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Abstract: To realize the intelligent and accurate measurement of pavement surface potholes, an im-

proved You Only Look Once version three (YOLOv3) object detection model combining data aug-

mentation and structure optimization is proposed in this study. First, color adjustment was used to 

enhance the image contrast, and data augmentation was performed through geometric transfor-

mation. Pothole categories were subdivided into P1 and P2 on the basis of whether or not there was 

water. Then, the Residual Network (ResNet101) and complete IoU (CIoU) loss were used to opti-

mize the structure of the YOLOv3 model, and the K-Means++ algorithm was used to cluster and 

modify the multiscale anchor sizes. Lastly, the robustness of the proposed model was assessed by 

generating adversarial examples. Experimental results demonstrated that the proposed model was 

significantly improved compared with the original YOLOv3 model; the detection mean average 

precision (mAP) was 89.3%, and the F1-score was 86.5%. On the attacked testing dataset, the overall 

mAP value reached 81.2% (−8.1%), which shows that this proposed model performed well on sam-

ples after random occlusion and adding noise interference, proving good robustness. 

Keywords: pavement distress; pothole detection; YOLOv3; data augmentation; robustness 

 

1. Introduction 

Pavement surface distresses including potholes pose a significant threat to driving 

safety. Therefore, rapid detection and intelligent maintenance of potholes are prerequi-

sites for pavement management [1]. However, conventional pothole detection mainly re-

lies on manual methods [2], which suffer from strong subjectivity, high cost, a long cycle, 

and which are not conducive to rapid detection. The emergence of digital image pro-

cessing technology (DIP) makes the digital detection of pavement potholes possible, 

which is a method of processing images through denoising, enhancing, restoring, seg-

menting, and extracting features using a computer, including edge detection [3], thresh-

old segmentation [4], and morphological processing [5]. These methods are widely used 

in pavement distress detection. 

Although DIP has made good progress in pothole detection [6], it cannot achieve the 

automatic detection of potholes accurately. Fortunately, with the progress of deep learn-

ing (DL) [7], especially the emergence of convolutional neural networks (CNNs) in 2012 

[8], DL models represented by CNNs have gradually shown their superiority in object 

detection because they can quickly and accurately detect objects by automatically extract-

ing features [9]. Subsequently, CNNs have been extensively used in remote sensing [10], 

the healthcare industry [11], and other fields [12,13]. Furthermore, they are also applied 

in scenarios such as transportation infrastructure [14,15], pedestrian detection [16], un-

manned driving [17], and pavement distress detection [18]. At present, there are two kinds 
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of object detection algorithms in identifying pavement distress: one-stage algorithms and 

two-stage algorithms. 

On the one hand, two-stage algorithms first generate the proposal region, and then 

perform CNN-based classification and identification of the region. Representatives in-

clude the region-based CNN (R-CNN) series [19], R-FCN [20], and SPP-Net [21]. Nie et al. 

[22] applied the faster R-CNN model to detect pavement distress; these experimental re-

sults represented a significant breakthrough, but the dataset used was small. Then, Pei et 

al. [23] further refined the faster R-CNN model by modifying the anchor size and combin-

ing it with the VGG-16 network based on the expanded dataset, whose final detection 

accuracy was 89.97%. Song et al. [24] further considered the distress conditions for differ-

ent pavements and proposed a method based on the faster R-CNN model to identify var-

ious distresses accurately. In conclusion, these studies failed to achieve rapid detection 

because the two-stage algorithm has numerous network parameters, which makes the pe-

riod of training and testing time-consuming. 

On the other hand, the emergence of one-stage object detection models addressed the 

issues of low efficiency in the two-stage models. One-stage algorithms directly set sizes of 

the multiscale anchor, integrating classification and regression into one step instead of 

region proposal, which improves the model’s speed. Cao et al. [25] proposed a single-shot 

multi-box detector-based (SSD) object detection method on airport pavement with high 

detection accuracy (89.3%). However, the sizes of anchors in the SSD model were manu-

ally determined by data distribution, and a method for automatic anchor generation was 

urgently requested. The emergence of You Only Look Once version three (YOLOv3) 

solves this problem [26]. As one of the classic one-stage object detection models, YOLOv3 

adopts the K-Means algorithm to generate anchors of three scales, which can realize mul-

tiscale detection. Zhu et al. [27] used the YOLOv3 model to detect pavement distress, and 

they verified the feasibility of YOLOv3 by comparing it with several mainstream object 

detection models. YOLOv3 has a high comprehensive performance, but the detection ac-

curacy is not good enough to meet the maintenance needs. 

Many studies have improved the detection performance of the YOLOv3 model, and 

the existing improvement methods mainly include data augmentation, network structure 

adjustment, improvement of the loss function, and hyperparameter optimization [28]. Liu 

et al. [29] expanded the number of samples in the dataset through data augmentation to 

avoid overfitting, which improved the generalization ability of the YOLOv3 model. 

Bochkovskiy et al. [30] combined the SPP-Net and PANet networks to replace the original 

FPN network in YOLOv3, enabling the network to fully extract small object features. Tang 

et al. [31] employed the distance between the anchor and the cluster center point to define 

the loss function, which was more reasonable for evaluating the loss of the model. How-

ever, the above studies were aimed at cracks, and this approach has rarely been applied 

to potholes. In addition, the enhancement methods are not comprehensive enough, lack-

ing the consideration of the actual scene. Meanwhile, the robustness of the model has not 

been evaluated. 

Therefore, a method of combining data augmentation and YOLOv3 structure opti-

mization is proposed to study pavement pothole detection. The main contributions of this 

study are as follows: 

(1) The pothole dataset was contrast-enhanced by color adjustment, and geometric 

transformation was adopted to expand the number of samples. A data augmentation 

strategy suitable for potholes was proposed to train DL models. 

(2) The ResNet101 network was used to improve the feature extraction network of 

YOLOv3. Complete intersection over union (CIoU) was applied to measure the loss 

of the proposed model. The anchor sizes were modified by the K-Means++ algorithm. 

An object detection model applicable for potholes was established. 

(3) Adversarial samples of potholes were generated by random occlusion and adding 

noise before testing, which verified the robustness of this model. 
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The remainder of this study is organized as follows: the methodology is described in 

Section 2, including the image preprocessing methods, YOLOv3 network structure, ro-

bustness analysis, and evaluation index. The experimental results and analysis are pre-

sented in Section 3. Conclusions are drawn in Section 4. 

2. Methodology 

2.1. Pavement Pothole Dataset 

The pavement distress images were collected from typical provincial highways in 

Zhejiang Province. The dataset was captured using a mobile mapping system using an 

onboard high-definition camera (HD camera), as illustrated in Figure 1. Figure 1 illustrates 

the acquisition process of gray images and local details of camera (the front and the back). 

The detection field of the camera takes the maximum detection width of the single lane as 

3750 mm. If two cameras are selected, the lateral visual field of one camera must be at least 

2000 mm. Two cameras were selected here, and the camera’s information is listed in Table 

1. Camerlink interface meets the demand of high-speed image acquisition, and it has the 

advantages of strong anti-interference ability and low power consumption. CMOS cam-

eras are more suitable for high-speed acquisition with low cost and low power consump-

tion. One obtained image is shown on the right of Figure 1. 

The original gray image was 3854 by 2065 pixels. A total of 500 pavement images 

were collected. After the filtration, 300 images were used for model training, and 100 im-

ages were chosen for testing. Two color adjustment methods were used to improve the 

image brightness. Then, four types of geometric transformation were performed on the 

preprocessed images. Considering the small scale of the dataset, the risk of information 

leakage [32], and the low accuracy of model performance, the dataset was divided into a 

training dataset, validation dataset, and testing dataset according to the ratio of 6:2:2 [33]. 

Details are shown in Table 2. 

 

Figure 1. Mobile mapping system used to collect pavement images. 
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Table 1. Technical parameters of the high-definition camera. 

Camera Features Details Camera Features Details 

Type Basler raL2048-80km Power supply requirements (typical value) 3 W 

Interface Camera Link Type of light-sensitive chips CMOS 

Resolution ratio 3854 px × 2065 px Size of light-sensitive chips 14.3 mm 

Table 2. Detailed division information of image dataset of pavement potholes. 

Dataset Training Dataset Validation Dataset Testing Dataset 

Image with potholes 480 160 160 

Image without potholes 720 240 240 

Total 1200 400 400 

Potholes on rainy days accumulate water, while potholes on sunny days are mostly 

dry. Therefore, the potholes with accumulated water and dry surfaces were marked as P1 

and P2, respectively. All labeling work was performed using LabelImg software (v1.8.6) 

[34]. 

2.2. Pothole Data Pre-Processing 

To adjust the brightness of the dataset, two types of color adjustment method were 

used. The contrast and sharpness of the image were modified. The performance of DL 

models depends on the size and the quality of the dataset. Therefore, data augmentation 

was used to address the above issues [35]. Four geometric augmentation methods were 

adopted [36]. Details are described below. 

2.2.1. Color Adjustment 

The pavement pothole images were three-channel color images. Each color pixel fea-

tured the three components of red, green, and blue, referring to the color image at a spe-

cific spatial position and, thus, forming a vector to describe the image. For the processing 

of color images, two color augmentation operations (contrast and sharpness) were used 

[37]. 

To solve the problem of low contrast caused by the small gray-level range of the pot-

hole image, contrast augmentation was used to enlarge the gray-level range of the pothole 

image and make the image clearer [38]. Using the hue–saturation–intensity (HSI) color 

model, the probability smoothing method was conducted for the components of intensity 

and saturation, which converted the intensity and saturation components into a uniform 

distribution. The calculation formulas of the intensity and the saturation components are 

shown in Equation (1) and Equation (2), respectively. 

   1 1 Im0 0
( ) ( )

k k

k k I Ik I Ikm m
y F x P x x f x P x x

 
       , (1)

 
 1 m0 0

,
( ) ( )

t t I Ik s Sm
st k Ik S Ikm m

I Ik

P x x x x
y F x x f x x

P x x 

 
  


  , (2)

where k = 0, 1, …, L − 1 and t = 0, 1, …, M − 1; L and M represent discrete levels of intensity 

and saturation, respectively. X = (xH, xS, xI)T is a vector of color pixels representing each 

image. F(∙) is a probability function, and F(Z) = F(xI, xS) = P{xI ≤ xI, xS ≤ xS}. 

Sharpness eliminates the blurring of the pothole image by increasing the contrast of 

the pixels in the neighborhood, making the pothole object clearer. Laplace sharpness adds 

gradient values (Laplace operator) to the pothole image [39]. The enhancement method 

based on the Laplace operator is shown in Equation (3). 
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where g(x, y) is the pothole image after sharpness, f(x, y) is original pothole image, and 

▽2R(x, y), ▽2G(x, y), and▽2B(x, y) are the Laplace operators of each component (red, green, 

and blue) of the color images, respectively. 

2.2.2. Geometric Transformation 

As a traditional data augmentation method, geometric transformation was per-

formed on images through specific operations such as rotation, flipping, and cropping. 

The shape of the pothole target was mainly polygonal, with randomness in all directions. 

Four operations of rotating 90° clockwise, 180°, 90° anticlockwise, and random crop were 

used on the basis of the above features. 

The rotation of pothole images refers to forming a new image by rotating the central 

point of an image at a certain angle as a reference point, which can effectively expand the 

amount of data. 

The random crop method could produce a better effect on learning the main features 

of potholes while increasing model stability, which was realized by randomly cropping 

the corner of the image. Specifically, it was assumed that the main feature of potholes (P) 

is F, and the collected image contains background noise (B). That is, the pothole’s main 

feature in the captured image is defined as C, which is expressed as (F, B). It is expected 

to learn F, but possible to learn (F, B), thus resulting in overfitting. Potholes are generally 

in the middle of the image. Their main features (F) are highly unlikely to be cut, while B 

is the contrary. This is equivalent to the weight distribution of the two during training. 

Considering the extreme case (that is, when the weight allocation is only 0 or 1), the infor-

mation gain of F is large, and the learner is more likely to learn F while ignoring B, as 

shown in Equation (4). Xc represents several cases of learning feature information in ex-

treme cases. For example, Xc(1) = (1∙F, 0∙B) is the case when F weighs 1, while B is 0. 

(1) (2) (3)(1 , 0 ), (1 ,1 ), (0 ,1 ),...    c c cX F B X F B X F B          (4)

The two color adjustment methods and four data augmentation methods are listed 

in Table 3, illustrated with examples. 

Table 3. Examples of data augmentation of pavement potholes. 

Pre-Pro-

cessing Steps 
Original Image 

Color Transformation 

(Contrast Adjustment) 

Geometric Transformation 

(Data Augmentation) 

Contrast Sharpness 
Rotating 90° Anti-

clockwise 

Rotating 90° 

Clockwise 
Rotating 180° Random Crop 

Potholes with 

water 

       

Potholes 

without water 
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2.3. Object Detection 

2.3.1. YOLOv3–ResNet101 Structure 

YOLOv3 is a state-of-the-art object detection algorithm with fast speed and high ac-

curacy. An end-to-end training and prediction method is adopted in YOLOv3, which is 

applicable for practical engineering applications [26]. In this paper, YOLOv3 was used as 

the basic framework for pothole detection. The ResNet101 network [40] was used instead 

of the traditional DarkNet-53 network as the feature extraction network. The proposed 

network structure is illustrated in Figure 2. 

First, the pothole image was passed through a ResNet101 network without a fully 

connected layer to perform feature extraction. Then, upsampling and tensor concatenat-

ing were performed on the feature map. Thus, outputs at three different scales (Y1, Y2, 

Y3), as illustrated in Figure 2, were obtained. The multiscale method was employed to 

detect pothole objects of various sizes. The created detector had well-balanced perfor-

mance regardless of the pothole sizes. 

For a stacked layer, x is the input, and H(x) is the learned feature. Thus, what is 

learned in the residual network is the residual F(x) = H(x) − x, while the original learned 

feature is H(x) = F(x) + x. This way of learning makes it easier to learn from raw features 

compared to the direct way. When F(x) = 0, the stacking layer performs identity mapping, 

and the performance of this network does not degrade. As a residual network, the Res-

Net18 network [40] can extract deeper-level features, thus having a more accurate under-

standing of the image. However, the ResNet18 has more network parameters than the 

deep residual network, resulting in a large number of training calculations. To decrease 

the computational cost, ResNet101 employs a bottleneck design structure. It has a convo-

lution of inputs 7 × 7 × 64, then goes through 33 (3 + 4 + 23 + 3) building blocks, each of 

which has three layers, and finally an FC layer (for classification), for a total of 1 + 33 × 3 + 

1 = 101 layers. Subsequently, five feature maps of different sizes, C1, C2, C3, C4, and C5, 

were generated. They were different in size, and each pixel on the feature map had a dif-

ferent receptive field, corresponding to the original image, which was equivalent to divid-

ing the original image into grids of different sizes. The ResNet101 network was selected. 

Figure 3 shows the improvement process. 

To avoid gradient disappearance and speed up model convergence, ResNet101 

adopts batch normalization (BN) [41]. BN converts the input distribution into a standard 

normal distribution with a mean of 0 and a variance of 1. 

 

Figure 2. YOLOv3–ResNet101 network structure. 
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Figure 3. Comparison of ResNet101 network structure with other residual networks (ResNet18, Res-

Net34, and ResNet50). 

In addition, the detailed network parameters of YOLOv3–ResNet101 are given in Ta-

ble 4. 

Table 4. Network parameters of YOLOv3–ResNet101. 

Network Layer Name Output Size Parameters 

ResNet101 

conv1 512 × 512 × 3 conv, 7 × 7 × 64, stride 2 

conv2 256 × 256 × 64 

max pool, 3 × 3, stride 2 

bottleneck: 1 × 1 

1 1 64

3 3 64 3

1 1 256

 

  

 

 
 
 
  

 

conv3 128 × 128 × 256 

bottleneck: 1 × 1 

1 1 128

3 3 128 4

1 1 512

 

  

 

 
 
 
  

 

conv4 64 × 64 × 512 

bottleneck: 1 × 1 

1 1 256

3 3 256 23

1 1 1024

 

  

 

 
 
 
  

 

conv5 32 × 32 × 1024 

bottleneck: 1 × 1 

1 1 512

3 3 512 3

1 1 2048

 

  

 

 
 
 
  

 

YOLOv3 Y1 32 × 32 × 1024 3 anchors 
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3 3 1024
2

1 1 1024

 


 

 
  

 

Y2 64 × 64 × 512 

3 anchors 

3 3 1024
2

1 1 1024

 


 

 
  

 

Y3 128 × 128 × 256 

3 anchors 

3 3 1024
2

1 1 1024

 


 

 
  

 

2.3.2. Loss Function 

The loss function of YOLOv3 consists of category loss, confidence loss, and position 

loss. The calculation formula is shown in Equation (5). 

class conf locLoss Loss Loss Loss   . (5)

Figure 4 shows the calculations of intersection over union (IoU) and other loss func-

tions [42], where P represents the prediction box, Pgt represents the ground truth, and IoU 

is defined as the ratio of intersection and union between P, Pgt, which reflects the degree 

of overlap between the two. However, there are two problems with this calculation: first, 

when the prediction box is not overlapped with the real box, the IoU is 0, and the gradient 

return cannot be carried out; second, the calculation result is only related to the overlap 

area and cannot measure the way of intersection between two boxes. Therefore, the IoU 

is not a comprehensive and accurate measure of the degree of overlap. 

 

Figure 4. Calculation formula of IoU and its improvement process. 

As a result, improvements to IoU have constantly been proposed. Generalized inter-

section over union (GIoU) considers the nonoverlapping regions; however, it is scale-in-

variant and is not conducive to multiscale pothole detection. The distance between P and 

Pgt is directly minimized to speed up convergence in distance IoU (DIoU); nevertheless, 

the aspect ratio of the two is not considered. 
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Complete IoU (CIoU) was selected as the loss function in this paper. Three important 

geometric factors of bounding-box regression loss are taken into account in CIoU: overlap 

area, center point distance, and aspect ratio, which allows a more stable and accurate con-

vergence. The CIoU is calculated as shown in Equation (6). 

2

2

2

2

( , )
1

4
(arctan arctan )

(1 )

gt

CIoU

gt

gt

P P
Loss IoU

c

w w
v

h h

v

IoU v








  




 



  

, (6)

where v represents the consistency of the pothole’s aspect ratio, a is the positive tradeoff 

parameter, wgt and hgt are the width and length of Pgt, respectively, and w and h are the 

width and length of P, respectively. 

2.3.3. Anchor Size 

An anchor is mainly used to solve the issue that the scale and aspect ratio vary too 

much in object detection. Through the anchor mechanism, the multiscale and aspect ratio 

are divided into several subspaces to reduce the difficulty of pothole detection, making 

the model easier to learn. In the original YOLOv3 structure, the scale and aspect ratio of 

the anchor are determined using the COCO dataset. However, the application object of 

the dataset is the pavement pothole; thus, the original anchor size is not suitable for the 

research scene of this paper. There is an urgent need to perform anchor clustering on the 

pothole dataset. The K-Means algorithm needs to determine the initial cluster center man-

ually [26]; thus, the K-Means++ was used to cluster the real annotation boxes more accu-

rately. The K-Means++ algorithm firstly selected a random point from the dataset as the 

center point and calculated the distance between the sample and each known center point. 

Then, M points were found far from the known center point. Lastly, a random point from 

M samples was chosen as the center. The clustering results were more concentrated, and 

the aspect ratio was more in line with the characteristics of the pothole dataset. The results 

are illustrated in Figure 5, and the size distribution of the anchor is shown in Table 5. The 

obtained anchor sizes were employed to replace the original parameters for training and 

testing, which reduced the difficulty of model training. 

 

Figure 5. Visualization of training dataset anchor clustering distribution. 
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Table 5. Multiscale anchor size of potholes based on K-Means++. 

Detection Scale Anchor Size 

Scale 1: 32 × 32 (176, 312) (335, 247) (285, 362) 

Scale 2: 64 × 64 (126, 236) (285.5, 132) (213, 201) 

Scale 3: 128 × 128 (34, 35) (72, 79) (149, 126) 

2.3.4. Robustness Verification 

There are many shielding objects around potholes in actual scenes, such as leaves, 

road repair, and moving vehicles. Meanwhile, the same pothole can present different 

characteristics under different lighting conditions due to changes over time. Therefore, it 

is necessary to verify the proposed model’s robustness in such a complex background. 

The existing analysis methods on robustness are mainly divided into traditional methods 

and adversarial attacks because of the different research fields and research angles [43]. 

The traditional method involves applying this model to another scene for verification and 

evaluating its robustness through the testing results. Adversarial attacks make the model 

produce false results by continuously adding tiny perturbations (adversarial examples) to 

the image. 

Given the above problems, and considering that the potholes were interfered by 

shielding objects, the random occlusion (RO) method [44] was adopted to set the pixel 

value in a square area of the input image to zero. Details of random occlusion are shown 

in Figure 6, where xe, ye are random coefficients, and Ze is the random occlusion area. The 

pixel color in the random occlusion area was set to zero. 

 

 

Figure 6. Generation of random occlusion. 

Salt-and-pepper noise [45] and Gaussian noise [46] were also added to simulate the 

noise problem during the acquisition process. Figure 7 shows the noise-attacked image, 



Remote Sens. 2022, 14, 3892 11 of 19 
 

 

in which the ratio of salt-and-pepper noise was 0.10, and the mean value and variance of 

Gaussian noise were 0 and 0.1, respectively. The noise had a great effect on the pothole. 

  
(a) (b) 

Figure 7. Pothole image after adding noise: (a) salt-and-pepper noise; (b) Gaussian noise. 

2.3.5. Evaluation Index 

To evaluate the accuracy and performance of the object detection model, precision 

(P), recall rate (R), mean average precision (mAP), and F1-score were selected. TP repre-

sents that the potholes are detected correctly when there exist potholes. FP represents that 

a pothole is detected when there is no pothole. FN represents that no pothole is detected 

when there exist potholes. TN represents that no pothole is detected when there is no pot-

hole. The detailed calculation formulas are described in Equations (7)–(10). 

TP
P

TP FP



. (7)

TP
R

TP FN



. (8)

1 1

1 20 0
( ( ) ) ( ( ) )

2

P PP r dR P r dR
mAP



 

. 
(9)

2
1

P R
F

P R

 



. (10)

Furthermore, the calibration error index (ECE) [47] was selected to demonstrate the 

improved overfitting results after the data augmentation strategy. The calculation formula 

of the ECE index is described as follows [48]: 

5

1

( ) ( )b

b

n
ECE A b confidence b

N

  . (11)

The confidence interval [0, 1] was divided into five bins, where the detection results 

of each pothole image were saved. In Equation (11), b represents the b-th bin, and nb refers 

to the number of samples in the b-th bin. N is the sum of samples. A(b) is the average value 

of the ground truth of the samples in the b-th bin. Moreover, confidence(b) represents the 

average value of the model’s predicted probabilities in the b-th bin. A smaller difference 

between A(b) and confidence(b) indicates a higher model confidence. 
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3. Results and Discussion 

The effect of the data augmentation on the detection result was studied by comparing 

the detection effect of the object detection models on the testing set before and after aug-

mentation. To evaluate the proposed model from the perspectives of accuracy and perfor-

mance, two control groups (the original YOLOv3 model and the YOLOv3–ResNet101 

model with the new backbone) and the experimental group (YOLOv3–ResNet101 model 

with modified anchors) were set. Furthermore, several mainstream object detection mod-

els were also used to detect the pothole dataset in this study, including faster R-CNN, 

Cascade R-CNN, and SSD. 

Model training and testing were conducted on a Windows 10 system using Python 

3.7. The CPU was an Intel (R) Core (TM) i7-7700 CPU. The model reached convergence 

after 100 epochs. Detailed training parameters are presented in Table 6. 

Table 6. Values of the training parameters. 

Hyperparameters Value 

Batch size 2 

Epochs 100 

Learning rate 0.00125 

Weight decay L2 

Optimizer Momentum 

Momentum 0.9 

3.1. Results of Data Augmentation 

Evaluation indices of the YOLOv3 model and proposed model before and after data 

augmentation are listed in Table 7, where “(aug)” denotes the detection result obtained 

by the augmented dataset. It can be seen that the P value, R value, mAP, and F1 score of 

the two object detection models were improved after data augmentation, with a ratio of 

2–9%. Data augmentation expanded the number of samples, increased the diversities of 

labels, ensured the relative balance between the two labels (P1 and P2), and reduced the 

probability of misidentification. Therefore, the proposed augmentation method could ef-

fectively improve the detection effect of the object detection model. 

Data augmentation had different effects on different models. Figure 8 shows the en-

hancement effects of the two models. For the original YOLOv3 model, the improvement 

degree of the P value, R value, mAP, and F1 score was 2–5%, and the mAP of P2 had the 

highest improvement of 4.55%. Similarly, for the proposed model, the improvement de-

gree of all evaluation indices was 4–9%, and the P value of P2 had the highest increase-

ment of 8.22%. Generally, the proposed model had a more significant improvement effect 

on the evaluation indicators based on the enhanced dataset. 

Figure 9 shows the effect of calibrating the model using the ECE index. ECE values 

of the YOLOv3 model and the proposed model decreased significantly after data augmen-

tation, by 62.8% and 69.6%, respectively. The ECE value of the proposed model dropped 

to 0.088 (a very small value), which shows that the data augmentation strategy is effective 

in promoting the confidence of the model and improving the overfitting problem. 

Table 7. Evaluation index results of YOLOv3 model and proposed model before and after data aug-

mentation. 

Evaluation Indices 
P R mAP F1 

P1 P2 Total P1 P2 Total P1 P2 Total P1 P2 Total 

YOLOv3 0.734 0.677 0.705 0.742 0.693 0.718 0.749 0.704 0.727 0.737 0.685 0.711 

YOLOv3 (aug) 0.764 0.720 0.742 0.775 0.720 0.747 0.771 0.749 0.760 0.769 0.720 0.744 

Proposed model 0.802 0.784 0.793 0.830 0.773 0.801 0.853 0.838 0.845 0.816 0.780 0.798 

Proposed model (aug) 0.872 0.866 0.869 0.882 0.840 0.861 0.895 0.892 0.893 0.877 0.852 0.865 
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Figure 8. Data augmentation testing result comparisons: (a) YOLOv3 model; (b) proposed model. 

 

Figure 9. ECE indices of YOLOv3 model and proposed model before and after data augmentation. 

3.2. Evaluation of Different DL Models 

The performance of the improved model’s detection effect is shown in Figure 10. 
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Figure 10. Evaluation indices of YOLOv3 model and other improved models. (a) overall evaluation 

indices; (b) evaluation indices of P1 and P2 labels. 

As shown in Figure 10a, YOLOv3–ResNet101 had a significant improvement in all 

indices compared with the original YOLOv3. Specifically, the mAP and F1 score increased 

by 6.5% and 6.3%, respectively. The improvement of the P value was 4.7%, which demon-

strates that the YOLOv3–ResNet101 model showed a better effect on pothole detection. It 

was verified that the proposed ResNet101 network was effective, allowing a deeper un-

derstanding of the deeper semantic information of the potholes. Furthermore, the pro-

posed model had a greater improvement. The mAP and F1 score were increased by 6.9% 

and 5.7% compared to the YOLOv3–ResNet101 model, highlighting the great contribution 

of the modified anchor sizes to the detection performance. 

Moreover, Figure 10b shows the detection effects of the YOLOv3 model and the im-

proved model on P1 and P2, respectively. The indices of P1 and P2 labels were all im-

proved in the YOLOv3–ResNet101 model; this improvement was further enlarged in the 

proposed model. In the original YOLOv3 model, the four indices of P1 were higher than 

those of P2 because the potholes with water showed different colored surfaces inside and 

outside the damaged area, making them easier to detect. As for YOLOv3–ResNet101, the 

differences between the four indices of P1 and P2 were narrowed. Furthermore, this phe-

nomenon was obvious in the proposed model. In terms of mAP values, P2 was fairly close 

to P1. This indicates that the modified strategies in this study had a greater improvement 

in P2 than P1. 

In addition, the detection results of different object detection models are listed in Ta-

ble 8. It can be seen that the faster R-CNN model and cascade R-CNN model performed 

well in various indices because of their advantages, and the accuracy remained nearly 

above 80%. The accuracy of the SSD model and the original YOLOv3 model was slightly 

lower than that of the two-stage algorithms, which was caused by sacrificing accuracy for 

faster training and detection. The improvement effect of the proposed model was obvious; 

the overall P value, F1 score, and mAP value reached 86.9%, 86.5%, and 89.3%, respec-

tively, which were higher than those of the two-stage methods, realizing the accurate de-

tection of potholes. The rationality and feasibility of our modified strategies were proven 

in the proposed model. 
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Table 8. Comparison of detection results of different object detection models for potholes. 

Evaluation Indices 
Faster 

R-CNN [49] 

Cascade 

R-CNN [50] 
SSD [51] 

YOLOv3–Dark-

Net53 [26] 

YOLOv3–Res-

Net101 
Proposed Model 

P 

P1 0.807 0.800 0.747 0.764 0.771 0.872 

P2 0.817 0.804 0.751 0.720 0.806 0.866 

Total 0.812 0.802 0.749 0.742 0.789 0.869 

R 

P1 0.793 0.794 0.733 0.775 0.853 0.882 

P2 0.822 0.810 0.738 0.720 0.804 0.840 

Total 0.807 0.802 0.736 0.747 0.829 0.861 

mAP 

P1 0.825 0.797 0.798 0.769 0.817 0.895 

P2 0.814 0.805 0.751 0.749 0.831 0.892 

Total 0.819 0.801 0.775 0.759 0.824 0.893 

F1 

P1 0.798 0.831 0.742 0.770 0.810 0.877 

P2 0.800 0.803 0.744 0.720 0.805 0.852 

Total 0.799 0.817 0.743 0.745 0.808 0.865 

AP50 0.819 0.801 0.775 0.759 0.824 0.893 

AP75 0.744 0.763 0.685 0.625 0.750 0.841 

AP90 0.782 0.783 0.730 0.692 0.784 0.867 

To verify the localization accuracy of the proposed model, the detection results of 

faster R-CNN, cascade R-CNN, SSD, YOLOv3–Darknet53, YOLOv3–Resnet101, and the 

proposed model were compared. AP values with different IoU thresholds (0.50, 0.75, and 

0.90) were calculated, and the results are shown in Table 8. It can be seen that the locali-

zation accuracy of the proposed model was higher that of the faster R-CNN model, with 

a significance difference of 7.4% between the two models. The localization accuracy of the 

original YOLOv3 model was 6.0% lower than that of faster R-CNN. The proposed model 

could effectively improve the localization accuracy of pothole detection. 

3.3. Robustness Analysis 

Table 9 lists the evaluation indices on the attacked testing dataset. It can be seen that, 

when the IoU threshold was 0.5, the overall mAP value reached 0.812, which decreased 

by 9.98% compared with that before attack. To more intuitively compare the performance 

of the proposed model on the attacked testing dataset, Table 10 describes four detection 

examples of typical pothole distress. 

Table 9. Detection indexes of the attacked testing dataset. 

Evaluation Indices 
IoU50 IoU75 IoU90 

P1 P2 Total P1 P2 Total P1 P2 Total 

P 0.788 0.793 0.790 0.733 0.738 0.736 0.275 0.277 0.276 

R 0.763 0.802 0.783 0.718 0.746 0.732 0.266 0.248 0.257 

mAP 0.810 0.814 0.812 0.764 0.773 0.769 0.211 0.325 0.268 

F1 0.775 0.797 0.786 0.737 0.743 0.740 0.240 0.238 0.239 
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Table 10. Examples of detection results of the attacked pothole images. 

Labels Original Images Proposed Model 
Proposed Model 

(Random Occlusion) 

Proposed Model 

(Salt-and-Pepper Noise 

Attacked) 

Proposed Model 

(Gaussian Noise At-

tacked) 

P1 

(pothole 

with wa-

ter) 

     

     

P2 

(pothole 

without 

water) 

     

     

As shown in the table, the accuracy of the proposed model on the adversarial attack 

samples decreased because the random occlusion layer and the added noise destroyed the 

semantic information around the potholes, which hindered identification of the object. 

Random occlusion had great influence on the detection results. When ~50% occlusion 

(50% occlusion is similar to car occlusion) was set, the occluded pothole area could be 

correctly detected. However, in P2 (pothole without water), the occluded area was incor-

rectly detected as a pothole, which reduced the overall accuracy. Salt-and-pepper noise 

brought great damage to pothole targets, and P1 in two pictures was even wrongly de-

tected as P2, which may be because salt-and-pepper noise destroyed the semantic charac-

teristics of water on the surface, making it difficult to detect the existence of water. Gauss-

ian noise was less destructive than salt-and-pepper noise, but the detection accuracy also 

decreased. Generally, the degree of influence of the three perturbation methods on the 

detection effect was as follows in this experiment: salt-and-pepper noise > random occlu-

sion > Gaussian noise. Noise destruction is difficult to avoid in the process of image ac-

quisition; therefore, it is of great necessity to study a reasonable image denoising method. 

3.4. Generalization Performance Analysis 

Generalization performance analysis was conducted. Table 11 describes the typical 

detection examples on a publicly available dataset [52]. The detection effect of the pro-

posed model on the publicly available dataset was generally good. Although the detection 

effect was worse than that for the constructed dataset in this paper, the degree of reduction 

was small. It can be seen from Table 11 that the detection accuracy of the P2 label was 
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higher, but there was a phenomenon of misdetection (row 2 and column 3 of Table 11). It 

was easy for the proposed model to misidentify manhole covers as P1 labels (row 2 and 

column 4 in Table 11), which indicated that the proposed model does not have strong 

detection ability for manhole covers and is not suitable for areas with many manhole co-

vers. Additionally, the proposed model misidentified large pools of water in the public 

dataset as P1 labels. 

Table 11. Detection examples of the open-source dataset using the proposed model. 

Original image 

     

Detection results of the pro-

posed model 

     

4. Conclusions 

A modified YOLOv3 model was proposed to detect potholes on the pavement sur-

face under wet and dry conditions in this study. Through data augmentation, modified 

anchor sizes, improved feature network, and loss function, a model with higher accuracy 

was proposed, and its robustness was verified. The main conclusions can be drawn as 

follows: 

(1) An effective image preprocessing strategy for improving and expanding the pothole 

dataset was proposed using the methods of color adjustment and geometric transfor-

mation, which ensured the detection stability of the proposed model. 

(2) The potholes were further subdivided according to whether there was water. The 

detection results could preliminarily judge the surface state of the pothole and 

weather conditions. 

(3) The ResNet101 network was adopted to extract features in the YOLOv3 model, which 

obtained abundant information on potholes. The modified anchor sizes based on the 

K-Means++ method were more in line with the shapes and sizes of the pothole, which 

improved the accuracy of the identification and location. The loss function defined 

by CIoU was of great help for accurate pothole detection. 

(4) The robustness of the proposed model was verified by generating adversarial attack 

samples through random occlusion and adding noise. Results showed that the over-

all robustness was good. Specifically, the proposed model was more robust to Gauss-

ian noise under the interference intensity. 

It should be noted that perturbations were added to our pothole testing dataset dur-

ing robustness verification. Multiple methods of perturbation, such as other types of noise 

and occlusion ratio, need to be evaluated in the future. Despite the limited perturbation 

methods, the proposed model could provide a reference for pothole detection in the actual 

scene. 
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