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Abstract: In this paper, with the aim of performing joint multi-target localization and discrimination 

tasks, a performance-driven resource allocation scheme is proposed. In the first, by establishing the 

signal model under deception jamming and utilizing the maximum likelihood (ML) estimator, the 

estimation information of targets can be obtained. Secondly, the Cramer–Rao lower bound (CRLB) 

for the transmit antenna selection and power allocation is derived. Then, to fully utilize the differ-

ence in spatial distribution between true and false targets, a false target discriminator based on the 

CRLB of the distance deception parameter is utilized. By introducing the nondimensionalization 

mechanism, we build an optimal objective function of target localization error and discrimination 

probability. Subsequently, a joint multi-target localization and discrimination optimization model 

has been established, which is mathematically a non-smooth and non-convex problem. By introduc-

ing an auxiliary variable, we propose a three-step solution strategy for solving this problem. Simu-

lation results demonstrate that the proposed algorithm can improve the performance of joint local-

ization accuracy and discrimination ability (JLADA) by more than 30% compared with the algo-

rithms only for localization or discrimination. Meanwhile, by utilizing the proposed algorithm, the 

composite indicators of JLADA can decrease more than 70% compared with the uniform allocation 

scheme. 

Keywords: MIMO radar with distributed antennas; deception jamming; target localization; target 

discrimination; antenna selection; power allocation; non-convex optimization; CRLB 

 

1. Introduction 

By combining information from multiple nodes, the multiple radar system (MRS) can 

fully benefit from the advantages of multi-angle observation and increased area coverage, 

enabling stronger ability in detecting and locating targets for defense purposes [1]. As a 

typical representative of the MRS, based on the “defocused transmit and focused receive” 

(DTFR) mode [2], the distributed multiple-input multiple-output (MIMO) radar system 

has high spatial diversity gain, structure diversity gain [3], polarization diversity gain [4] 

and waveform diversity gain [5]. In theory, although the MIMO radar system has superior 

detection and parameter estimation capabilities, the physical resources and the hardware 

resources in the system are often finite, which becomes the main obstacle that limits the 

potential of MIMO radar. Generally speaking, when more antennas and higher transmit 

power budget are involved in the fixed radar system, the better performance of detection 

and parameter estimation can be obtained [6]. However, too many active antennas require 

a lot of data transmission and can cause a heavy computational burden to the fusion cen-

ter. Furthermore, the most radar systems can only provide finite power resource due to 
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hardware limitations. Therefore, in order to increase the potential of the distributed 

MIMO radar system, the antenna selection or power allocation problem has been studied 

in [3,5–13]. These studies seem to be fruitful for the resource allocation in MIMO radar, 

however, to the best of our knowledge, the resource allocation problem of simultaneously 

multiple tasks application under deception jamming has not been studied. Moreover, the 

powerful multi-direction observation ability and parameter identification ability of the 

distributed MIMO radar can bring strong anti-active jamming capability. In this case, it is 

of practical significance to study the resource allocation problem of the distributed MIMO 

radar under deception jamming. 

So far, the resource-aware design for distributed MIMO radar has been studied in 

numerous literatures. Aiming at exploiting the available resources to improve radar ca-

pability for different tasks, the resource-aware design can be generally classified into four 

categories: target detection [7–8], target localization [5,9–11], target tracking [3,6,12] and 

target imaging [13]. The first category is aimed at improving the detection performance of 

the distributed MIMO radar system. Based on the Neyman–Pearson detector, [7] studies 

the joint antenna placement and power allocation problem by using a waterfilling-type 

algorithm at the output of detector. Moreover, by introducing relative entropy, the joint 

transmit antenna selection and illumination time allocation have been studied in [8]. In 

the second category, the power allocation problem for target localization in the distributed 

hybrid noncoherent active-passive radar networks based on the radio frequency stealth 

background has been studied in [5]. The power allocation problem for single target local-

ization has been studied in [9,10], which address the multi-target localization scenarios, 

and further propose the joint power and bandwidth allocation scheme. To improve re-

source utilization efficiency for target localization, an optimization scheme integrating 

power allocation, bandwidth allocation, and radar node selection has been established in 

[11]. In the third category, with the objective of improving the worst tracking accuracy 

with multiple targets, [3] proposes a receive-beams assignment scheme for multi-target 

tracking. Another study [6] proposes a standard joint subarray selection and power allo-

cation scheme for tracking multiple targets in the large-scale distributed MIMO radar net-

works under clutter environments. By deriving the predicted conditional Cramer–Rao 

lower bound (CRLB), a joint node selection and power allocation scheme are developed 

in [12]. In the target imaging category, the heuristic multi-resource allocation algorithm 

for imaging problems has been proposed in [13]. 

In the above literature, the optimization models are established under different task 

scenarios, and corresponding solving strategies are proposed. In general, it can be seen 

from the above literatures that the resource management problem in the distributed 

MIMO radar is usually multidimensional and non-convex, and it is difficult to obtain a 

global optimal solution even in the single task scenarios. Additionally, it should be noted 

that most of the existing literature focuses on resource allocation in the execution process 

of a certain task, while the multi-task cases are rarely involved. However, in military op-

erations, the radar system is often required to perform multiple functions simultaneously. 

Evidently, in the multi-task collaborative scenarios, an increase in task complexity will 

increase the difficulty of solving the optimization model. In addition, previous studies on 

resource management have typically been conducted under ideal electromagnetic condi-

tions, while there has been very limited research on jamming environments. Generally 

speaking, when target echoes are accompanied by deception jamming, the authenticity of 

the target needs to be discriminated. Since the discriminator must be built before resource 

allocation tasks can be performed, the previous resource-aware design strategies cannot 

be directly applicated. However, to the best of our knowledge, studies on resource-aware 

designs of anti-deception jamming are quite limited, and a resource-aware design in 

multi-task cases under deception jamming has not been found. 

In this paper, we propose a transmit antenna selection and power allocation scheme 

for joint multi-target localization and discrimination in the MIMO radar with distributed 

antennas under range deception jamming. In this scheme, we firstly establish the signal 
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model under range deception jamming and derive the Cramer–Rao lower bound (CRLB) 

[14] of target position and deception distance. Then, by calculating the CRLB of deception 

distance parameter, we build a false target discriminator based on the Chi-square test. 

After that, by adopting the nondimensionalization mechanism, we establish a transmit 

antenna selection and power allocation optimization model for multi-target localization 

and discrimination. Finally, since the formulated optimization model is non-smooth and 

non-convex, we propose a three-step solution method based on the convex relaxation 

technique and the particle swarm optimization (PSO) algorithm to obtain the effective 

suboptimal solution of the original problem. 

The main contributions are summarized as follows. 

(1) The optimization model of joint multi-target localization and discrimination in the 

distributed MIMO radar is established. At first, a false target discriminator based on 

probability is constructed by using the CRLB of range deceptive parameter estima-

tion. Then, combined with a nondimensionalization mechanism, localization accu-

racy and discrimination probability (DP) are de-dimensionalized and normalized to 

simplify the optimization problem. Finally, the optimization model of joint multi-

target localization discrimination is established by introducing two task assignment 

parameters. In this case, the original multi-objective optimization problem is trans-

formed into a single objective optimization problem, which reduces the difficulty of 

the solving process. 

(2) An effective three-step solving algorithm which combines the relaxation technique 

and the sorting algorithm is proposed for solving the optimization model. Since the 

formulated optimization model is non-convex and non-smooth, it is hard to find a 

global solution. The proposed solving algorithm relaxes the original problem by 

taking the product of transmit antenna selection variable and the corresponding 

power allocation result as an auxiliary variable. Furthermore, by adopting the sort-

ing algorithm and the particle swarm optimization (PSO) algorithm, we obtain the 

final resource allocation results. 

(3) A unified resource allocation mechanism in the distributed MIMO radar under de-

ception jamming is developed. Considering the range deception jamming environ-

ment in the mission region, we establish the system model under deception jam-

ming and derive the CRLB for range deceptive jamming parameter estimation. In 

this case, an effective technique for solving radar resource management under de-

ception jamming environment is formulated. 

The paper is organized as follows. The data processing mechanism is described in 

Section 2. The derivation of CRLB is presented in Section 3. In Section 4, we introduce a 

false target discriminator and subsequently formulate the joint multi-target localization 

and discrimination model. Then, a three-step-based solving algorithm is given. Moreover, 

the experiments and results are presented in Section 5. Section 6 concludes this paper. 

2. Data Processing Mechanism 

Assume that the entire region of interest (ROI) exists with 2Q   targets, and each 

target is widely separated. We consider that a narrowband MIMO radar with distributed 

antennas consists of M  transmit antennas and N  receive antennas, and is located in 

Cartesian 2-D space. Denote the entire sets of transmit antennas and receive antennas by 

sets {1, 2,..., }M  and {1,2,..., }N , respectively. The mth transmit antenna and 

the nth receive antenna are located at t t( , )m mx y  and r r( , )n nx y , where m  and n 

. Let T 2[ , ]q q qx y   denote the real position of target q, where {1,..., }q Q  . Then, 

suppose that the targets are sufficiently dispersed, and only one target exists within each 

transmit beam. Hence, each transmit antenna can be used to illuminate only one target. 
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2.1. Signal Model 

Each antenna transmits the orthogonal frequency-division multiplexing (OFDM) 

pulse signal [15], with a normalized equivalent ( )ms t , which satisfies that [9]: 

H 0,  
d

1,   .
( ) ( )m m

m m
t

m m
s t s t 













 


    (1)

where m  , m    and the term of H( )  denotes the conjugate transpose opera-

tor. To counter radar detection, the self-defense jammer equipped on the real target im-

plements jamming by delaying and retransmitting transmit signals [16]. For the qth target 

which is illuminated by the mth transmit antenna, the false target can be constructed by 

introducing the deceptive distance qd . Hence, the baseband representation of the re-

ceived signal reflected by the qth target via the ( , )m n  path can be expressed as [17]: 

     ,
t t J

, , , , , , , , , ,m m nm n q m n q m q m m n q m n qr P h s w tt u t      (2)

where t
,m qu  is a binary variable and is defined as: 

t
,

if the th transmit antenna is selected to illuminate the th target

else

1,    
,

0,   
m q

m q
u


 


 (3)

t
mP  denotes the transmit power from the mth transmit antenna. The term of

t r
, ,

2
, , 1 / ( )m q n qm n q R R   represents the attenuation in the signal strength due to the bistatic 

path loss effects. t
,m qR  and r

,n qR  denote the range from the mth transmit antenna to the 

qth target and the range from the nth receive antenna to the qth target, respectively. More-

over, t
,m qR  and r

,n qR  are given by: 

   

   

2 2t
,

2 2r
,

t t

r r

.
m q q q

n q q q

m m

n n

R x x y y

R x x y y

   

   







 (4)

Herein, , ,m n qh  is modeled as a known complex gain of target reflectivity. The term 

of , ( )m nw t  is the zero-mean white complex noise, which satisfies that 2
, ( ) CN(0, )m n ww t    . 

J
, ,m n q  is the superposition of the real target time-delay and the active deception time-de-

lay, given by: 

 J t r
, , , , ,m n q m q n q qR R d c      (5)

where the term of c  represents the speed of light. It should be noted that a real target is 

detected when 0qd  , while a false target is detected when 0qd  . Therefore, for the 

same illuminated target, the spatial resolution cells (SRCs) of jamming signals and the real 

target echoes could be mixed in space, which is demonstrated in Figure 1. 
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Figure 1. Diagram of the SRCs with target echoes and jamming signals. 

In summary, based on the above assumptions and analysis, the intuitive process of 

multi-target detection in the presence of the self-defense range deception jamming signals 

can be shown in Figure 2. 

Δ qd
Δ qd

Δ wd
Δ wd

 

Figure 2. Intuitive process of multi-target detection under self-defense range deception jamming. 

2.2. Parameter Estimation 

After obtaining the target echoes, it is necessary to extract the target measurement 

information by the parameter estimation method. Herein, we adopt the maximum likeli-

hood (ML) estimation method to estimate the target parameters. Assume that all the tar-

gets are sufficiently dispersed in space, and each transmit beam only covers one target. In 

this case, multi-target detection problem can be converted into a series of independent 

single target detection problems. After signal processing and matching filtering, we can 

obtain an 1MN   sampling matrix of all the receive signal from the qth target, which is 

given by T
1,1, 2,1, , , , ,[ ], ,..., ,...,q q q m n q M N qr r r rr . 

According to the receive signal model, the conditional probability density function 

(PDF) ( | )q qp r  could be calculated as: 

 
 

    2
t t J

, , , , , , , , ,2
1 12 2

1 1
exp  d .

N M

q q m n q m n q m q m m n q m m n qMN
n mw

w

r tp u P h s t t 


  


    


 



 r  
(6)

Then, the ML estimator for q  can be calculated by: 
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    

   

ML

t t J
, , , , , , , , ,

1 1

ˆ arg max ln

             arg

                         

max d .

q

q

q q q

N M

m n q m n q m q m m n q m m n q
n m

p

r t u P h s t t 
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



  

   
    

   
   





 r

 (7)

Therefore, the location of target q can be estimated by (7). For a MIMO radar system, 

since a closed-form solution for (7) is not available [3], a numerical search method is re-

quired. Here, we utilize a low-complexity approximate ML estimator to obtain the exact 

solution to (7); the details are shown in [18]. 

3. Derivation of Estimation Performance Metric 

Given any unbiased estimator, the CRLB can provide a tight lower bound, and has 

been proven to be very close to the target state estimation error on the high signal/noise 

ratio (SNR) condition [19]. In this section, we derive the joint CRLB of the target position 

integrated with the corresponding deceptive distance parameter. 

Even though ML
ˆ{ }q  can be obtained by the ML estimation method, the estimated 

position vector ˆ q  could be inaccurate in the presence of the self-defense range deception 

jamming ( 0qd  ). Moreover, in practice, this phenomenon of the mixed SRCs in Figure 

1 might be interpreted as the inaccurate DOA estimation problem caused by the radar 

itself, e.g., receiving beamwidth and angle measuring accuracy error. In this case, it is im-

portant to evaluate the existence of deception jamming signals by estimating the deceptive 

distance parameter qd . According to (2) and (5), we define an extended location state as 

T[ , , ]q q q qx y d  . In this case, the unbiased estimate of q  satisfies that [20]: 

     
T -1ˆ ˆ ,

q
q q q q q   

  
    J  (8)

where ( )qJ  denotes the fisher information matrix (FIM), whose inverse is the CRLB, and 

( )qJ  can be expressed as [11]: 

     
T

log log ,
q q

q q q q q

q q

p p
 


 

     
    
        


  

 
r

J r r  (9)

where ( | )q qp r  represents the conditional PDF with respect to qr  under condition q . 

According to (6), it can be known that ( | )q qp r  is both an explicit function of J
, ,m n q  and 

an implicit function of q , where m  and n  . Then, a vector is defined as 

J J J J J T
1,1, 2,1, , , , ,[ , , ..., , ]q q q m n q M N q    . Based on the chain rule, ( )qJ  can be rewritten as [21]: 

     
TJ .q q q q   J J  (10)

Since the derive process of J( )qJ  can be seen in [9], it is not repeated for simplicity. 

The Jacobian matrix q  is given by: 

t r t r t r
1, 1, 1, 2, , ,J
t r t r t r
1, 1, 1, 2, , ,

1

1 1 1

,

q q q q M q N q

q
q q q q q M q N q

q

a a a a a a

b b b b b b
c

   
 

      
    

  











 (11)

where t t
, ,

t( ) /m q q m qma x x R  , t t
, ,

t( ) /m q q m qmb y y R  , r r r
, ,( ) /n q n q n qa x x R  , and 

r r r
, ,( ) /n q n q n qb y y R  . Combined with (8)–(11), the CRLB for the qth target is expressed as: 
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where t t t t T
1, 2, ,[ , , ..., ]q q q M qu u uu , Tt t t

t 1 2[ , ..., ], MP P PP , and ,m q  is a third-order square ma-

trix. All the elements in matrix ,m q  are expressed as  
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Herein, m  denotes the effective bandwidth of the transmit signal ( )ms t . From (12), 

it should be noted that all the elements in CRLB
q  are inversely proportional to transmit 

power tP . Moreover, since 2 2
CRLB 1,1 CRLB 2,2( ) ( )

q q

q q
x y     , where 2

qx  and 2

qy  repre-

sent the mean square errors (MSEs) of target q for the position estimator on the X-direction 

and the Y-direction. After some additional matrix manipulations, the MSE of target q for 

locating estimator is bounded below: 

     

     

 

T T T2 2 T 33 11 22 13 31 32 23

2

t
LE t CRLB CRLB

1,1 2,2

T
8

                   .
det

w q q q q q q q q q

q q q
q

q q

c 





 

  
  



 

        

 
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 (14)

Herein, t t
q q  u P , where the term of   denotes the Hadamard product opera-

tor. q  is defined as T
1, ,[ , ..., ]q q M q   , and ij

q  represents a 1M   vector, which is de-

fined as T
1, ,[ , ..., ]ij ij ij

q q M q  , for , {1, 2,3}i j  . det( )  is the determinant operator. 

4. Optimization Model and Solution Strategy 

In general, the better localization accuracy indicates a more reliable radar system in 

practice. In this case, to attain the higher level of localization accuracy or low probability 

of intercept (LPI), the radar systems aim to allocate resources in a way that maximizes 

localization accuracy with the given resource budget [10] or minimizes transmitter power 

with the constraints of predetermined target detection performance [22]. 

Nevertheless, in reality, the higher localization accuracy of the radar system is not 

always better, especially when the detected target is a false one. This phenomenon also 

appears in the multiple radar system, which can prevent the effectiveness of the spatial 

diversity gain. The process can be intuitively shown in Figure 3, in which the abbrevia-

tions of RTSRC and FTSRC denote the real target SRC and the false target SRC, respec-

tively. As a result, when locating multiple targets, it is necessary to discriminate the au-

thenticity of each target simultaneously in order to improve resource utilization. 
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Figure 3. Target detection mechanism under range deception jamming. 

4.1. False Target Discriminator 

In practice, the distance spoofing parameter qd  is an effective basis for identifying 

the real target and the false target in the presence of range deception jamming [14]. In 

theory, with the existence of estimation errors, the estimate result of qd  can be seen a 

random variable, which satisfies that 2ˆ N( , )
q

q q dd d   , where 2

q
d  denotes the MSE of 

distance spoofing estimator of the qth target. According to (12) and (13), the CRLB of 2

q
d  

can be computed as: 

 
   

 

T T2 2 T 11 22 32 21

2

2

t
t T8

.
detq

w q q q q q q

d q

q q

c 









 
       

 
u , P  (15)

Based on the Neyman–Pearson theory, we utilize ˆ
qd  as the statistical discrimina-

tor, and the binary hypotheses, 0
q  real target and 1

q  false target, given by [14]: 

 

2 2 2
10

2 2 2 2 2
11

ˆ:

ˆ: .

q

q q

q
q d

q
q qd d

d

d d

 

  



 



 








 (16)

Herein, the term of 2
1  denotes the chi-square distribution with one degree of free-

dom, and 2 2
1

2
( / )

q
dqd   represents the noncentral chi-square distribution with one de-

gree of freedom. Assume that the expected real target’s DP is set as RT 0 0{ | }q q q    , and 

then the identification threshold of the proposed discriminator is 2

1

1
RT( )

q
q 

 
   , where 

2

1

1 ( )


   denotes the inverse cumulative distribution function of 2
1 . In this case, the theo-

retical DP of the active false target can be expressed as: 

       2 2
1

2FT 1 1tt 1, ,
dqq

q

q q q
qd

q
 




  u P      (17)

where 2 2
1

2( / )
( )

dqq
qd 




  is the cumulative distribution of 2
1 . 

4.2. Problem Formulation 

Due to the effect of the range deception jamming signal, radar should consider both 

target localization accuracy and the relevant DP. In this case, in the detection process for 

the qth target, LE
q  and FT

q  must be taken into account in guiding resource allocation. 

Theoretically, the value ranges of LE
q  and FT

q  are [0, ]  and [0,1] , respectively. 

Since they have different dimensions, it is difficult to discuss the localization performance 

and the discrimination performance under the same framework. 
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To balance the effects of different dimensions of the two performance parameters, we 

introduce a nondimensionalization mechanism. The specific calculation process is given 

as follows: 

Step 1: Let LE max[0, ]q   , for q  . Herein, max  is a given upper bound, 

which is computed by T t
max LE min

1,2,...,
max { ( , )}q

M
q Q

 1 P  , where the vector 

t t t t T
min min,1, min,2 min,[ ,..., ]MP P PP  denotes the minimum power required to maintain the essen-

tial signal-to-noise ratio (SNR) condition for detecting the target. 

Step 2: Let LE LE max/q q   , for q  . In this case, the normalized CRLB of the 

localization estimation satisfies that LE [0,1]q  , for q  . 

Step 3: Considering that the localization performance is better when the value of 

LE
q  is smaller, while radar the discrimination performance improves with a larger FT

q . 

In this case, we reset FT
q  is as FT FT1q q   , thus FT [0,1]q  , for q  . 

After that, the optimization model for localization accuracy and DP can be devel-

oped. For the multi-target scenario, the overall performance is considered in this paper, 

thus the objective function of antenna selection and power allocation can be expressed as: 

      FTt t LE t t t t
1

, , , .q
Q

q q q
q q

q

 


  U P u P u P   (18)

The terms of q  and q  jointly constitute the task assignment result for the qth tar-

get, and are defined as: 

 FT t t FT,min1,    if  ,
,

0,   esle

q q

q
 

 


u P 
 (19)

 FTFT,min t t FT,max1,    if  ,
,

0,   esle

q q

q
  

 


u P  
 (20)

where FT,max  and FT,min  are the preset threshold values of DP in the radar system, i.e., 

the qth target is judged as a false target when FT t t FT,max( , )q q u P  , and target q is declared 

true when FT t t FT,min( , )q q u P  . In this case, we can make the radar system simultaneously 

complete the localization of the real target and the discrimination of the target with a risk 

of fake, and consequently abandon the false target. Moreover, in (18), tU  is given by: 

 

 

 

Tt
t t t1
1,1 2,1 ,1

T t t t t t tt
1, 2, ,t 1 2

t t tTt 1, 2, ,

   

,

M

q q M q Mq

Q Q M Q
Q

u u u

u u u

u u u

 
  
  
  
          
  
  
    

 



    

 

  



u

U u u uu

u

 (21)

where t t t t T
,1 ,,2 t ,[ , ,..., ]m m m m Qu u uu  denotes the results of antenna selection for the mth trans-

mit antenna, for m  . However, due to the limited data transmission rate and the given 

bandwidth available for communication [23], the antenna selection problem should be 

constrained. Moreover, in order to obtain the DP of each target, it is necessary to ensure 

that each target is illuminated by at least two transmit antennas. In theory, to maintain 

each transmit antenna can work in a stable working mode and satisfy the power budget, 

the transmit power results also need to be restricted. According to the aforesaid analysis, 

the optimization formulation can be expressed as: 
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t total ,
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t
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s.t.  1,  1
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,   if  0
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0,   esle

     ,    

q
q

q
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
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 
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    

u P

    

  

 

(22)

where the term of L  ( Q L M  ) represents the maximum of transmit antennas that can 

be selected to detect one target, and the matrix t t
t t T t t T

t 1 1[ ,..., ] [ ,..., ]Q Q     u P u P . 

t t t t T
max max,1, max,2 max,[ ,..., ]MP P PP  denotes the maximum values and the minimum values of 

transmit power in each transmit antenna, and totalP  is the total transmit power budget. 

The first line constraints in (22) imply that the three constraints on transmit antenna 

selection, i.e., each target is illuminated by at least one transmitted beam, each transmitted 

beam covers only one target, and at most L transmit antennas are selected to participate 

in the detection mission. The second line constraints represent that the transmit power is 

bounded by a power budget and the antenna selection variable is binary. Moreover, the 

third line constraints indicate that if tm u 0 , the corresponding transmit power satisfies 

with t t t
min, max,m m mP P P  , otherwise, t 0mP  , for q  , m  . 

4.3. Solution Strategy 

In mathematics, although the previous multi-objective optimization problem has 

been transformed into a single-objective optimization problem after the utilization of the 

nondimensionalization mechanism, (22) is still difficult to solve for the following reasons: 

(1) Due to the introduction of the task assignment parameters and the hypothesis testing 

process, the objective function is nonlinear and non-convex; (2) tU  is a binary matrix; 

and (3) tU  and tP  are coupled and always appear in product form. In this case, (22) is 

very tricky to solve, and it takes too much time to obtain the global optimal solution by 

using the exhaustive search algorithm [11], especially in the large-scale antenna systems 

[6]. In order to solve (22), a three-step solver is proposed to find a suboptimal solution. If 

we suppose that q   and m  , the detailed steps are given as follows: 

Step 1: Reformulation and relaxation. Since t
q

u  and tP  are always coupled as 
t t

,m q mu P  in (12)–(15), we introduce an auxiliary variable t t t
, ,m q m q mu P  . By combining it with 

the corresponding matrix t t  , we can reformulate (22) as: 
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 
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,   if  0
      

0,                       else
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
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  
 


u P  

 (23)

However, since (23) contains non-linear and non-convex constraints, and it is still 

difficult to solve. We further relax (23) as: 

 

 

 

FT

FT

t

T t t
t total , max,

t
t FT,min

t
FT,min t FT,max

min   

s.t.   , 0

1,    if  ,
       

0,   esle

1,    if  ,
          

0,   esle

q

q

Q M m q m

q
q

q
q

P P





  

 
 


  
 




1 1  

u P

u P



 

  

 (24)

Similar with [24], (24) can be easily solved by the PSO algorithm. For simplicity, the 

details of the PSO algorithm are omitted and can be seen in [24]. In addition, it is worth 

noting that because the solution of (24) is based on the assumption that all targets are 

illuminated by all transmit antennas, the solution t,opt  cannot be directly taken as the 

result of the original resource allocation problem. In this case, t,opt  should be further 

processed based on the transmit antenna selection constraints in (23). 

Step 2: Transmit antenna selection based on the results of (24). We normalize the 

optimal transmit power of each transmit antenna as t t
, ,opt , ,opt total/m q m q P  , and arrange 

the normalized transient results t
t,opt , ,opt{ | , }m q m q       from the highest to the 

lowest. Then, sorting out the transmit antenna sequence corresponding to the maximum 

value of t
, ,optm q  with the constraints in the second line of (23). The process of the sorting 

algorithm is shown in Algorithm 1.  

Step 3: Power resource optimal allocation for a given budget. Firstly, we optimize 

the allocation of transmit power based on the transmit antenna selection results obtained 

by the sorting algorithm. For a fixed optimal antenna selection matrix t,optU , the rest 

problem of (22) can be expressed as: 



Remote Sens. 2022, 14, 3904 12 of 18 
 

 

 

 

 

t,opt

FT

FT

t

t t t t
min, max,T

t total t

t
t FT,min

t
FT,min t FT,

min   

,   if  0
s.t.     

0,                       else

1,    if  ,
       

0,   esle

1,    if  ,
      

q

q

m m m m
M

m

q
q

q
q

P P P
P

P





   
 



 
 


 


U
P

u
1  P ,    

u P

u P



 

   max
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
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 (25)

Hence, similar with (24), by utilizing the PSO algorithm, the optimal power allocation 

results t,optP  can be achieved through solving (25). Up to now, we have obtained the 

suboptimal solutions for the joint transmit antenna selection and power allocation in (22). 

Algorithm 1. Sorting algorithm for the transmit antenna selection. 

(1)  Input the solution t,opt  in (24), and normalize t,opt  as t t
, ,opt , ,opt total/m q m q P  , 

where q   and m  ; 

(2)  Formulate t,opt  as a Q M  matrix, then let t,temp t,opt   and t,opt Q MU 0 ; 

(3)  while  t,temp Q M 0  

1     Sort all the elements in t,temp  with a descending manner, and obtain the row in-

dex  

and the column index as [d, h], where d and h are both Q M  vectors; 

2      t,opt ( (1), (1)) 1U d h , t,temp 1( (1),:) M d 0 , t,temp 1(:, (1)) Q h 0 , 

t,opt 1( (1),:) M d 0 ; 

end while 

(4)  while  t,opt Q M 0  

3     Sort all the elements in t,opt  with a descending manner, and obtain the row index 

and the column index as [d, h], where d and h are both Q M  vectors; 

4      if T
t1 q

M L 1  u  

5          t,opt ( (1), (1)) 1U d h , t,opt 1( (1),:) M d 0 ; 

6      else 

7          t,opt ( (1), (1)) 0U d h , t,opt ( (1), (1)) 0 d c ; 

8      end if 

end while 

(5)  Output t,optU  as the solution of (23). 

5. Experiments and Results 

5.1. Parameter Designation 

In this section, a distributed MIMO radar system with 12M   transmit antennas 

and 12N   receive antennas is chosen for analysis. In the ROI, there are 4Q   targets 

widely distributed and the state parameters of each target are shown in Table 1. To 

demonstrate the performance of the proposed strategy under different antenna deploy-

ment, four different antenna topologies are herein taken into consideration. As such, the 



Remote Sens. 2022, 14, 3904 13 of 18 
 

 

four different geometric relationships between the distributed MIMO radar systems and 

targets are demonstrated in Figure 4. For the radar system, the effective bandwidth is 

1m   MHz and the effective time duration is 1mT   ms for 1,2,...,m M . Furthermore, 

the maximum quantity of transmit antennas that can be selected to illuminate one target 

is set as 6L  . The bounds for transmit power are t
max, total0.3mP P  and t

min, total0.05mP P  

for 1,2,...,m M , and the total transmit power budget total 100P   kW. The SNR is set as 

10 dB at the distance of 20 km, with the baseline measurement error 2 2
0 diag(50 ,0.1 )R . 

In the PSO algorithm framework, we set the particle number 50pN  , the inertia weight 

1iw  , the acceleration factors 1 2 0.8c c  , and the maximum iteration number 

max 50L  . The upper and lower bounds of the preset threshold of DP are separately set as 

FT,max 0.8  and FT,min 0.3 . According to (2), it can be seen that the error of a fixed 

receiver comes from the zero-mean Gaussian white noise in the echo signals. Therefore, 

in order to possibly eliminate the effect of measurement errors on the validation of the 

proposed model, the Monte Carlo method is adopted in the numerical experiment in this 

section. Without loss of generality, the number of Monte Carlo trails is set as sim 100N  . 

 

Figure 4. Four different multiple radar layouts with multiple target locations. 

Table 1. The target parameters of each target. 

Target Index Target 1 Target 2 Target 3 Target 4 

Position (km) (55,62) (59,51) (65,56) (62,70) 

RCS (m2) 1 1 1 1 

Deception distance 

(km) 
0 1.5 0 2.5 
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5.2. Effectiveness of the Proposed Solver 

The results of transmit antenna selection and power allocation under four different 

cases are given in Figure 5. Herein, the color in each rectangle represents the ratio of allo-

cated power power t
, , totalm q m qr P , for 1,2,...,m M , and 1, 2,...,q Q . In particular, the in-

digo blue color indicates the ratio power
, 0m qr  , which means that the mth transmit antenna 

is not selected for illuminating the qth target. Meanwhile, the crimson color denotes that 

the ratio achieves the maximum. In addition, the results of task assignment and DP for 

each target under four different cases are shown in Table 2. 

Table 2. The results of task assignment and DP for each target under four cases. 

Case 1 Target 1 Target 2 Target 3 Target 4 Case 2 Target 1 Target 2 Target 3 Target 4 

q  1 0 1 0 q  1 0 1 0 

q  0 1 0 0 q  0 1 0 0 

DP 0.14 0.72 0.12 0.85 DP 0.07 0.74 0.16 0.92 

Case 3 Target 1 Target 2 Target 3 Target 4 Case 4 Target 1 Target 2 Target 3 Target 4 

q  0 0 1 0 q  0 0 1 0 

q  1 0 0 1 q  1 0 0 0 

DP 0.48 0.88 0.11 0.74 DP 0.73 0.87 0.13 0.88 

 

Figure 5. Transmit antenna selection and power allocation results under four cases. 

As can be seen from Table 2 that target 3 is assigned as the target to be located in each 

of the four cases because it has good observation conditions and is not covered by the 

distance deception signals. In addition, since both target 2 and target 4 transmit distance 

deceptive jamming signals, one of the targets between target 2 and target 4 in case 1, case 

2, and case 3 is defined as a false target, while the other target is assigned to discrimination 
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task. In particular, target 2 and target 4 are defined as false targets in case 4 due to the 

closer observation distances. As for target 1, since its position is near the center of the 

radar antennas in case 1 and case 2, better observation conditions are available and the 

DPs with respect to target 1 are lower. In this case, target 1 is judged to be a true target 

and the localization task is performed both in case 1 and case 2. Moreover, since target 1 

is located far away from the radar antennas in case 3 and case 4, the relevant measurement 

error increases, resulting in an increase in DP values. 

In order to demonstrate the effectiveness of the proposed algorithm, the following 

three benchmarks are used for comparison: 

(1) Multi-start local search [25] antenna selection with uniform power allocation 

(MSLSA-UP). This algorithm selects active transmit antennas by adopting the 

multi-start local search algorithm and allocates the transmit power resource to 

those selected active transmit antennas uniformly. 

(2) Optimal antenna selection with optimal power allocation for localization task (OA-

OP-LT). In this algorithm, we consider the localization task, and the task assign-

ment parameters in (22) are set as 1q   and 0q  , for q  . Then, the pro-

posed solving strategy is utilized to solve the modified optimization model, and the 

optimal transmit antenna selection and power allocation results can be obtained. 

(3) Optimal antenna selection with optimal power allocation for discrimination task 

(OA-OP-DT). This algorithm focuses exclusively on discrimination task, and we set 

0q   and 1q  , for q  . Similar with the OA-OP-LT algorithm, the optimi-

zation model is then solved by the proposed solving strategy. 

(4) Modified PSO (MPSO) [26] based optimal antenna selection with optimal power 

allocation (MPSO-OA-OP). By Combining the MPSO algorithm and the optimiza-

tion model in (22), this algorithm solves the transmit antenna selection problem and 

the power allocation problem simultaneously. 

The above four benchmark algorithms are compared with our proposed algorithm 

in terms of the composite indicator of joint localization accuracy and discrimination ability 

(JLADA). To be specific, the results of resource allocation by using the four benchmark 

algorithms are substituted into the model established in this paper, and then the objective 

function values in (18) are calculated under the constraints of the binary judgments of (19) 

and (20). The comparative analysis of composite indicators of JLADA based on different 

resource allocation strategies is demonstrated in Figure 6. 

 

Figure 6. Comparisons of composite indicators of JLADA using different algorithms. 

It shows in Figure 6 that the proposed method performs best in improving localiza-

tion accuracy and discrimination ability under the four different radar layouts cases. To 
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be specific, the performances of the OA-OP-LT algorithm and the OA-OP-DT algorithm 

are similar, which also indicates the correctness of the nondimensionalization mechanism 

and the normalized model proposed in this paper, i.e., the localization task and discrimi-

nation task are equally important in our resource allocation scheme. Moreover, the per-

formance comparison between the MPSO-OA-OP algorithm and the proposed method 

shows that the proposed two-step solving strategies has good solving ability. 

5.3. Validity Analysis of the Proposed Model 

In order to analyze localization error in the simulation results, according to the task 

assignment results in Table 2, the CRLBs of localization estimate error for all the located 

targets under four cases are given. To evaluate the localization performance in addition 

to the CRLB, the MSE under Monte Carlo trails is introduced, given by: 

   
sim 2 2

sim 1

ˆ ˆ
1 N

i i
q q q q q

i

x x y yMSE
N 

   
  

  (26)

where ˆ ˆ( , )i i
q qx y  denotes the position estimate for the qth target in the ith trail. Specifically, 

in case 1, since target 1 and target 3 are assigned to be located, the corresponding CRLBs 

of the two targets are 1 t
LE 1,opt t,opt( ) 46.8u , P  m2 and 3 t

LE 3,opt t,opt( ) 149.6u , P  m2, while 

the MSEs are 1 67.2MSE   m2 and 3 178.5MSE   m2. The CRLBs for target 1 and target 3 

in case 2 are 1 t
LE 1,opt t,opt( ) 203.2u , P  m2 and 3 t

LE 3,opt t,opt( ) 87.5u , P  m2, and the relevant 

MSEs are 1 238.4MSE   m2 and 3 105.6MSE   m2. Since only target 3 is assigned to be 

located in case 3, the CRLB and the MSE of target 3 are 3 t
LE 3,opt t,opt( ) 126.4u , P  m2 and 

3 148.1MSE   m2. In case 4, the CRLB and the MSE of target 3 are 3 t
LE 3,opt t,opt( ) 75.9u , P  

m2 and 3 103.5MSE   m2, respectively. In conclusion, from the perspective of localization 

errors, the proposed model can effectively improve the target localization accuracy by 

allocation resources compared to the measurement errors. 

For the error analysis of the proposed discriminator, it can be seen from Table 1 that 

target 2 and target 4 are preset as false targets in the simulation. Since the existence of 

deception distance in target 2 and target 4, the fixed radar system tends to obtain higher 

DPs for the two targets in the same observation condition. From the simulation results in 

Tab 3, by utilizing the resource optimal allocation scheme, both target 2 and target 4 can 

be accurately identified as false targets in case 4. In addition, one of the two targets can be 

accurately identified under case 1 to case 3, while a higher DP is prompted for the other 

false target and the subsequent discrimination task is assigned. Thus, the correctness of 

the proposed discriminator can be proven from the identification results in a global per-

spective. 

6. Conclusions and Future Work 

In this paper, to deal with deception jamming in the distributed MIMO radar, we 

formulate an optimization model of transmit antenna selection and power allocation for 

joint multi-target localization and discrimination. By utilizing the relaxation technique 

and the PSO algorithm, a three-step solving algorithm is developed for this optimization 

problem. Numerical simulations demonstrate that the proposed strategy under the joint 

localization and discrimination task conditions can improve comprehensive performance 

by more than 30% compared with single task conditions in four different radar layouts 

cases. In addition, based on the proposed resource optimal algorithm, the composite indi-

cators of JLADA can decrease more than 70% compared with the uniform allocation 

scheme. The main innovation of the proposed algorithm is the establishment of a unified 

optimization model of joint multi-target localization and discrimination under deception 

jamming. However, by artificially transforming the multi-objective optimization problem 

into the single-objective optimization problem, the model error in this paper is inevitable. 



Remote Sens. 2022, 14, 3904 17 of 18 
 

 

Moreover, although the proposed solution strategy is effective, the global optimal solution 

still cannot be obtained due to the relaxation processing. 

In this case, the future research direction will be to directly solve the initial multi-

objective optimization problem, and discuss and use more efficient solving algorithms. 

Moreover, in the future work, we will further add scenarios, including target RCS time-

varying, angle scintillation noise, and distance spoofing noise time-varying to verify the 

proposed algorithm; more quantitative analysis links will also be added. 
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