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Abstract: Space-time adaptive processing (STAP) algorithms based on sparse recovery (SR) have 

been researched because of their low requirement of training snapshots. However, once some por-

tion of clutter is not located on the grids, i.e., off-grid problems, the performances of most SR-STAP 

algorithms degrade significantly. Reducing the grid interval can mitigate off-grid effects, but brings 

strong column coherence of the dictionary, heavy computational load, and heavy storage load. A 

sparse Bayesian learning approach is proposed to mitigate the off-grid effects in the paper. The al-

gorithm employs an efficient sequential addition and deletion of dictionary atoms to estimate the 

clutter subspace, which means that strong column coherence has no effect on the performance of 

the proposed algorithm. Besides, the proposed algorithm does not require much computational load 

and storage load. Off-grid effects can be mitigated with the proposed algorithm when the grid-in-

terval is sufficiently small. The excellent performance of the novel algorithm is demonstrated on the 

simulated data. 
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1. Introduction 

Space-time adaptive processing (STAP) exhibits great potential in suppressing clut-

ter and detecting slow-moving targets [1]. The Reed–Mallet–Brennan (RMB) rule [2] states 

that signal-to-clutter-plus-noise ratio (SCNR) loss can be within 3 dB only if the number 

of independent and identically distributed (i.i.d) training snapshots is at least twice the 

system degrees of freedom (DOFs). Unfortunately, due to array configurations and the 

complex clutter environment, sufficient training snapshots cannot be guaranteed, and 

therefore the performance of STAP degrades significantly. 

Motivated by compressed sensing (CS) theory, STAP algorithms have been enriched 

over the past 15 years with the application of sparse recovery (SR) techniques. These al-

gorithms are termed SR-STAP algorithms [3–9]. The clutter-plus-noise covariance matrix 

(CNCM) can be estimated with SR-STAP algorithms when the training snapshots are lim-

ited. Most of these algorithms are exploited to solve an 1 -norm minimization problem 

instead of an 0 -norm minimization problem [10]. However, large coefficients in the 1

-norm are penalized more heavily, and their performances are greatly affected by the 

choice of regularization parameters. Compared with the above SR-STAP algorithms, 

sparse Bayesian learning (SBL) [11–21] has received much attention and has been applied 

to the STAP framework [22–24] because of its robustness and excellent performance. 

However, the performance of all SR-STAP algorithms relies on the match between clutter 

and the dictionary matrix. 

The dictionary used in SR-STAP algorithms consists of the space-time steering vec-

tors corresponding to all the discrete grids in the angular-Doppler plane. Based on the 

assumption that the clutter ridge lies exactly on the sampling grids, most SR-STAP algo-

rithms aim to improve the accuracy of signal recovery. However, when this assumption 

Citation: Liu, C.; Wang, T.; Liu, K.; 

Zhang, X. A Novel Sparse Bayesian 

Space-Time Adaptive Processing  

Algorithm to Mitigate Off-Grid  

Effects. Remote Sens. 2022, 14, 3906. 

https://doi.org/10.3390/rs14163906 

Academic Editors: Jingwei Xu, 

Keqing Duan, Weijian Liu and 

Xiongpeng He 

Received: 14 July 2022 

Accepted: 9 August 2022 

Published: 11 August 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Remote Sens. 2022, 14, 3906 2 of 19 
 

 

does not hold, some portion of clutter is not located on the grid, i.e., off-grid problems, 

which leads to inaccuracy of the CNCM estimated by SR-STAP algorithms and perfor-

mance degradation [25]. Unfortunately, off-grid problems are unavoidable and common 

in practical applications. 

Some algorithms have been proposed to overcome the off-grid problems in direction-

of-arrival (DOA) estimation [26–29] but the off-grid problems in SR-STAP have not re-

ceived attention. The first-order approximation method, which is common and effective 

in the off-grid DOA estimation, cannot be directly applied to off-grid SR-STAP because 

STAP is two-dimensional signal processing. In [25], to mitigate the off-grid effects, the 

dictionary is constructed by exploiting the knowledge of clutter ridge. Regrettably, precise 

environmental knowledge is hard to obtain and changes with time. In [30,31], the global 

atoms are selected from the global STAP dictionary and then the optimal atoms are 

searched from the local STAP dictionary. However, the convergence of these algorithms 

is not guaranteed. 

It is obvious that an effective way to deal with the off-grid problems is to reduce the 

grid interval to obtain a denser grid set. However, traditional SR-STAP algorithms suffer 

from heavy computational load and storage load when utilizing the dense grid set. More-

over, if the grid-interval is small enough, the dictionary matrix cannot satisfy the restricted 

isometry property (RIP) condition [27], which also results in the inaccuracy of the CNCM 

and the performance degradation of SR-STAP algorithms. 

In this paper, a novel SR-STAP algorithm is proposed to mitigate the effects of off-

grid problems with sufficiently dense grids. The specific steps are as follows: Firstly, the 

angular-Doppler plane is discretized into sufficiently dense grids to construct an over-

complete dictionary; secondly, based on the marginal likelihood maximization criterion, 

we select the atoms that are in the clutter subspace and reserve these atoms in the new 

dictionary; thirdly, we estimate the CNCM and calculate the STAP weight vector. 

Although sufficiently dense grids lead to strong column coherence of atoms in the 

dictionary, the core idea is to select the most accurate atoms to represent the clutter sub-

space based on the marginal likelihood maximization criterion, which indicates that the 

performance of the proposed cannot be affected by strong column coherence of atoms. 

Besides, due to the sparsity of clutter, the number of the reserved atoms is small, and the 

new dictionary is a low-dimensional matrix, which indicates that the proposed algorithm 

does not require a heavy computational load and storage load.  

In conclusion, compared with the traditional SR-STAP algorithm, there are two main 

advantages of the proposed algorithm: (i) Compared with traditional SR-STAP algo-

rithms, the run time and storage load of the proposed algorithm are both less in the ab-

sence and presence of off-grid problems; furthermore, (ii) the proposed algorithm can mit-

igate off-grid effects with sufficiently dense grids. 

Notation: Scalar quantities, vectors, and matrices are denoted by italic typeface, bold-

face small letters, and boldface capital letters, respectively. The -thi  entry of x  is de-

noted by ix . The -thi  column and  , -thi j  element of A  are denoted by ia  and ijA

, respectively. The expectation is denoted by    .  diag   denotes a diagonal matrix 

formed by a vector or diagonal elements of a matrix. The matrix transpose, conjugate 

transpose, and inverse are denoted by  
T
 ,  

H
 , and  

1
 , respectively. 

F
    denotes 

the Frobenius norm and 
2,0

    denotes the 0 -norm  of the vector formed by the 

2 -norm  of each row.     denotes the determinant. I  denotes the identity matrix. 
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2. Signal Model 

Without a loss of generality, an airborne pulsed-Doppler radar under consideration 

is equipped with a uniform linear array (ULA). N  antenna elements are placed with a 

half-wavelength inner spacing. M  pulses are transmitted at a constant pulse repetition 

frequency (PRF). The received signal x  can be formulated as the superposition of clutter, 

thermal noise, and might targets. Ignoring the range ambiguity, the clutter 1
c

MNx   can 

be modelled as the superposition of echoes from all the clutter patches in the cell under 

test (CUT). 

 
c

c st d, s,
1

,
N

i i i
i

f f


 x υ  (1) 

     st d, s, t d, s s,,i i i if f f f υ υ υ  (2) 

      
T

t d, d, d,1,exp 2 , ,exp 2 1i i if j f j M f    υ   (3) 

      
T

s s, s, s,1,exp 2 , ,exp 2 1i i if j f j N f    υ   (4) 

Where cN  is the number of clutter patches in the CUT; i , d,if , and s,if  are the com-

plex amplitude, the normalized Doppler frequency, and the spatial frequency of the -thi  

clutter patch, respectively; the space-time steering vector stυ  can be obtained by the 

Kronecker product operation of the temporal steering vector tυ  and the spatial steering 

vector sυ ;   denotes the Kronecker product operation.  

In the sparsity-based STAP, we need to construct a dictionary matrix to represent the 

angular-Doppler plane. The angular-Doppler plane is discretized into s dK N N  grids, 

where =s sN N   1s   and =d dN M   1d   are the number of normalized spatial 

frequency bins and Doppler frequency bins along the spatial frequency axes and the Dop-

pler frequency axes, respectively. Each grid corresponds to a space-time steering vector, 

and the dictionary consists of all the space-time steering vectors. Assuming that clutter is 

located exactly on the grids, the received clutter plus noise snapshots MN LX   from L  

range cells in the multiple measurement vectors (MMV) case can be expressed as 

 X DA N  (5) 

where MN KD  , K LA  , and MN LN   denote the dictionary matrix, the sparse co-

efficient matrix, and the noise matrix, respectively. D  can be expressed as 

 1 2, ,  , KD υ υ υ  
 

(6)

where 

   t d, s s,k k kf f υ υ υ  (7) 

In (7), d,kf  and s,kf  are the normalized Doppler frequency and the spatial fre-

quency of the -thk  grid, respectively. 

In the SR-STAP algorithms, the noise-contaminated X  is required to be denoted 

with as few atoms as possible. 

2

2,0 F
arg min ,     s.t.     

A

A A X DA  

 

(8)

where   is an error tolerance parameter related to the noise power. 
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3. Off-Grid Problems 

In most SR-STAP algorithms, the grids are uniformly sampled in the angular-Dop-

pler plane along the spatial frequency axes and the Doppler frequency axes, respectively. 

The performance of SR-STAP algorithms can be achieved on the assumption that the clut-

ter ridge lies on the grids. Once some portion of the clutter ridge is not sampled by the 

grids, i.e., off-grid problems, the accuracy of the CNCM estimated by SR-STAP algorithms 

cannot be guaranteed, which leads to significant performance degradation. For example, 

(i) the slope of the clutter ridge is not equal to the ratio of sN  and dN  in the side-looking 

radar case and (ii) the clutter ridge of a non-side-looking radar is a non-linear curve.  

Although a reduction in the grid interval can mitigate the effects of the off-grid prob-

lems, traditional SR-STAP algorithms suffer from heavy computational load and storage 

load. Moreover, if the grid- interval is small enough, the dictionary matrix cannot satisfy 

the restricted isometry property (RIP) condition. In the next section, a novel SR-STAP al-

gorithm is proposed to overcome the aforementioned problems when the grid- interval is 

reduced.  

4. The Proposed Algorithm to Mitigate Off-Grid Effects 

4.1. Construction of the Dictionary 

The values of s  and d  can be set to an integer between 2 and 5 in the absence of 

off-grid problems. When off-grid problems occur, we need to reduce the grid interval by 

increasing the values of s  and d  in the proposed algorithm. In the presence of off-

grid problems, the values of s  and d  can be set to an integer more than 10 or even 

higher.  

Although precise environmental knowledge is hard to obtain, we still can know the 

approximate location of the clutter. To speed up the proposed algorithm, the grids that 

are definitely not in the approximate location of clutter can be removed from the diction-

ary at the beginning. However, the dictionary used in traditional SR-STAP needs to be 

over-completed. For a fair comparison, all SR-STAP algorithms exploit all grids in the 

whole angular-Doppler plane to construct the dictionary in the simulations. 

4.2. Estimation of the Clutter Subspace 

Assuming that the noise in (5) is complex Gaussian white noise, the likelihood func-

tion of X  can be expressed as 

    22 2 2

1

| , exp
LMNL

l l
l

p   
 



 
   

 
X A x Da  

 

(9)

where 1 2[ , , , ]LA a a a  and the noise variance 2  can be calculated with the 

knowledge of the radar system parameters. 

Assuming that ,  l la  are submitted to the same zero-mean complex Gaussian prior 

distribution, the prior of A  can be expressed as 

  H 1

1

| exp
L

LKL
l l

l

p 
 



 
  

 
A Γ Γ a Γ a  (10) 

where  diagΓ γ  represents the prior variance of ,l la  and  
T

1 2, , , K  γ   is a 

vector of hyper-parameters corresponding to all grids. Since Γ  represents the prior var-

iance of ,l la , 0i  . 

Based on the Bayes rule, the posterior density of A  can be expressed as 
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X A A Γ
A X Γ

X A A Γ A

Σ a μ Σ a μ

a μ Σ

 (11) 

where 

 
12 H 1

  Σ D D Γ  (12)

2 H
l l μ ΣD x  (13) 

The next step is to estimate γ . If we adopt the expectation maximization (EM) ap-

proach to estimate γ , then we can obtain the SBL algorithm with MMV (M-SBL) in [22]. 

Another approach is that γ  can be point estimated by maximizing the marginal likeli-

hood function. The marginal likelihood function  2| ,p X Γ  is expressed as 

 
   

 

2

2

1H 2 H H 2

1

| ,

| , |

= exp
L

LNML
l l

l

p

p p d





  






 
  

 





X Γ

X A A Γ A

DΓD I x DΓD I x

 
(14) 

Define 

H 2+C DΓD I  (15) 

and γ  can be point estimated by 

 2

H 1

1

arg max ln | ,

   arg max ln
L

l l
l

p

L









 
   

 


γ

γ

γ X Γ

C x C x
 (16) 

Define 

  H 1

1

ln
L

l l
l

L 



 Γ C x C x  (17) 

and (16) can then be expressed as 

 arg max
γ

γ Γ  (18) 

An effective method to solve Equation (18) is to update a single hyper-parameter j  

at a time. The update of j  makes the biggest contribution to the maximization of  Γ
. Next, we introduce how to select the serial number j . 

C  in (15) can be rewritten as 

2 H H

1 ,

H

+

   +

MN k k k i i i
k K k i

i i i i

  



  



 



C I ν ν ν ν

C ν ν

 (19) 

where 2 H

1 ,
i MN k k k

k K k i

 
  

  C I ν ν  contains all terms that are independent of i . 

Using the Woodbury Matrix Identity 
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     C C C ν ν C ν ν C  (20) 

H 11i i i i i 
  C C ν C ν  (21) 

Equation (17) can then be expressed as 

 

 

 

H 1

1

1H 1 1 H 1 H 1

H 1
1

ln

           
ln 1

          =

L

l i l i
l

L
l i i i i i i i i l

l
i i i i

i i








 



   
  








    

 
 
   







Γ x C x C

x C ν ν C ν ν C x

ν C ν







 (22) 

where 

H 1

1

ln
L

i l i l i
l


  



     x C x C  (23) 

   
1H 1 1 H 1 H 1 H 1

1

ln 1
L

i l i i i i i i i i l i i i i
l

  
    

   


    
   x C ν ν C ν ν C x ν C ν  (24) 

Equation (22) has been divided into two parts: The part independent of i  is de-

noted as i  and the other part related to i  is denoted as  i . 

Define 

H 1 H 1
,

ˆ ˆ,i i i i i l i i ls q 
 ν C ν ν C x   (25) 

and  i  can then be simplified to 

   
1H 1

, ,
1

ˆ ˆ ln 1
L

i i l i i i l i i
l

q s q s  




    
    (26) 

Differentiate  i  with respect to i  

 
   

2 1H
, ,

1

ˆ ˆ1 1 0
L

i

i l i i i l i i i
li

q s q s s


 


 




      
 




 (27) 

and we can obtain the optimal i
  by 

   

 

H H
, , , ,2

1 1

H
, ,

1

1
ˆ ˆ ˆ ˆ 0

ˆ ˆ0  0

L L

i l i l i i l i l i i
l li

i L

i l i l i
l

q q s if q q s
Ls

if q q s


 




  


 
  


 


 (28) 

Let 
T

1 2, , , K        γ  . In the  1 -tht   iteration, we need to identify the update of 

which hyper-parameter makes the biggest contribution to the maximization of  Γ . The 

serial number of the corresponding hyper-parameter is j . Compared with other hyper-

parameters, the update of the hyper-parameter j  makes the biggest contribution to the 

maximization of  Γ . Therefore, j  can be selected by the following equation 

   
,1 ,1

arg max arg max i i
i i K i i K

j  


   

  Γ    (29) 

where, herein  diagΓ γ  and     T

1 , , , ,
t t

i K     γ   .  
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In (29), ,i i   need to be calculated in each iteration. To improve efficiency, we de-

fine 

                t t t

i i i i i i i ii       
          Γ           (30) 

Equation (29) can be simplified as the following equation since   tΓ  is a constant 

in the  1 -tht   iteration. 

           
,1 ,1 ,1

argmax argmax argmax
t t

i i
i i K i i K i i K

j i i  

     

      Γ     (31) 

Compared with (29), it is more convenient to select j  with (31) and    ,  
t

i i   

been calculated in the last iteration. If j  has been identified, replace j  with j
  while 

fixing  |1 ,i i K i j    . 

 1t

j j    (32) 

   1 ,   1 ,t t

i i i K i j       (33) 

As mentioned in the introduction, we select the atoms that are in the clutter subspace 

and reserve these atoms in the new dictionary. Therefore, the non-zero values in γ  are 

reserved in Ω  and the corresponding atoms are reserved in the new dictionary ψ . 

 
1 2

diag , , ,
J    Ω    (34) 

1 2
, , ,

J  
  ψ ν ν ν   (35) 

where J  is the number of atoms in ψ  and 

   1 2, , , |1 ,  0J ii i K        (36) 

We initialize  0
γ 0 , namely,  0  Ω  and  0

 ψ  at the beginning of the pro-

posed algorithm. With the knowledge of  t
j  and  1t

j
 , an efficient sequential addition 

and deletion of dictionary atoms can be taken to estimate  1tψ  and  1tΩ . If   0t

j   

and  1 0t

j
  ,    1 [ , ]t t

j

 ψ ψ ν  and  
 

 

1

1

t

t

t

j





 
  
  

Ω
Ω ; if   0t

j   and  1 0t

j
  , 

   1t t
ψ ψ  and replace  t

j  with  1t

j
  in  tΩ ; if   0t

j   and  1 0t

j
  , delete jν  

from  tψ  and delete  t
j  from  tΩ ; if   0t

j   and  1 0t

j
  , stop iteration because 

 Γ  has already converged. 

4.3. Fast Computation of  ,
ˆ ˆ,i i ls q  

Calculating the matrix inversion of ,  i i C  brings a heavy computational load 

when  ,
ˆ ˆ,i i ls q  are updated. Fast computation of  ,

ˆ ˆ,i i ls q  is introduced as follows. 

Define 

H 1 H 1
,  i i i i l i ls q ν C ν ν C x ，  (37)

It is computationally efficient to calculate  ,
ˆ ˆ,i i ls q  with  ,,i i ls q  because it is more 

convenient to calculate the matrix inversion of only C  than that of all ,  i i C . 

With (20), we can obtain 
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Thus, îs  can be calculated with is . 

ˆ
1

i
i

i i

s
s

s



 (39) 

Similarly, ,
ˆ
i lq  can be also calculated with ,i lq . 

  ,

, ,
ˆ ˆ1

1

i l

i l i i i l

i i

q
q s q

s



  


 (40) 

To further improve the computational efficiency, we introduce the following ap-

proach to reduce computational complexities of  ,,i i ls q . With  ,Ω ψ , (15) can be also 

expressed as 

2 H
MN C I ψΩψ  (41) 

Define 2   , and calculate  ,,i i ls q  with matrix inversion lemmas. 

H 2 H H
i i i i is   ν ν ν ψΣψ ν  (42) 

H 2 H H
,i l i l i lq   ν x ν ψΣψ x  (43) 

where Σ  herein represents the covariance of ,l lχ . ,l lχ  is defined as the elements in 

,l la  whose corresponding hyper-parameters are non-zeros in the current iteration. 

 
12 H 1+

 Σ ψ ψ Ω  (44) 

The mean of ,l lχ  is expressed as 

2 H ,   l l l  μ Σψ x  (45) 

With (42)~(45), we utilize  
 

,, , ,
t

i i l ls q Σ μ  calculated in the -tht  iteration to update 

 
 1

,, , ,
t

i i l ls q


Σ μ  in the  1 -tht   iteration, which improves the computational efficiency. 

The updated formulas are listed in Appendix A. 

4.4. Calculation of the STAP Filter Weight Vector 

The CNCM R  can be estimated by 

2 H 2
,

1 1

1
i i

L J

i l
l iL

  
 

 R υ υ Ι  (46) 

where 1   is a load factor.  

The optimal STAP weight vector can be given by 

1
t

H 1
t t





R s

w
s R s

 (47) 

where ts  is the steering vector of the target. 
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The proposed algorithm is shown in Algorithm 1. To reduce storage load, we do not 

store D . When traversing the -thi  grid, we use Formula (7) to generate the correspond-

ing space-time steering vector. 

Algorithm 1. Pseudocode for the proposed algorithm. 

Step 1: Input: the data X, 2 . 

Step 2: Initialize:  0 γ 0 , 2
i MN C C I , and  0  Ω ,  0  ψ . 

Step 3: While not converged do 

Obtain all ,i i    by (28), and exploit (31) to find -thj  hyper-parameter which 

needs to be updated in the current iteration. 

If  1 0t

j
   and   0t

j  , 

   1 [ , ]t t

j

 ψ ψ ν , and  
 

 

1

1

t

t

t

j





 
  
  

Ω
Ω . 

If  1 0t

j
   and   0t

j  , 

   1t t ψ ψ , and replace  t
j  with  1t

j
 . 

If  1 0t

j
   and   0t

j  , 

delete jν  from  tψ , and delete  t
j  from  tΩ . 

end 

Update  , ,   ,   ,  ,  i i ls q iΣ μ  referring to Appendix A. 

end while  

Step 4: Estimate the CNCM R  by (46) 

Step 5: Compute the space-time adaptive weight w  using (47). 

Step 6: The output of the space-time filter is Hw X . 

5. Analysis of Complexity, Storage and Convergence 

5.1. Complexity Analysis 

To reflect the low computational complexity of the proposed algorithm, some MMV 

SR-STAP algorithms, including the multiple focal underdetermined system solver (M-FO-

CUSS) and the M-SBL, are utilized as a comparison with the proposed algorithm. The 

number of multiplications for a single iteration is utilized as a measurement of the com-

putational complexity. The dimension of ψ  is MN J  and J  is not fixed in each iter-

ation. Because of the sparsity of clutter, J MN . Suppose that J  is equal to twice the 

rank of clutter when comparing the computational complexity of different algorithms in 

the simulations. The computational complexities of different algorithms are summarized 

in Table 1. For convenience, we set s d  , and define 

s d    (48) 

Table 1. The computational complexity for a single iteration. 

Algorithm Computational Complexity 

M-FOCUSS     3 2
2o MNKL MN MN K   

M-SBL     3 2 22o MNKL MN MN K MNK    

the proposed algorithm   22o MN MNJ J L K     
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Figure 1 illustrates the function of the computational complexities to   in the side-

looking radar case. In the simulations, 10M N  , 6L   and PRF4 / 1v f   . From 

Figure 1, the computational complexity of the proposed algorithm is far less than that of 

the M-FOCUSS and the M-SBL algorithm. 

 

Figure 1. Computational complexity versus   for a single iteration. 

5.2. Storage Analysis 

In order to reflect the low storage requirement of the proposed algorithm more intu-

itively, we compare the proposed algorithm with the M-SBL algorithms. We need to store 
MN KD   and K KΓ   in the M-SBL algorithm while we store MN Jψ  , J JΩ   

in the proposed algorithm. In the M-SBL algorithm, the dimension of Σ  in (12) is K K  

and the dimension of lμ  in (13) is 1K  . However, in the proposed algorithm, the di-

mension of Σ  in (44) is J J  and the dimension of lμ  in (45) is 1J  . For example, 

when 10M N   and s d 20   , d s 40 000K M N   ， . In this case, the storage load 

in the M-SBL algorithm is heavy. Because of the sparsity of clutter, we can observe that 

100J MN  . The storage load in the proposed algorithm is far less than the M-SBL al-

gorithm. 

5.3. Convergence Analysis 

According to [32],  Γ  has an upper bound. We can conclude from (27) and (28) 

that        1t t

j j j        and      1
,

t t
t


 Γ Γ  .  Γ  has an upper bound 

while it is also a monotonically increasing function, which means the proposed algorithm 

converges. 

6. Performance Assessment 

In this section, we verify the performance of the proposed algorithm and the other 

SR-STAP algorithms with the simulated data. The parameters of the airborne radar system 

are listed in Table 2. The SR-STAP algorithms for comparison are the M-FOCUSS and the 

M-SBL. We utilize the improvement factor (IF) as the measurement of performance. 
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Table 2. Parameters of airborne radar system. 

Parameters Symbols Value 

Distance between elements d  0.15 m 

Wavelength   0.3 m 

Platform height H  9000 m 

Number of pulses M  8 

Number of channels N  8 

Pulse repetition frequency PRFf  2000 Hz 

Range sampling frequency sf  2.5 MHz 

Clutter to noise ratio CNR  40 dB 

6.1. Comparison of Clutter Spectrums Estimated by SR-STAP Algorithms 

Clutter spectrums estimated by the proposed algorithm and other SR-STAP algo-

rithms are compared in the absence and presence of off-grid problems. We consider three 

different cases: (i) A side-looking radar without off-grid problems (the platform velocity 

is 150 m/s and 1  ); (ii) a side-looking radar with off-grid problems (the platform ve-

locity is 180 m/s and 1.2  ); (iii) a forward-looking radar (the platform velocity is 180 

m/s). When off-grid problems occur, the effects of off-grid problems are mitigated by in-

creasing the value of  . We also set 15   and 25   in the M-FOCUSS and M-SBL 

algorithms. However, either their running time is far beyond our acceptable range, the 

computer crashes, or their results are wrong because of the RIP condition. Therefore, their 

results are not shown when 15   and 25  . 

(i) A side-looking radar without off-grid problems 

We compare the high-resolution spectrum estimated by the M-FOCUSS, the M-SBL, 

and the proposed algorithm. In the absence of off-grid problems, the value of   can be 

set to an integer between 2 and 5. In the experiment, 5  . From the below figures in 

Figure 2, the clutter spectrums estimated by the M-SBL and the proposed algorithms are 

close to the ideal clutter spectrum in terms of the power and location of the clutter, which 

indicates the exact clutter power can be estimated by the proposed algorithm.  

  
(a) (b) 
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(c) (d) 

Figure 2. Comparison between the clutter angle-Doppler spectrum estimated by different algo-

rithms for a side-looking radar without off-grid problems. (a) Ideal clutter spectrum; (b) M-FO-

CUSS, 5  ; (c) M-SBL, 5  ; (d) the proposed algorithm, 5  . 

(ii) A side-looking radar with off-grid problems 

Considering that the radar is a side-looking radar with off-grid problems, we set   

equal to 5, 15, and 25, respectively. When 15   or 25   in the M-FOCUSS and M-

SBL algorithms, either their running time is far beyond our acceptable range, or the com-

puter crashes, or their results are wrong because of the RIP condition. Therefore, their 

results are not shown when 15   and 25  . From the below figures in Figure 3, the 

clutter spectrum estimated by the proposed algorithms is close to the ideal clutter spec-

trum in terms of the power and location of the clutter when 25  , which indicates that 

the exact clutter power can be estimated by the proposed algorithm with sufficiently 

dense grids. The experiment shows that the proposed algorithm can effectively mitigate 

the off-grid effects. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 3. Comparison between the clutter angle-Doppler spectrum estimated by different algo-

rithms for a side-looking radar with off-grid problems. (a) Ideal clutter spectrum; (b) M-FOCUSS, 

5  ; (c) M-SBL, 5  ; (d) the proposed algorithm, 5  ; (e) the proposed algorithm, 15  ; 

(f) the proposed algorithm, 25  . 

(iii) A forward-looking radar. 

Considering that the radar is a forward-looking radar, we set   equal to 5, 15, and 

25, respectively. From the below figures in Figure 4, the clutter spectrum estimated by the 

proposed algorithms is close to the ideal clutter spectrum in terms of the power and loca-

tion of the clutter when 25  , which indicates that the exact clutter power can be esti-

mated by the proposed algorithm with sufficiently dense grids. The experiment shows 

that the proposed algorithm can effectively mitigate the off-grid effects. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Comparison between the clutter angle-Doppler spectrum estimated by different algo-

rithms for a forward-looking radar. (a) Ideal clutter spectrum; (b) M-FOCUSS, 5  ; (c) M-SBL, 

5  ; (d) the proposed algorithm, 5  ; (e) the proposed algorithm, 15  ; (f) the proposed 

algorithm, 25  . 

6.2. Comparison of IF Curves with SR-STAP Algorithms 

In this experiment, we compare the clutter suppression performance of the proposed 

method with the M-FOCUSS and the M-SBL algorithms in the presence and absence of 

off-grid problems. Furthermore, we also consider the ideal case and the non-ideal case. 
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Amplitude Gaussian error (standard deviation 0.03) and phase random error (standard 

deviation 2°) are different in all directions in the non-ideal case. 

(i) A side-looking radar without off-grid problems 

In the absence of off-grid problems, the value of   can be set equal to 5. From Figure 

5, we note that the IF curves obtained by the M-SBL and the proposed algorithms are both 

close to the optimal IF curves obtained by the exact CNCM, which indicates that two al-

gorithms can recover more exact clutter sources. The experiment shows that the proposed 

algorithm can also obtain good performance in the absence of off-grid problems. 

  
(a) (b) 

Figure 5. IF versus normalized Doppler frequency for a side-looking radar without off-grid prob-

lems. (a) Ideal case; (b) non-ideal case with array errors. 

(ii) A side-looking radar with off-grid problems 

Considering that the radar is a side-looking radar with off-grid problems, we set   

equal to 5, 15, and 25, respectively. From Figure 6, we find that increasing   can effec-

tively improve the clutter suppression performance in the presence of off-grid problems. 

When 25  , the IF curves obtained by the proposed algorithm are higher and narrower 

than the other IF curves. The experiment shows that the proposed algorithm can effec-

tively mitigate the off-grid effects. 

  
(a) (b) 

Figure 6. IF versus normalized Doppler frequency for a side-looking radar with off-grid problems. 

(a) Ideal case; (b) non-ideal case with array errors. 

(iii) A forward-looking radar 
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Considering that the radar is a forward-looking radar, we set   equal to 5, 15, and 

25, respectively. From Figure 7, we find that increasing   can effectively improve the 

clutter suppression performance in the presence of off-grid problems. When 25  , the 

IF curves obtained by the proposed algorithm are higher and narrower than the other IF 

curves. The experiment shows that the proposed algorithm can effectively mitigate the 

off-grid effects. Theoretically, as long as the grid points are dense enough, the off-grid 

problems can be solved with the proposed algorithm. 

  
(a) (b) 

Figure 7. IF versus normalized Doppler frequency for a forward-looking radar. (a) Ideal case; (b) 

non-ideal case with array errors. 

6.3. Comparison of Running Time with SR-STAP Algorithms 

The symbol   represents the running time is far beyond our acceptable range (1 

hour) or beyond the capacity of the computer. We consider three different cases: (i) A side-

looking radar without off-grid problems, (ii) a side-looking radar with off-grid problems, 

and (iii) a forward-looking radar. The running time of the algorithm is not only affected 

by the convergence performance of the algorithm itself, but also the computational com-

plexity and the burden of the storage on the computer. The computer in the simulations 

is equipped with Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz 2.29GHz. The running time 

of the proposed algorithm in Tables 3–5 is far less than the traditional SR-STAP algo-

rithms, especially when dense grids are exploited. One hundred Monte Carlo trials were 

performed to obtain the average running time. 

(i) A side-looking radar without off-grid problems 

Table 3. Running time of different algorithms for a side-looking radar without off-grid problems. 

Algorithm The Average Running Time (s) 

M-FOCUSS 1.05 

M-SBL 26.32 

the proposed algorithm 0.88 

(ii) A side-looking radar with off-grid problems 

Table 4. Running time of different algorithms for a side-looking radar with off-grid problems. 

Algorithm 
The Average Running Time (s) 

=5   =15   =25   

M-FOCUSS 1.13 72.23   
M-SBL 29.79     

the proposed algorithm 1.06 3.36 12.14 
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(iii) A forward-looking radar 

Table 5. Running time of different algorithms for a forward-looking radar. 

Algorithm 
The Average Running Time (s) 

=5   =15   =25   

M-FOCUSS 1.02 64.14   
M-SBL 30.62     

the proposed algorithm 1.05 4.03 12.94 

7. Conclusions 

A novel SR-STAP algorithm is proposed to mitigate off-grid effects. The proposed 

algorithm is based on the Bayes criterion and mitigates off-grid effects when the grid in-

terval is sufficiently small. We pick out which atoms are in the subspace of clutter, which 

means the proposed algorithm does not need to satisfy the restricted isometry property 

(RIP) condition. Moreover, the complexity and storage requirement of the proposed algo-

rithm is low, and its convergence can be promised. 
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Appendix A 

In order to make the following formulas more intuitive and concise, we remove  t  

from quantities in the -tht  iteration, and updated quantities in the  +1 -tht  iteration are 

denoted by a tilde ( ~ ). As stated in the text, j  represents the serial number of the hyper-

parameter that needs to be updated in the  +1 -tht  iteration. j  also represents the posi-

tion index of jν  in D . When jν  is already in ψ , g  is defined as the position index of 

jν  in ψ . 

1. When 0  &&  0j j   , 
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2 H H ,   i i i j j is s z i  ν e e ν  (A4) 

H
, , , ,   i l i l i l i jq q zq i  ν e  (A5) 

where  
11

j jz s
   and H

j j j e ν ψΣψ ν . 
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3. When 0  &&  0j j   , 
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