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Abstract: Image tie point matching is an essential task in real aerial photogrammetry, especially for
model tie points. In current photogrammetry production, SIFT is still the main matching algorithm
because of the high robustness for most aerial image tie points matching. However, when there
is a certain number of weak texture images in a surveying area (mountain, grassland, woodland,
etc.), these models often lack tie points, resulting in the failure of building an airline network.
Some studies have shown that the image matching method based on deep learning is better than
the SIFT method and other traditional methods to some extent (even for weak texture images).
Unfortunately, these methods are often only used in small images, and they cannot be directly applied
to large image tie point matching in real photogrammetry. Considering the actual photogrammetry
needs and motivated by the Block-SIFT and SuperGlue, this paper proposes a SuperGlue-based
LR-Superglue matching method for large aerial image tie points matching, which makes learned
image matching possible in photogrammetry application and promotes the photogrammetry towards
artificial intelligence. Experiments on real and difficult aerial surveying areas show that LR-Superglue
obtains more model tie points in forward direction (on average, there are 60 more model points in
each model) and more image tie points between airline(on average, there are 36 more model points
in each adjacent images). Most importantly, the LR-Superglue method requires a certain number of
points between each adjacent model, while the Block-SIFT method made a few models have no tie
points. At the same time, the relative orientation accuracy of the image tie points matched by the
proposed method is significantly better than block-SIFT, which reduced from 3.64 µm to 2.85 µm on
average in each model (the camera pixel is 4.6 µm).

Keywords: image matching; model tie; deep learning; difficult survey area; special texture

1. Introduction

Images tie point matching plays a crucial role in the field of aerial photogrammetry,
especially image point coordinates measurement, which has promoted the development
of photogrammetry automation since the image correlation technology proposed, includ-
ing NCC [1] (normalized correlation coefficient) and LSM [2] (least squares matching),
etc. Afterwards, many corner point extraction methods, such as Moravec [3], Forstner [4]
and Harris [5] were used to match aerial images for image tie points with NCC or LSM.
Although these methods help with image tie matching, there are variant to transforma-
tion, scale and illumination changes. To extract local features and match them from two
images taken from different viewpoints and under different illumination conditions, the
SIFT [6] (scale-invariant feature transform) was first proposed. Then, numerous work,
namely SURF [7] (speeded up robust features), FAST [8] (Machine Learning for High-
Speed Corner Detection), ORB [9] (fast binary descriptor based on BRIEF [10] (Binary
robust independent elementary features), BRISK [11] (Binary Robust Invariant Scalable
Keypoints), HOSS [12] (histogram of oriented self-similarity) were proposed inspired by
SIFT and PCA-SIFT [13] (Principal Component Analysis SIFT), ASIFT [14] (Affine-SIFT),
ABSIFT [15] (Adaptive Binning SIFT), L2-SIFT [16] (SIFT matching for large image and
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large-scale aerial photogrammetry), UC-SIFT [17] (Uniform competency SIFT) based on
SIFT in recently years.

All of the above local feature matching methods [12,18,19] can work well under
certain conditions and test data, but they are rarely used in real applications of remote
sensing, and much less in aerial image tie point matching in real surveying area, except
for SIFT. So far, SIFT and LSM have become the main application methods in real aerial
photogrammetry for point coordinates measurement automatically. However, the majority
of the existing handcrafted matching methods [20,21] show poor performance (Figure 1)
under the condition of significant illumination variations, especially, weak texture images
(e.g., mountainous area) for the model tie-in forward overlap or lateral overlap, resulting
in the airline network not being constructed well because of some multi-image tie points
lacking (Figure 2). Inspired by the deep learning approaches [22,23], in particular, CNN
(convolutional neural network) [24], more and more works of image matching based on
deep learning were presented [25,26], including MatchNet [27], LIFT [28], SuperGlue [29],
LoFRT [30], etc., and proven to be better than Handcrafted matching methods, in which
SuperGlue [29] performed better in matching effect and efficiency.

(a) SIFT (b) SuperGlue

Figure 1. Weak texture image matching case (colored lines represent corresponding matching
points).(a) There is no match point by SIFT method; (b) There are many match points by SuperGlue
method.

(a) (b)

Figure 2. Special texture images and image tie points by Block-SIFT. (a) Special texture images;
(b) Image tie points by Block-SIFT. Green lines are forward image tie lines (no model tie points
between a few models), red lines are lateral image tie lines (some images have no image tie points
between airlines).

Motivated by the SuperGlue [29] and the artificial intelligence photogrammetry de-
velopment needs, we propose LR-SuperGlue, a novel approach to large image tie point
matching in real surveying area based on deep learning. Although the deep learning-based
image processing method outperforms the traditional method in the field of intelligent
interpretation and change detection of remote sensing images. At present, the deep learning-
based image matching method can only process small images and requires high computer
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performance, less in aerial image tie points matching. Hence, inspired by L2-SIFT [16],
the image blocking strategy is used for large aerial image matching. At the same time,
image overlap was calculated via a pyramid matching strategy for large image blocking,
which helps to obtain much more image tie points. We evaluate the proposed method on
a real surveying area with the measurement of the model tie point number and relative
orientation compared with Block-SIFT (similar to L2-SIFT [16]). The experiments show that
LR-SuperGlue could obtain much more model tie points and construct airline networks
in mountainous area images, but Block-SIFT could not. Meanwhile, the accuracy of the
relative orientation of LR-SuperGlue was acceptable. The rest of the paper is structured as
follows: A brief review of some related work is presented below, followed by the paper’s
contributions. The details of the proposed method are described in Section 2. Section 3
represents the experiments and results, and finally, conclusions are described in Section 4.

1.1. Related Work

In this section, we briefly review the method of image matching, especially, methods
used for real aerial photogrammetry. According to the learning or not, we roughly classify
these methods into two groups, i.e., methods for hand-crafted image matching and methods
for learned image matching.

1.1.1. Hand-Crafted Image Matching

Since the appearance of SIFT [6], local features have played a crucial role in computer
vision, becoming the standard for image matching. It used a Dog (Difference-of-Gaussian)
instead of LoG (scale-normalized Laplacian of Gaussian) [31]. Moreover, the local gradient
orientation and magnitudes were computed so that reliable features may be extracted even
when there are rotation and translation between two images. In the matching procedure, a
128-dimension descriptor was utilized to match reliable features.

Many subsequent efforts focused on reducing its computational requirements. For
instance, SURF [7] used Haar filters and integral images for fast keypoint detection and
descriptor extraction. PCA-SIFT [13] adopted the dimensionality reduction strategy to
express feature patches and projected high-dimensional samples into low-dimensional
space. For different application requirements (different data), some works were proposed.
For instance, ASIFT used six parameters of affine transform to obtain better results. L2-
SIFT mainly adopts the image blocking strategy for large image matching in large-scale
aerial photogrammetry. The UC-SIFT [32] approach obtains the best results compared to
four other well-known detectors, including SURF and Hessian-affine for remote sensing
image matching with rotation, scale and viewpoint transformations the literature on this
topic is very extensive, more methods can refer these works [26,33–35]. Although the
above methods have good experimental results in their respective papers, these methods
still cannot match weak texture images well and have hardly been applied to the actual
photogrammetry.

Because the local feature matching algorithm only reaches pixel accuracy and aerial
photogrammetry needs sup-pixel accuracy, the LSM algorithm is often used to improve
point accuracy. LSM is a procedure for digital image correlation based on least squares
window matching, which added geometric and radiometric transformation parameters
into window matching, improving the image matching accuracy.

1.1.2. Learned Image Matching

While methods such as FAST [8] used machine learning techniques to extract key
points, most early efforts in this area targeted descriptors. However, with the advent of
deep learning, there has been a renewed push towards replacing all the components of the
standard pipeline with convolutional neural networks. For example, MatchNet [27] trained
a Siamese CNN for feature representation, followed by a fully-connected network to learn
the comparison metric. DeepCompare [36] showed that a network that focuses on the center
of the image can increase performance. While previous works [23,37,38] have successfully
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tackled each one of these problems individually, LIFT [28] implemented the full feature
point handling pipeline, that is, detection, orientation estimation, and feature description.
To solve the problem of low execution efficiency of the deep learning matching method,
the PN-NET [39] method adopts the image segmentation matching method and involves
a feature descriptor network structure based on CNN, which improves the matching
efficiency. L2Net [40] adopts a progressive sampling strategy and image segmentation
method to learn feature descriptors, and the network model has good generalization
ability. SuperPoint [41] method uses a self-supervised learning method to construct a fully
convolutional network model for feature extraction and description. Different from the
network architecture based on image segmentation, the network model is trained and
tested on the full-size image, and the feature point positions and descriptors are calculated
by a forward propagation.

With the development of deep learning-based image matching, graph neural network
and attention [42] was adopted into image matching, including local feature extraction,
feature description and description matching. Until now, SuperGlue is the one of best image
matching methods (detects local features by SuperPoint) via deep learning, considering
the matching effect and implementation in spite of the LoFTR [30] proposed recently.
SuperGlue uses a graph neural network and attention to solve an assignment optimization
problem, and handles partial point visibility and occlusion elegantly, producing a partial
assignment. Due to the calculation on GPU, the matching speed is very fast.

Motivated by the deep learning-based image matching. In the field of remote sensing,
some scholars have proposed matching methods based on deep learning in consider-
ation of the characteristics of remote sensing images or different processing processes.
Hao Zhu et al. [43] proposed network adopts a two-stage training mode to deal with the
complex characteristics of RS images with better feasibility, robustness, and effectiveness.
Shuang Wang et al. [44] proposed an effective deep neural network for remote sensing
image registration, which optimized the whole processing through information feedback
when training the network and improved the registration accuracy. Ye Yuanxin et al. [45]
proposed the MU-Net for multimodal image registration, which achieved more compre-
hensive and accurate registration performance between these image pairs with geometric
and radiometric distortions.In the last two years, the related research of image matching
mainly focuses on multimodal images, such as [46–48]. Although the above methods have
achieved good results in their own test data, the method cannot process the large and
special texture image.

Although SuperGlue outperformed the traditional method in the field of image match-
ing and got a very good matching result on different public data sets, these methods cannot
be directly used because of the improper parameters and image size in this method for
large aerial tie points matching. Then, in order to do some work promoting the intelligent
development of photogrammetry; we must make changes and propose a novel method for
large aerial image matching in real surveying areas.

1.2. Contributions

Image tie points in real aerial photogrammetry must be matched from two or more im-
ages according to the forward-track and lateral-track distribution of images. An important
aspect of digital aerial triangulation is the need to match several large images simultane-
ously. In earlier years, tie points had to be marked on every image by the stereovision ability
of a human operator. Hand-crafted image matching technology has led photogrammetry
towards automation, and learned image matching will promote photogrammetry towards
artificial intelligence.

In this paper, a novel image matching approach for a large aerial image in real and dif-
ficult surveying areas with weak texture images based on SuperGlue is presented. The aim
of the proposed LR-SuperGlu method is to solve large and weak texture image matching
(especially, multi-images tie points in forward overlap and lateral overlap) in real surveying
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areas and make learned image matching possible in photogrammetry applications. More
precisely, the main contributions of this paper are as follows:

(1) Overcome the shortcomings of traditional methods for poor texture and large images
in real and difficult surveying area.The classic SIFT method has huge applications in
teaching in schools and software in corporations, but poor texture image matching
cannot be solved well by SIFT, especially, for multiple image tie points in a difficult
survey area. Fortunately, deep learning approaches have shown great power in weak
texture image matching, such as SuperGlue. So, the proposed LR-SuperGlue will
outperforms SIFT.

(2) Make the SuperGlue method from open and small images to practical applications
for large image matching in real aerial photogrammetry. Given the proposed image
matching method, other image matching methods via deep learning may go into pho-
togrammetry. Finally, photogrammetry will develop from automation to intelligent,
in the theory and practice.

2. Methodology

In this section, the workflow method is described first, and then the key steps are
presented in detail. The implementation details of LR-SuperGlue are presented based on
two pairs of large stereo images IL, IR and IU, ID from a real surveying area. IL and IR are
the left and right images in the pairs in the forward overlap. IU and ID is the up and down
image in the pairs in the lateral overlap.

2.1. Workflow

Given a pair of large stereo images IL, IR or IU, ID, one of the core steps of the LR-
SuperGlue method is to process the “large” image because the original SuperGlue method
only matches the small stereo images on GPU (the specific pixel size depends on the GPU
size). Experimental results show that if the image size exceeds 2000 × 2000 with the default
parameters, the program just exits with GPU size 8 G because of too many match points.
At the same time, if the texture of the input image is very rich (e.g., urban aerial image or
forest image), the image size cannot exceed 1000 × 1000. Since GPU is very expensive, we
must modify its parameters and do image blocking in the face of large images.

To make the two block-images (included in IL, IR or IU, ID) include the same ground
area as far as possible (corresponding blocks), we should accurately calculate the overlap
of input large stereo and consider the invalid pixels with 0 values. In general, the workflow
of the proposed method follows an iterative manner within multi-block images. The main
steps of the proposed method are as follows (Figure 3):

(1) Accurately calculate the overlap of input large stereo image through a certain feature
matching algorithm (e.g., SIFT or SuperGlue in this paper).

(2) Image blocking for large stereo image with block size 1000 × 1000 (if the GPU size is
enough, the block size may be to 2000 × 2000) based on the overlap size in row (y)
or column direction (x). If the images have invalid pixels in the image edge, image
blocking should consider this situation.

(3) Modify the default parameters of original SuperGlue (model test parameters not the
trained model parameters). The specific parameters are the input image size and the
window size of non-maximum suppression.

(4) Perform block image matching with the improved SuperGlue. If the image gray
contrast is poor, image enhancement processing can be performed.

(5) Merge the block matching results and optimize the initial matching point with LSM
for subpixel accuracy. The initial matching point may be processed with RANSAC
(Random Sample Consensus) if needed.



Remote Sens. 2022, 14, 3907 6 of 18

Figure 3. Workflow of proposed LR-SuperGlue. (a) is the input images; (b) calculates the overlap of
two images in forward and lateral direction; (c) image block matching with SuperGlue(the yellow
box represents the image block); (d) is the NMS; (e) merges block points and RANSAC, LSM (the
yellow “+” represents the matching point).

2.2. Accurately Calculate the Overlap and Start Matching Position

Accurately calculating the overlap of stereo images is the key point of image blocking,
which helps to make sure all overlap pixels are matched. In general, we can acquire the
forward overlap and lateral overlap from flight information or may calculate them via POS
data if it exits. However, the overlap obtained by the above approach often is inaccurate
and POS data may be missing, especially in the early years. At this point, the accurate
overlap is calculated by the pyramid image matching strategy.

In this paper, two robust image matching methods are selected to calculate the overlap.
It turns out that the overlap of most of the images can be accurately calculated by SIFT
and RANSAC in a lot of experiments. In order to ensure the robustness of the calculation
method of overlap, SuperGlue is used to replace SIFT automatically in the proposed
algorithm if SIFT does not work. If the stereo images are IL, IR, the X-overlap (xo) will
be got (Equation (1)), and if the stereo images are IU, ID, the Y-overlap (yo) will be got
(Equation (2)).

xo = f loat(ColOri/ColPyr ×
1
n

n

∑
i=1

(LxiOri − RxiOri) (1)

where, ColOri is the width of original Large image; ColPyr is the width of pyramid image;
LxiOri is the value of left pyramid image matching point; RxiOri is the of right pyramid
image matching point.

yo = f loat(RowOri/RowPyr)×
1
n

n

∑
i=1

(UyiOri − DyiOri) (2)

where, RowOri is the height of Original Large image; RowPyr is the height of pyramid image;
UyiOri is the y value of up pyramid image matching point; DyiOri is the of down pyramid
image matching point.
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To accurately image block in the next step, the start matching row and col position
needs to be calculated (sy for IL, IR, sx for IU, ID) Equation (3)).

sy = L/Uy0Ori − R/Dy0Ori, sx = L/Ux0Ori − R/Dx0Ori (3)

2.3. Image Blocking Based on Overlap

As mentioned above, the original SuperGlue method on GPU only matches small
images (other deep learning methods as well). For this reason, image blocking based on
overlap appears to be of the essence. Given or image blocking will be performed in the
following steps: (1) calculate the valid matching image region width for IL, IR and height
for IU, ID (Equation (4)), which helps to obtain good image matching results and reduce the
computation time of LR-SuperGlue; (2) set the block size according to the original image
texture, and 1000 × 1000 pixels as the block size is used in this paper (Figure 3c).

validLR = xo× ColOri, validUD = yo× RowOri (4)

The image blocking of IL, IR is easy, but sometimes it does not work for IU, ID in the
lateral image if pyramid image matching does not work well. At the same time, due to the
complexity of image texture, the block size should be calculated automatically if possible.
To reduce the uncertainty of image blocking, a pre-overlap of the stereo image is used
for the current stereo image overlap adopting an iterative approach until image matching
works well which is different from the general image blocking strategy (Figure 4).

Figure 4. Image blocking of LR-SuperGlue in forward images, lateral images do same (the yellow
box and blue arrow represent the corresponding image block).

2.4. Superglue Matching after Image Blocking

Block matching of SuperGlue can be performed after image blocking. SuperGlue
is a feature matching Network based on deep learning, which is composed of two main
modules: The Graph Neural Network (GNN) based on attention and the optimal matching
layer (as shown in Figure 5). Attention GNN encodes feature points and descriptors as a
feature matching vector, and then uses self-attention and cross-attention to enhance feature
matching performance. After attention GNN is completed, the optimal matching layer
is entered. First, the matching degree score matrix is obtained by calculating the inner
product of feature matching vector, and then the optimal feature allocation matrix is solved
by the Stinkhorn algorithm. Given two images on the left and right, each image has the
position of feature points and corresponding descriptors, which can be used to represent
image features. The matching network uses SuperPoint method to extract feature points.

After feature points are extracted, a complete graph of left and right images is con-
structed (see Figure 6), whose nodes are each feature point in the image. This graph
contains two different undirected edges: one connects the feature points inside the left
and right images (using self-attention), and the other connects the feature points between
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the left and right images (using cross-attention). The attention mechanism simulates the
process of human eyes searching for matching points back and forth in the key areas of
the left and right images. It is represented by the weight of attention. The larger the
attention is, the more similar the two features are. If it is not the desired match, focus on
the surrounding feature points until a match is found or no match is found. In the above
process, the network model increases the specificity of neighborhood feature points by
actively searching for them. Specifically, attention weight αij is the Softmax of similarity of
query and search feature points, namely:

αij = so f tmaxi(qT
i ki) (5)

where, qi represents the self-attention mapping query value of feature points, and kj
represents the key value of corresponding attributes; Softmax represents an activation
function and maps the output results to (0, 1).

Figure 5. SuperGlue Network [29].

Figure 6. Complete graph of feature points (A1, A2, A3, A4 and B1, B1, B3, B4).

2.5. Non-Maximum Suppression of Superglue Maching Points

The aim of non-maximum suppression (NMS) is to reduce memory footprint and
reduce the time consumption of relative orientation (or more complicated calculations for
bundle block adjustment in further research). Theoretically speaking, original SuperGlue
can obtain good image matching results via image blocking (e.g., 1000× 1000). However, in
practice, complex image texture (a surveying area includes rich textures and weak textures
images) often makes part of the image matching unsuccessful, resulting in airline networks
failing to be tied. NMS selects the matching point with the highest accuracy within the
set window size. In this paper, the window size of 4 pixels is selected as the initial NMS
window size (ws). In the proposed approach, there are several cases automatically selecting
window size, as follows (Equation (6)):

ws =


4, initial.
8, lateral.
16, f orward.

(6)
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2.6. Optimize Image Tie Points with RANSAC and LSM

Existing literature shows that feature matching can only achieve pixel-level accuracy,
as well as SuperGlue. Different from other literature evaluating image matching quality
with recall (Equation (7)), precision, rmse (root-mean-square error) [32], etc., on simulated
data with pixel-level accuracy, aerial photogrammetry needs subpixel accuracy.

recall = cm/tm., precision = cm/(cm + f m). (7)

where, cm (correct match) and f m (false match) are the number of correctly and falsely
matched point pairs in the matching results, respectively, and (total match) is the total
number of existing correctly matched point pairs in the initial matched point sets.

So, after the initial matching points are obtained, LSM [2] method is used to optimize
them to obtain subpixel accuracy image tie points for relative orientation (Algorithm 1).
Meanwhile, matching points of large images merged from a lot of block images should
be optimized with the RANSAC method [49], which can remove the mismatch points
(outlier) [50–53].

Algorithm 1 Large image matching in real surveying area

Input: large images from forward and lateral direction
Output: large image matching point sets

1: Pseudo-code:
2: //step1:calculate the overlap of two images
3: PointSets = PyramidSIFT(image1, image2);
4: for each i ∈ [0, Num] do
5: if (IL, IR) then
6: xo = xo + abs(Lxi − Rxi);
7: end if
8: if (IU, ID) then
9: yo = yo + abs(Uyi − Dyi);

10: end if
11: end for
12: xo = xo/Num, yo = yo/Num;
13: //step2:image blocking based on overlap
14: if (IL, IR) then
15: imageblockL = largeimage(Rect(sx, 0, 1000, 1000);
16: imageblockR = largeinage(Rect(0, sy, 1000, 1000));
17: end if
18: if (IU, ID) then
19: imageblockU = largeimage(Rect(sy, 0, 1000, 1000);
20: imageblockD = largeinage(Rect(sx, 0, 1000, 1000));
21: end if
22: //step3: block image matching with SuperGlue and NMS automatically
23: while i < BlockNum do
24: do SuperGlue via Python
25: end while
26: intialNMS = 4;
27: lateralNMS = 8;
28: f orwardNMS = 16;
29: //step4:merge the block matching results
30: largeresult = add(blockimageresult);
31: //step5:optimize the initial matching point with LSM and RANSAC
32: LSM(RANSAC(largeresult));
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3. Experiments and Results

In this section, description of test data is presented firstly. Next, in order to better
illustrate the effectiveness of this method Compared with Block-SIFT method, the matching
quality measures are elaborated in detail. Finally, detailed experimental results and analysis
of two methods are described. The experimental platform is Windows 10 (CPU is E5-1603-
2.8 GHz, the memory is 16 G—1066 MHz, and the GPU is 8 G-NVIDIA Quadro K5200).
The algorithm implementation tool is Visual Studio 2015 (C++ language for Block-SIFT and
others) and Pycharm 2017 (C++ and Python language for LR-SuperGlue).

3.1. Test Data

The LR-SuperGlue method is proposed to mainly solve large image matching for
airline network tie in real surveying, 60 images with 6 airlines are used in experiment in
this paper. The details of the data are shown in Table 1 and Figure 7.

Table 1. Information of surveying area.

Surveying
Area Name

Width × Height
of Image

Pixel Size
(µm)

f of Camera
(mm)

Total Number
of Image

Forward
Overlap

Lateral
Overlap

SX500 28,820 × 30,480 4.6 142.4169 6 × 10 = 60 63% 30%

Figure 7. Images from a real surveying area. The western part of the survey area is a typical loess
plateau landform with ravines and ravines and the terrain is very complex and contains many special
texture images. The yellow number indicates the image number.

3.2. Matching Results in Forward Images

The performance evaluation of LR-SuperGlue for the forward images is presented
in this section. The comparative results for the Block-SIFT method, and for number of
matching points, number of model tie and relative orientation accuracy, are shown in
Figures 8 and 9. As can be seen, the LR-SuperGlue significantly outperforms the Block-SIFT
in most stereo model cases, especially for poor texture images. Specifically, in terms of
model tie points and relative orientation accuracy, image tie point matching by the Block-
SIFT method makes some stereo models lack tie points, but the LR-SuperGlue method
can obtain tie points in these stereo models. Meanwhile, the relative orientation accuracy
(unit weight median error) of the LR-SuperGlue method is higher than the block-SIFT
method on the whole (the unit weight median error of block-SIFT is 3.64 µm, and the
LR-SuperGlue’s is 2.85), and almost all of them are about 0.6 pixel. The main reason is that
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the SIFT method relies on the image gray, and it cannot extract effective feature points in
the weak texture area of the image, resulting in no matching points or only a small number
of matching points between these images. However, during model training, the SuperGlue
method adopts a large number of image samples with different textures and geometric
changes of images, so that the method can match a large number of corresponding points
in weak texture and large geometric deformation areas, and the accuracy meets basically
the requirements of aerial photogrammetry due to the use of graph neural network.

(a) Forward image tie points number

(b) Forward model tie points number

Figure 8. Forward image tie points number: (a) Forward image tie points are chosen from the stereo
matching; (b) is the model tie points number of Block-SIFT and LR-SuperGlue method.
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Figure 9. Relative orientation accuracy (unit weighted errors). The camera pixel size is 4.6 µm.
Relative orientation refers to the process of restoring the relative positional relationship of two photos
in a stereo pair. Through the relative orientation, it is possible to achieve the intersection of pairs of
rays of the corresponding points, achieving the purpose of constructing a stereo model.

In fact, a large number of matching points and then a certain number of relaoriention
points can be obtained by using both methods only from the independent stereo pair matching
(Figure 8). In addition to orientation points (tie points of overlap in two adjacent forward
images, namely image tie points), a certain number of model tie points of overlap in three
adjacent forward images are needed in practical photogrammetry. Only in this way can a
whole airline be connected. As can be seen from Figure 10, the matching points obtained
through LR-Superglue can connect each airline and obtain more model tie points on the
whole, and the relative orientation meets the requirement of accuracy. However, the matching
points obtained through the block-SIFT method cannot be connected in the first (stereo model
0025-0024 and 0024-0023) and the third route (stereo model 0079-0078 and 0078-0077).

(a)

(b)

Figure 10. Show of forward image model tie points (orange circle). There are 0 or 1 model tie point in
the yellow circle. (a) Block-SIFT (Left is model tie points and right is tie lines); (b) LR-SuperGlue (Left
is model tie points and right is tie lines (green line)).
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Therefore, there is a certain disharmony between image matching and model tie,
especially in the weak texture region and the transition region between strong texture
and weak texture. In fact, the block-SIFT method is already very robust and is used by
many photogrammetric software. However, when conducting a survey area similar to the
image in this paper, local models may not be tied. When there is no tie points between
models, the manual addition of model connection points is often required in the actual
photogrammetry production, but this requires a higher cost. Compared with the block-SIFT
method, the proposed method does not have the case of no model tie points (although
some models only have a few model tie points). The main reason is that the LR-Superglue
method can match more high-precision image corresponding points, even in weak texture
areas (Figure 11).

(a) Block-SIFT

(b) LR-SuperGlue

Figure 11. Matching reuslt of weak texture image: (a) There are only a few matching points (yellow
“+”) by Block-SIFT method; (b) There are much more matching points by LR-SuperGlue method.

In terms of time consumption, LR-SuperGlue has no great advantage. If both methods
use CPU devices, a stereo matching will take about 15 min for both methods in test data. If
both methods use GPU devices, LR-SuperGlue takes 3 min and Block-SIFT takes 12 min.
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However, it is possible to use multithreading with a CPU device, whereas a GPU device is
difficult because GPU has limited capacity and very expensive currently.

3.3. Matching Results in Lateral Images

The performance evaluation of LR-SuperGlue for the lateral images is presented in
this section. The comparative results for the Block-SIFT method and for the number of
matching point and turning points between lateral images are shown in Figure 12 and
Figure 13. As can be seen, the LR-SuperGlue significantly outperforms the Block-SIFT in
most of overlap image cases.The main reason is same as the previous section about forward
images matching for weak texture images.

After the completion of forward image matching and model tie, the main purpose
of lateral image matching is to carry out turning points of adjacent route, that is, to carry
out route tie. In fact, the turning points between the adjacent routes are based on relative
orientation points (Figure 8a). The number of turning points is not only related to the
image matching between adjacent routes, but also related to the distribution and number of
relaoriention points. Compared with the model tie within the airline, the strip connection
does not require connection points for per adjacent images. As long as there are a certain
number of connection points between adjacent strips, the free route network construction
of the whole survey area can be completed.

As can be seen from Figure 13a, when matching adjacent images between each pair
of airstrips, the proposed method can obtain more matching points than the block-SIFT
method. However, in terms of the number of turning points between airstrips, although
the method in this paper can obtain more turning points on the whole, no turning points
occur in both methods. At the same time, the block-SIFT tie point between some images
is 0 especially the first and second routes, as well as the third and fourth routes, but the
proposed method has a few turn points (Figure 13b).

(a)

(b)

Figure 12. Show of lateral image tie points (purple circle).There are 0 or 1 tie point in the yello circle.
(a) Block-SIFT (Left is tie points and right is tie lines (red line)); (b) LR-SuperGlue (Left is tie points
and right is tie lines).
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(a)

(b)

Figure 13. Lateral image matching and tie points number. (a) Lateral image matching points number;
(b) Lateral image turning points number.

4. Conclusions and Future Work

Image tie point matching is an essential task in real aerial photogrammetry, especially
for three overlap regions in the forward direction (model tie points). In recent decades,
a large number of image matching methods have emerged, which can obtain a better
matching effect between two images under certain conditions. However, in current pho-
togrammetry production, the SIFT method is still the main method, and the RANSAC and
LSM methods are used for point location optimization. The SIFT method is very robust,
but in actual production, only a few or no corresponding points can be matched between a
few images (mainly repeated texture or poor texture image), which leads to the failure of
model tie, and then the model tie points can only be manually added. Manual addition can
solve the problem, but it will cost more and add a limited number of model tie points.

With the development of deep learning, many scholars have proposed many image
matching methods based on deep learning. These methods are often better in weak
texture and small image matching than traditional methods , but they cannot be directly
applied to large image tie point matching in real photogrammetry. Considering the actual
photogrammetry needs and the shortcomings of SIFT, this paper proposes a deep learn-
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based LR-Superglue matching method for large aerial image tie points matching. The
main steps are as follows: Firstly, the pyramid matching strategy is used to accurately
calculate the image overlap degree, then the block matching and matching point screening
(non-local maximum suppression) are carried out, then the matching point combination is
carried out, and finally the mismatching elimination and point location optimization are
carried out. Based on the proposed method, the experimental results are compared with the
block-SIFT images. In the comparative experiment, the number of model tie points, relative
orientation accuracy and the number of turning points between airstrips are mainly used
as evaluation indexes. The results show that compared with the block-SIFT method, the
proposed method can realize the construction of the free route network in the actual survey
area, while the block-SIFT method has a few models with no tie points and the relative
directional accuracy is lower than the proposed method. Therefore, the LR-Superglue
method solves the problem of missing or insufficient orientation points of weak texture
survey area model to a certain extent, and also proves that the deep learning method can
be initially used in practical photogrammetry, which is conducive to promoting the further
development of intelligent photogrammetry in terms of geometric processing, not just
intelligent interpretation of remote sensing images.

Although the LR-Superglue method achieves better experimental results in image
tie point matching and free route network construction than the block-SIFT method, this
paper only uses one surveying area for comparison experiment and does not complete
the final bundle block adjustment (considering the temporary absence of control points
in this surveying area). Therefore, in order to apply the proposed method to practical
photogrammetry, it is necessary to carry out experiments in more surveying areas and
use control points to do the bundle block adjustment and evaluate the accuracy in the
future study, as well as generate a DOM (Digital Orthophoto Map). In addition, the deep
learning matching model more suitable for the characteristics of aerial images should be
strengthened.
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