
ε3

δ2
ε1

δ2
ε1

δ2
ε2
+ δ2

ε2
δ2

ε3
+ δ2

ε3
δ2

ε1

δ2
ε1

δ2
ε2

δ2
ε1

δ2
ε2
+ δ2

ε2
δ2

ε3
+ δ2

ε3
δ2

ε1


(8)

3. Results and Analysis
3.1. Comparative Analysis in the Spectral Domain

First, we scrutinize these three SHC datasets in the spectral domains over three periods:
The end of GRACE (January 2016–June 2017), the gap months between the GRACE and
GFO missions (July 2017–May 2018), and the beginning of GFO (June 2018–December 2018).
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The Swarm solutions (http://icgem.gfz-potsdam.de/series/02_COST-G/Swarm, Potsdam,
German, April 2022) for the same period are used as a reference for the calculation of
rRMS values Equation (3). The average gravity field measured from GRACE for the period
January 2003 to December 2010 is subtracted from the Swarm result. Considering the
limited spatial resolution of the QF, only the low-degree terms (degree ≤11,140 coefficients
in total) were compared.

Figure 1 plots the rRMS values between the three datasets and Swarm solutions on
the degree-order plane. The colored squares represent rRMS values and the white ones
indicate the rRMS values are higher than 1.0. The numbers of coefficients with rRMS values
between 0.5 and 1.0 and within the range <0.5 are enumerated separately and listed in
the upper left corner of each subplot. According to Figure 1, the statistics of rRMS values
for QF and SSA are largely comparable across the three periods. There are approximately
82% of rRMS values smaller than 1 and approximately 25% smaller than 0.5. In contrast, at
the end of GRACE, the statistics of rRMS values for IGG are comparable to the other two
datasets. However, in the early GFO and the gap periods, only approximately 75% of IGG’s
rRMS values are less than 1, a bit lower than the other two datasets. The main reason for
this discrepancy may be that the IGG recovers the time-varying gravity fields from the SLR
using only GRACE data from February 2002 to August 2016 [16]. Note that both the QF
time-varying gravity field solutions also incorporate the Swarm solutions (Table 1). SSA is
a purely data-driven approach that fully inherits from GRACE/GFO observations, so its
result generally reflects the consistency between GRACE and Swarm datasets.
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number of rRMS values in different intervals is annotated. The color scale is shown in subplot a.

It is worth noting that there may be certain differences among SSA, IGG, QF, and
Swarm coefficients with rRMS values less than 1. Figure 2 shows some examples in detail,
including consistent or inconsistent series. The values on the top left are the RMS values
for IGG, SSA, QF, and Swarm, respectively. As shown in Figure 2, the RMS values for

http://icgem.gfz-potsdam.de/series/02_COST-G/Swarm
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the coefficients of C3,0, S3,1, C5,0, and C6,0 are roughly comparable. Although the Swarm
SHCs time series exhibits higher volatility than the others, especially before mid-2015, the
SHCs of IGG, SSA, QF, and Swarm are essentially consistent on average. The consistency
deteriorates when the seasonality is weak, e.g., C2,1 and C4,0. Another possible reason
for the discrepancies is, as discussed in Teixeira da Encarnação et al. (2020) [15], the
different mean pole models [43] used between GRACE and Swarm solutions. Furthermore,
compared to QF, it is noticeable that there is better consistency between IGG and SSA
(Figure 2a,d). The main reason for this may be that both SSA and IGG data are highly
inherited from GRACE/GFO.
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Next, we calculated the degree variance of the SHCs (degree 5–60) of the IGG, QF,
and SSA data during the 11-month gap (July 2017 to May 2018) between GRACE and GFO
(Figure 3), which illustrates the signal intensity of each degree term of the SHCs. The
variances of the SHCs of the IGG and SSA data gradually decrease with an increasing
degree and show a fairly consistent trend. The variances of the lower-degree terms of the
QF coefficients (l ≤ 12–16) are essentially consistent with those of SSA and IGG, but the
variances of the higher-degree terms of QF progressively increase with an increasing degree,
indicating a rapid increase in the noise level. This phenomenon is mainly attributable to
the limited observational techniques and spatial resolution of QF [13,31]. Therefore, with
spatial resolution accuracy much lower than GRACE, QF is only suitable for monitoring
large-scale mass transport (1000–2000 km). The degree variance in IGG is slightly larger
than in SSA, especially for coefficients with degrees > 40 and for the September 2017 result
(Figure 3c). In other words, the signal intensity in SSA is slightly smaller than in IGG.
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3.2. View of EWH Results of SHCs in the Space Domain

In the section, we give a perspective on the characteristics of different datasets when
applied to study miscellaneous signals. The five sites given in Figure 4f cover three
categories: Polar ice melting in Greenland (Figure 4a) and Antarctica (Figure 4b), terrestrial
water storage changes in north India (Figure 4c) and the Amazon (Figure 4d), and seismic
activity in eastern Japan (Figure 4e). Two types of EWH results were calculated from SHCs:
EWH with d/o up to 60 and EWH with d/o up to 12 (to account for the limited spatial
resolution of QF). As the effect of glacial isostatic adjustment (GIA) affects only linear
trends, it was not considered here. It should be noted that the SSA data used the original
GRACE observations for the period outside the gaps.

Sites a and b are located in Greenland and Antarctica, respectively, where the polar ice
sheets are melting rapidly as the global temperature rises in this century [44]. In Greenland
(Figure 4a) and Antarctica (Figure 4b), the EWH series of SSA, IGG, and QF truncated to
d/o 12 consistently reflect the long-term losses in the polar ice sheet mass, but IGG shows
stronger volatility relative to the other two, especially in Antarctica. The volatility in IGG is
more evident when referring to the d/o 60 results. Furthermore, it is shown that all three
datasets have the potential to reconstruct the stable seasonal variation in Greenland during
the gap months.
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Sites c and d are located in northern India and the Amazon basin, respectively, two
hotspots for research on changes in terrestrial water storage. Figure 4c illustrates the
differences in the abilities of these data to monitor the serious groundwater depletion in
north India [45]. It is obvious that the EWH results with d/o up to 12 failed to detect this
long-term groundwater signal due to the low spatial resolution. The EWH results of IGG
and SSA with d/o up to 60 can essentially capture this signal. However, there was a certain
difference between SSA and IGG after August 2016, when the declining trend of IGG was
significantly smaller than that of SSA. Since IGG did not use GRACE data after August
2016, we speculated that IGG may have underestimated the EWH trend in this region
after 2016. The Amazon Basin has the world’s greatest variations in water storage due to
enormous precipitation, and its interannual variability in water storage is also influenced
by El Niño Southern Oscillation (ENSO) events [46]. Figure 4d shows that the EWH series
of SSA, IGG, and QF are in good agreement with each other, and all can reflect seasonal
and interannual water storage changes in the Amazon Basin.

It has been verified that GRACE is capable of observing the co-seismic and post-seismic
signals caused by giant subduction earthquakes [47,48]. Figure 4e illustrates the differences
in the abilities of these data to monitor the gravity field signal of the M 9.0 earthquake
in eastern Japan on 11 March 2011. It can be found that the EWH results with d/o up to
12 are not capable of monitoring the co-seismic or post-seismic signals. The EWH results of
IGG and SSA with d/o up to 60 can essentially reflect the co-seismic signal and the post-
seismic signal before August 2016. Furthermore, the SSA data connects the GRACE and
GRACE-FO results seamlessly and roughly accurately depicts the gradual and persistent
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post-seismic adjustment signal. Unfortunately, the IGG data appears to fail to reflect the
persistent post-seismic adjustment signal after August 2016.

Figure 4 shows that the QF, SSA, and IGG data are in high agreement in reflecting
the signal of polar ice melting or strong terrestrial water storage variations. The trends
of the EWH time series with d/o up to 12 are lower than the results with d/o up to 60,
which should be attributable to the fact that only single points were investigated. Limited
by spatial resolution, QF is not suitable for monitoring co-seismic or post-seismic signals.
Compared to QF and SSA, IGG seems to have a higher signal amplitude. Furthermore,
there existed certain differences between SSA and IGG after August 2016 (Figure 4c,e).
A possible reason for this discrepancy is that GRACE data after August 2016 was not used
when the IGG recovered the time-varying gravity field from the SLR, and the emerging
differences likely arise from the divergent spatial resolution between the two kinds of
gravity measurements.

3.3. Consistency Analysis in the Spatial Domain

Here we scrutinized these three datasets in the spatial domain and evaluate their
differences. Similar to Section 3.1, we also compared the three datasets over the three
periods: The end of GRACE (January 2016–June 2017), the gap months between the GRACE
and GFO missions (July 2017–May 2018), and the beginning of GFO (June 2018–December
2018). Considering that the resolution of QF is approximately 1000–2000 km, we only
compared the EWH results for SHCs truncated to degree 12. The GIA effect was also not
considered here.

Figure 5 shows the spatial distributions of rRMS among the IGG, SSA, and QF results.
Recall that two series are correlated when the rRMS is less than 1.0 and implies a greater
consistency. In most regions, the rRMS values of the three datasets are less than 1.0,
indicating good consistency. In view of the scarcity of ground-truth data, the measurement-
based QF can be treated as an approximately true value during the gap months. According
to the statistical analysis in Figure 6, the rRMS values among IGG, SSA, and QF were
approximately the same over the three periods, with approximately 60% less than 0.5 and
approximately 85% below 1. The consistency of the statistical results further validates the
reliability of the three gap-filling datasets. Actually, the rRMS values between SSA and
IGG are concentrated in the 0–0.5 range and are slightly higher than those of IQ and QS,
indicating a high consistency between SSA and IGG. The main reason may be that both of
these two approaches are based on GRACE data.

The SSA, IGG, and QF results are generally consistent but significant differences are
found in some areas. Next, we chose six sites with large rRMS values (close to or greater
than 2) in Figure 5 and compared their EWH time series. The six sites (a–f) were examined
in terms of correlation and RMS of the EWH series in Figure 7. Panels a, b, c, and d of
this figure plot the results over the entire period, the end of GRACE, the gaps between
GRACE and GFO, and the beginning of GFO, respectively. IGG, SSA, and QF series are
well correlated at sites b and d, with all correlation coefficients exceeding 0.76. There is
no significant difference between the RMS values of SSA and QF, but the RMS values of
IGG are greater than those of SSA and QF, which is particularly evident in the gap months
(Figure 7c). That is, the signal recovered from IGG might be higher than from SSA and QF,
but there is a good agreement in the seasonal variation of QF, SSA, and IGG. It can also be
concluded that the correlation between QF and SSA is greater than the correlation between
QF and IGG, except for sites e and f. Considering that QF is purely derived from satellite
observations, we find that SSA shows better agreement with the observation-based results
than IGG. In contrast, at sites with small RMS values, which means weak hydrological
signals, such as those less than 5 cm, there was a large difference between the three datasets.
Both the RMS and correlation coefficients are divergent, especially in sites a and e. Thus,
we suggest that these three gap-filling data should be cautiously used in regions with weak
hydrological signals.
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Figure 5. Worldwide comparison of the SSA, IGG, and QF results during (a–c) January 2016 to June
2017, (d–f) July 2017 to May 2018, and (g–i) June 2018 to December 2018. Plotted are the rRMS values
of IGG relative to QF (subplots (a,d,g)), IGG relative to SSA (subplots (b,e,h)) and QF relative to SSA
(subplots (c,f,i)).
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Figure 6. Probability distributions of Figure 4. Subplots (a,c,e) display the probabilities of rRMS
values of IGG relative to QF (IQ), IGG relative to SSA (IS), and QF relative to SSA (QS), respectively,
during three periods: January 2016 to June 2017, July 2017 to May 2018, June 2018 to December 2018.
Subplots (b,d,f) display the cumulative probabilities of (a,c,e), respectively.
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Figure 7. Comparison of correlations and RMS values at six sites with large differences in their rRMS
values (see Figure 6 for locations). The analysis was performed over four time periods: (a) January
2003 to December 2018; (b) January 2016 to June 2017; (c) July 2017 to May 2018; (d) June 2018 to
December 2018. IQ, IS, and QS represent the correlations between IGG and QF, IGG and SSA, and
QF and SSA time series, respectively. The bars and series represent the RMS values and correlation
coefficients, respectively.

In summary, in most regions, the global terrestrial EWH results based on the degree-12
SHCs are highly consistent. More than 81% of the rRMS values estimated between any
two of the three datasets are less than 1.0, with the ratio reaching 94% in some cases. The
datasets are strongly correlated when larger RMS values (e.g., >5 cm) exist in the EWH
series, suggesting good agreement on the seasonal patterns of variation. However, the gap-
filling signals recovered from IGG might be higher than those recovered from SSA and QF,
which was inferred similarly in Section 3.2. In contrast, the RMS and correlation coefficients
are heterogeneous at sites with weak hydrological signals, showing poor consistency. As
a result, we recommend that these three gap-filling datasets be utilized with caution in
regions with weak hydrological signals.

3.4. Global Mean Sea Level Change

The global sea level change (measured by satellite altimetry) consists of the changes in
sea mass (measured by GRACE) and density (i.e., steric change, measured by Argo floats).
The consistencies among these three observations provide a possible way to evaluate
the data quality of the GRACE gap filling products, since the other two datasets do not
suffer from discontinuities. Figure 8 compares the time series of the global mean sea level
anomalies calculated from the IGG and SSA data. The altimetry data, provided by the
Commonwealth Scientific and Industrial Research Organization (CSIRO, http://www.
cmar.csiro.au/sealevel/sl_data_cmar.html, Canberra, Australia, April 2022), combine the
data of TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3 and are corrected for the inverse
barometer and GIA effects. The monthly gridded 1◦ × 1◦ Argo data were provided by
the Scripps Institution of Oceanography [49]. The GIA effect in the QF, IGG, and SSA
observations was also corrected using a three-dimensional GIA model [50]. The ocean-
atmosphere model (GAD) was reintroduced into the GRACE SHCs, and the time-varying
component of the monthly average atmospheric mass over the ocean was eliminated to
account for the inverse barometer effect. Furthermore, all the time series were constructed
using an ocean mask, which excludes coastal areas within 300 km. To calculate the ocean

http://www.cmar.csiro.au/sealevel/sl_data_cmar.html
http://www.cmar.csiro.au/sealevel/sl_data_cmar.html
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water mass, QF was truncated to degree 12 (Section 3.1), but the full spectrum (degree 60)
of IGG and SSA was used.
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Figure 8. Comparisons of time series of global sea level anomalies. (a) Global mean sea level
anomalies. QF, IGG, and SSA represent the seawater mass changes and Altimetry-Argo is the
altimetry result minus the steric sea level change (note that seasonal signals remain in these data).
Altimetry, SSA + Argo, IGG + Argo, and QF + Argo denote the corresponding total sea level changes
after 12-month sliding average. (b) Annual variations in mean seawater mass. (c) Time series of
Nino3.4 indicators. The bars and curves represent the monthly values and the series after 12-month
sliding average, respectively.

Figure 8a shows the seawater mass changes estimated from QF, IGG, and SSA, and
the mass changes derived from the difference between Altimetry and Argo. The series is
highly consistent over the entire period (January 2004 to December 2019). The correlations
among QF, IGG, and SSA are all above 0.95, and the rRMS values between the three are
all below 0.5. For instance, the rRMS value of IGG relative to SSA is just 0.15. After
2016, the seasonal variations in the three series remained consistent but they gradually
departed from the Altimeter-Argo series. Notably, the SSA and IGG estimates of seawater
quality were significantly lower than the Altimetry-Argo estimates at the beginning of
2017, but then there was an anomalous increase in IGG that mostly compensated for this
difference, resulting in a great seasonal variation in 2017. In terms of annual variation, IGG
results tend to be higher than SSA, QF, and Altimeter-Argo (Figure 8b). This difference
is particularly significant in the 11-month gap, where the difference between IGG and
SSA reached 7.8 mm. In contrast, the SSA results are generally consistent with the annual
variation of Altimetry-Argo.

Next, we scrutinized the discrepancies after 2016. The interannual variations were
obtained by averaging the series over a sliding 12-month window (Figure 8a) and they were
shifted upwards by 2 cm for better visualization. Figure 8a shows that all the IGG + Argo,
SSA + Argo, and IGG + Argo series fit well with the altimetry series before August 2016.
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However, the four series exhibited substantial discrepancies after 2016, with lower values
for SSA + Argo, IGG + Argo, and QF + Argo than the altimetric results. There are several
possible causes: (a) Deteriorated data quality during the late stages of GRACE satellites
operations and the reduced number of accelerometers after 2015 [51,52]; (b) inaccuracies of
Argo data [53]; and (c) uncertainties in the estimated degree-1 series [51]. Although these
large discrepancies prevent a quality evaluation based on the sea level budget approach,
the IGG + Argo and QF + Argo series consistently show closer agreement with Altimetry
than SSA + Argo during the gap period, indicating that SSA may underestimate the mean
seawater mass variation in the gap months. However, it is important to note that the
IGG series suspiciously shows a strong seasonal increase in 2017 (marked by the box in
Figure 8b) when the ENSO index is weak (Figure 8c). According to previous records, strong
seasonal changes always occur when the ENSO index is extremely negative (e.g., in 2008,
2011, and 2012).

In conclusion, Figure 8 shows that the IGG, SSA, and QF estimates of global ocean
water mass began to differ from the Altimetry-Argo result toward the end of the GRACE
mission. IGG appears to overestimate the annual amplitude of seawater mass, but the
inter-annual mean sea level change derived by it is largely consistent with QF. SSA seems
to underestimate the trend during the gap period. The cause of the large bias in the sea
level budget after 2016 is unclear, and these data require further examination when used to
analyze the global mean sea level changes in recent years.

3.5. Comparison with Water Storage Model

Here, we adopted a climate-driven water storage change model (GRACE-REC) pro-
vided by Humphrey and Gudmundsson (2019) [54] to test the ability of the gap-filling
products to recover hydrological signals. Due to the low resolution of the QF dataset, we
ignored it in our analysis here.

Figure 9 compares the RMS values of residuals of IGG and SSA by subtracting the
GRACE-REC model for results between July 2017 and May 2018. The difference between
the gap-filling data and the model values may include unmodeled signals and the model
deficiency (which is assumed to be small). Figure 9a,b shows the spatial distribution of the
RMS values, where values less than 1 indicate two datasets are in some way consistent. As
shown in Figure 10d, SSA has a higher proportion of relative RMS values smaller than 1
than IGG (65% versus 59%). Moreover, the spatial distribution results in Figure 9a,b show
that the IGG was significantly wider than the SSA for regions with relative RMS values
greater than 1. Therefore, we conclude that the SSA gap-filling series is more consistent
with GRACE-REC than with IGG and shows better performance in restoring transient
hydrological events.

Figure 10 shows the time series of EWH and precipitation at points A, B, C, and D
(marked in Figure 9), where the relative RMS values are large, to illustrate the potential
bias in IGG and SSA. The precipitation data are the monthly average reanalysis data,
expressed as EWH, obtained from the Climate Data Store (https://cds.climate.copernicus.
eu/#!/home, Brussels, Belgium, April 2022). The water storage in point A shows a 2010
drought and a post-2016 increase, which are consistent with the progression of dry and wet
periods. The alternation of positive and negative water storage anomalies is well-reflected
by the SSA and GRACE-REC results, but not in the IGG results. This case demonstrates
that using the first six modes in IGG may lose some interannual variation in regional
signals. This problem can also be found at point C, where the IGG result fails to capture the
water storage after 2016 due to the contemporaneous increase in precipitation. The time
series of IGG and SSA at points B, C, and D are fairly consistent until 2017, after which
their differences start to increase. The main reason for this discrepancy may be that the
IGG only used GRACE data from February 2002 to August 2016, but the extrapolated
gravity fields from the SLR could not maintain the previous variation pattern and may not
accurately reflect some sudden mass change signals as GRACE does. The series of SSA and
GRACE-REC were mostly consistent, especially before and after the gap period. However,

https://cds.climate.copernicus.eu/#!/home
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the SSA data have one big shortcoming. As it is totally data-driven, it cannot capture
a suddenly emergent climatic event during the data gap. For instance, point D located
in North America was influenced by a sudden precipitation deficit in 2016, resulting in
GRACE-REC results showing a sharp decrease in water storage. However, SSA reflects only
a moderate decrease in water storage in 2016. Nevertheless, such interannual variability is
absent in the IGG result as well.
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4. Triple-Collocation Method-Based Fusion on the Gap-Filling Data

Here, we put forward a new strategy based on the triple-collocation method to generate
a fused SHC gap filling product, which theoretically avoids random error better than any
of the individual datasets. We first estimated the error variance of each degree and order
based on the 10-year SHCs data from 2009 to 2018 and counted the median variance of
each order. Note that the calculated error variance may occasionally be negative (less than
25%) due to increased correlation among the series, which will affect the calculation of
weights. Therefore, to get rid of these negative values, we use the median error variance of
each degree (l) to calculate the weight, which is used for all coefficients of the same degree
(i.e., we assume the data quality is a function of only degree). Regarding the finite spatial
resolution of the QF, only the low-degree terms (degree 2–15) were fused. Figure 11 shows
the distribution of weight values for each degree of SHCs. Compared to IGG and SSA, the
weights of QF are lower and gradually decline with an increasing degree. This result is
consistent with our previous finding that the higher degree terms of the SHCs of QF may
contain higher errors and should therefore be given smaller weights when performing the
data fusion.
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Next, the weights calculated in Figure 11 were applied to fuse the SHCs of SSA, QF,
and IGG. We only show the results of coefficients of order = 1 in Figure 12. The weighted
average results retain the interannual signal to a large extent and provide better agreement
with the IGG and SSA series and effectively avoid the detrimental effects of systematic bias
in QF, such as C2,1, C5,1, C13,1, and C15,1. The fused series shows a large difference when
the individual series are subject to high-frequency vibrations, such as C5,1, C7,1, C13,1, and
C15,1, and the weighted average is evidently smoother, indicating the noise is suppressed
to a certain extent. In some cases, the fused series can better maintain the seasonal and
interannual variation patterns in the gap months. For example, the agreement for the
results of C7,1 is poor: IGG and QF appear to over- or underestimate the value of the
gap period, and SSA, while retaining the long-term trend, loses much of the seasonality
(Figure 12f). Nevertheless, the fused series retains both the long-term trend and part of the
seasonal signal.
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5. Discussion on Dataset Selection

There were three SHC gap-filling products chosen here for systematic analysis and
comparison. QF is derived from HLSST tracking and SLR data, which can be considered
real observations. When there are no other data available, it can be a good candidate to
fill the gaps between the GRACE and GFO periods. However, due to the limitation of the
observation technology, the effective resolution of QF is currently limited to a maximum of
~1000 km, which corresponds to the SHC degree 20 [31,55]. IGG is derived from SLR data
using the GRACE empirical orthogonal function decomposition model, which can estimate
the same spatial resolution gravity fields as GRACE [16]. Considering only GRACE data
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prior to August 2016 are used in IGG and only six EOFs for GRACE are used at most, it
may result in partial loss of actual signals and increasing uncertainties after August 2016.
SSA is a purely data-driven approach fully inherited from GRACE/GFO observations, so it
is easy to implement and can maintain the spatial resolution of GRACE.

Since these three types of data are produced by different approaches, they may be
applicable to different application fields. Obviously, we cannot simply determine which
data are better or worse but need to analyze the data in a comprehensive manner. As
mentioned in Section 3, we focused on several topical issues: Changes in terrestrial water
storage, polar ice melting, global mean sea level change, the co-seismic and post-seismic
signals, and sudden hydrological events. First, all these data have the ability to monitor
changes in strong terrestrial water storage (Figure 4d) and polar ice melting (Figure 4a,b)
but should be utilized with caution in regions with weak hydrological signals (Figure 7).
Second, QF is suitable only for large-scale mass migration studies due to significant noise in
high-order terms (Figure 3), but it can be a good candidate to fill the gaps between GRACE
and GFO if no other data are available. Third, since only GRACE data prior to August
2016 were used in IGG [16], IGG may not accurately capture some sudden mass-changing
signals after August 2016. Therefore, SSA is more apt at producing GRACE-like results
when monitoring these signals after 2017 (Figure 4c,e). Fourth, as the IGG data use only six
EOFs for GRACE at most, they may occasionally miss the inter-annual variation in local
areas. So SSA may be more reliable to monitor hydrological signals (Figure 10). However,
it should be noted that SSA is entirely data-driven rather than actually observed [21], and
it occasionally fails to capture sudden climatic events during data gaps (Figure 10d), so we
need to use these data with caution as well.

To reduce the frequency of random errors and outliers in the gap-filling product, we
proposed a new scheme to fuse these three datasets based on the TC method. The fusion
results suppress the signal noise while maintaining the seasonal and interannual variation
patterns in the gap months. The fusion results may not always be the best, but they ensure
consistently acceptable performance. Therefore, when it is difficult to determine which
data are more appropriate, we recommend the easy-to-implement fusion results.

6. Conclusions

The 11-month gap between the two missions inevitably limits our ability to systemati-
cally analyze and fully utilize the satellite observations of GRACE and GFO. In this paper,
we scrutinized three gap-filling datasets. To verify the differences and applicability of the
three types of gap-filling methods, we analyzed and compared the QF, IGG, and SSA data in
the spectral and space domains. The main conclusions of the study are summarized below.

(1) The SHCs of the QF, IGG, and SSA data are consistent up to degree 12. On the
one hand, the SHCs of these three datasets show good consistency, with more than 80% of
rRMS values <1 relative to Swarm. On the other hand, the global terrestrial EWH results
based on the 12-order SHCs are still consistent in most parts of the world, especially in
reflecting the signals of polar ice melting and strong terrestrial water storage variations. It
is noticeable that there is better consistency between IGG and SSA due to the fact that both
SSA and IGG data are highly inherited from GRACE/GFO.

(2) The IGG and SSA data are basically consistent over the 11 gap months, with the
signal intensity in IGG slightly higher than in SSA, but the IGG shows a faster increase in
the mean ocean water mass and the SSA appears to better capture the interannual variation
in the terrestrial water storage.

(3) The major shortcomings of IGG data are mainly reflected in two aspects. First,
as the IGG data use only six EOFs for GRACE at most, it may occasionally miss the
inter-annual variation in local areas or fail to detect post-seismic adjustments of giant
earthquakes. Second, the IGG recovers the time-varying gravity fields from the SLR using
only GRACE data prior to August 2016, which causes the IGG to maintain the previous
variation pattern during the extrapolation time period, so it may not accurately capture
some sudden mass-changing signals after August 2016.
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(4) The lower-degree terms of the QF coefficients (l ≤ 16) are essentially consistent
with those of SSA and IGG, but the noise increases significantly for the high-order terms of
the QF data (l > 16), so this solution is suitable only for large-scale mass migration studies.

(5) Based on the triple collocation method, we propose a new scheme to derive a
weight matrix that can fuse these three datasets into a more robust solution. Limited by the
resolution of QF data, here we only fused the SHCs data up to degree 15, but they can be
extended to higher degrees should higher-resolution data be released in the future.

There are other uncertainties in the latest gap-filling data that should be noted. First,
the gap-filling data should be carefully interpreted during transient climatic events. Either
IGG or SSA may fail to capture changes in water storage caused by such events. Second,
these three gap-filling datasets should be utilized with caution in regions with weak
hydrological signals due to poor consistency in RMS and correlation coefficients. Third,
due to the unexplained large discrepancies among the altimeter, Argo, and GRACE data,
the filling data require careful interpretation when used to monitor the global mean sea
level changes after 2016.
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